Citation: Xiaobo Ding, Qianhui Huang, Xunhui Xiong. Research and Application of Fast-Charging Graphite Anodes for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2022, 38(11): 220405. doi: 10.3866/PKU.WHXB202204057 shu

Research and Application of Fast-Charging Graphite Anodes for Lithium-Ion Batteries

  • Corresponding author: Xunhui Xiong, esxxiong@scut.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 29 April 2022
    Revised Date: 25 May 2022
    Accepted Date: 6 June 2022
    Available Online: 13 June 2022

    Fund Project: the National Natural Science Foundation of China 51874142the Fundamental Research Funds for the Central Universities 2019JQ09the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program 2019TQ05L903the Young Elite Scientists Sponsorship Program by CAST 2019QNRC001

  • Driven by the excessive environmental pollution caused by the over-use of non-renewable fossil-derived energy, renewable energy and electrochemical energy storage devices have made great progress in the past decades. Electrochemical energy storage devices, such as lithium-ion batteries, have the advantages of high capacity, long life cycle, and good safety performance; therefore, they have been used in various applications. For example, economical and environment-friendly electric vehicles have recently taken up increasing market share. However, when compared with vehicles propelled using fossil-derived energy, the slow charging speed of electric vehicles has always restricted their further promotion. The realization of rapid charging for electric vehicles can alleviate the high-pressure usage of charging piles as well as increase the application and market share of electric vehicles. Therefore, it is important to develop high-performance lithium-ion batteries with rapid charge and discharge capacities. The fast-charging capacity of lithium-ion batteries is limited by the slow migration of lithium ions in the electrode and the electrode/electrolyte interface. Therefore, the key to developing fast-charging lithium-ion batteries lies in the successful design of suitable electrode materials. Because of its low cost and excellent electrochemical performance, graphite has been widely used to develop the cathode of lithium-ion batteries. However, the migration of lithium ions in graphite is slow, resulting in large polarization during the high-current charge and discharge processes. In addition, the low lithium intercalation potential of graphite leads to lithium precipitation during fast charging, which can decrease the electrochemical performance and cause potential safety hazards. Therefore, graphite must be improved to meet the needs of such fast-charging devices. In this article, we systematically introduce the research progress made in recent years within the scope of rapid-charging improvement of graphite(-based) cathodes and then highlight the modification strategies for graphite with the goal of achieving functional coating, desired morphological and structural design, optimized electrolyte properties, and an improved charging protocol. Additionally, this article evaluates the advantages and disadvantages of the modification strategies as well as their application prospects. The scheme of functional coating for modifying graphite must simplify the process and improve production efficiency to meet the needs of industrial development. Morphology design should ensure satisfactory initial Coulomb efficiency, while the improvement of the electrolyte properties and optimization of the charging protocol need to consider the commercialization costs. Finally, this paper proposes further evaluation of the effects of the modification strategies based on soft-pack or cylindrical batteries to strengthen the commercialization prospect of the modification strategies.
  • 加载中
    1. [1]

      (a) Chen, C.; Liang, Q. W.; Chen, Z. X.; Zhu, W. Y.; Wang, Z. J.; Li, Y.; Wu, X. W.; Xiong, X. H. Angew. Chem. Int. Ed. 2021, 60 (51), 26718. doi: 10.1002/anie.202110441
      (b) Wu, F. X.; Maier, J.; Yu, Y. Chem. Soc. Rev. 2020, 49 (5), 1569. doi: 10.1039/c7cs00863e
      (c) Chen, C.; Liang, Q. W.; Wang, G.; Liu, D. D.; Xiong, X. H. Adv. Funct. Mater. 2022, 32 (4), 2107249. doi: 10.1002/adfm.202107249

    2. [2]

      (a) Collin, R.; Miao, Y.; Yokochi, A.; Enjeti, P.; von Jouanne, A. Energies 2019, 12 (10), 1839. doi: 10.3390/en12101839
      (b) Deb, N.; Singh, R.; Brooks, R. R.; Bai, K. Energies 2021, 14 (22), 7566. doi: 10.3390/en14227566

    3. [3]

      Cai, W. L.; Yao, Y. X.; Zhu, G. L.; Yan, C.; Jiang, L. L.; He, C. X.; Huang, J. Q.; Zhang, Q. Chem. Soc. Rev. 2020, 49 (12), 3806. doi: 10.1039/c9cs00728h  doi: 10.1039/c9cs00728h

    4. [4]

      Zhang, S. S. Chemelectrochem 2020, 7 (17), 3569. doi: 10.1002/celc.202000650  doi: 10.1002/celc.202000650

    5. [5]

      Huang, S.; Wu, X. Y.; Cavalheiro, G. M.; Du, X. N.; Liu, B. Z.; Du, Z. J.; Zhang, G. S. J. Electrochem. Soc. 2019, 166 (14), A3254. doi: 10.1149/2.0441914jes  doi: 10.1149/2.0441914jes

    6. [6]

      Tanim, T. R.; Dufek, E. J.; Evans, M.; Dickerson, C.; Jansen, A. N.; Polzin, B. J.; Dunlop, A. R.; Trask, S. E.; Jackman, R.; Bloom, I.; et al. J. Electrochem. Soc. 2019, 166 (10), A1926. doi: 10.1149/2.0731910jes  doi: 10.1149/2.0731910jes

    7. [7]

      Deb, S.; Tammi, K.; Kalita, K.; Mahanta, P. Wiley Interdiscip. Rev. Energy Environ. 2018, 7 (6), e306. doi: 10.1002/wene.306  doi: 10.1002/wene.306

    8. [8]

      Previati, G.; Mastinu, G.; Gobbi, M. Energies 2022, 15 (4), 1326. doi: 10.3390/en15041326  doi: 10.3390/en15041326

    9. [9]

      Ahmed, S.; Bloom, I.; Jansen, A. N.; Tanim, T.; Dufek, E. J.; Pesaran, A.; Burnham, A.; Carlson, R. B.; Dias, F.; Hardy, K.; et al. J. Power Sources 2017, 367, 250. doi: 10.1016/j.jpowsour.2017.06.055  doi: 10.1016/j.jpowsour.2017.06.055

    10. [10]

      Raboaca, M. S.; Meheden, M.; Musat, A.; Viziteu, A.; Creanga, A.; Vlad, V.; Filote, C.; Rata, M.; Lavric, A. Int. J. Energy Res. 2022, 46 (2), 523. doi: 10.1002/er.7206  doi: 10.1002/er.7206

    11. [11]

      Li, L.; Zhang, D.; Deng, J. P.; Gou, Y. C.; Fang, J. F.; Cui, H.; Zhao, Y. Q.; Cao, M. H. Carbon 2021, 183, 721. doi: 10.1016/j.carbon.2021.07.053  doi: 10.1016/j.carbon.2021.07.053

    12. [12]

      Logan, E. R.; Dahn, J. R. Trends Chem. 2020, 2 (4), 354. doi: 10.1016/j.trechm.2020.01.011  doi: 10.1016/j.trechm.2020.01.011

    13. [13]

      Liu, Y. Y.; Zhu, Y. Y.; Cui, Y. Nat. Energy 2019, 4 (7), 540. doi: 10.1038/s41560-019-0405-3  doi: 10.1038/s41560-019-0405-3

    14. [14]

      Weiss, M.; Ruess, R.; Kasnatscheew, J.; Levartovsky, Y.; Levy, N. R.; Minnmann, P.; Stolz, L.; Waldmann, T.; Wohlfahrt-Mehrens, M.; Aurbach, D.; et al. Adv. Energy Mater. 2021, 11 (33), 2101126. doi: 10.1002/aenm.202101126  doi: 10.1002/aenm.202101126

    15. [15]

      Xie, W. L.; Liu, X. H.; He, R.; Li, Y. L.; Gao, X. L.; Li, X. H.; Peng, Z. X.; Feng, S. W.; Feng, X. N.; Yang, S. C. J. Energy Storage 2020, 32, 101837. doi: 10.1016/j.est.2020.101837  doi: 10.1016/j.est.2020.101837

    16. [16]

      Cai, W. L.; Yan, C.; Yao, Y. X.; Xu, L.; Xu, R.; Jiang, L. L.; Huang, J. Q.; Zhang, Q. Small Struct. 2020, 1 (1), 2000010. doi: 10.1002/sstr.202000010  doi: 10.1002/sstr.202000010

    17. [17]

      Zhao, L.; Ding, B. C.; Qin, X. Y.; Wang, Z. J.; Lv, W.; He, Y. B.; Yang, Q. H.; Kang, F. Y. Adv. Mater. 2022, 34 2106704. doi: 10.1002/adma.202106704  doi: 10.1002/adma.202106704

    18. [18]

      Rangom, Y.; Duignan, T. T.; Zhao, X. S. ACS Appl. Mater. Interfaces 2021, 13 (36), 42662. doi: 10.1021/acsami.1c09559  doi: 10.1021/acsami.1c09559

    19. [19]

      Kabra, V.; Parmananda, M.; Fear, C.; Usseglio-Viretta, F. L. E.; Colclasure, A.; Smith, K.; Mukherjee, P. P. ACS Appl. Mater. Interfaces 2020, 12 (50), 55795. doi: 10.1021/acsami.0c15144  doi: 10.1021/acsami.0c15144

    20. [20]

      Liu; Q.; Du; C.; Shen; B.; Zuo; P.; Cheng; X. RSC Adv. 2016, 6 (18), 88683. doi: 10.1039/c6ra19482f  doi: 10.1039/c6ra19482f

    21. [21]

      Kim, N.; Chae, S.; Ma, J.; Ko, M.; Cho, J. Nat. Commun. 2017, 8 (1), 812. doi: 10.1038/s41467-017-00973-y  doi: 10.1038/s41467-017-00973-y

    22. [22]

      Zou, Y. G.; Cao, Z.; Zhang, J. L.; Wahyudi, W.; Wu, Y. Q.; Liu, G.; Li, Q.; Cheng, H. R.; Zhang, D. Y.; Park, G. T.; et al. Adv. Mater. 2021, 33 (43), 2102964. doi: 10.1002/adma.202102964  doi: 10.1002/adma.202102964

    23. [23]

      Yao, F.; Gunes, F.; Ta, H. Q.; Lee, S. M.; Chae, S. J.; Sheem, K. Y.; Cojocaru, C. S.; Xie, S. S.; Lee, Y. H. J. Am. Chem. Soc. 2012, 134 (20), 8646. doi: 10.1021/ja301586m  doi: 10.1021/ja301586m

    24. [24]

      Kaskhedikar, N. A.; Maier, J. Adv. Mater. 2009, 21 (25–26), 2664. doi: 10.1002/adma.200901079  doi: 10.1002/adma.200901079

    25. [25]

      Yu, D. D.; Zhu, Q. N.; Cheng, L. W.; Dong, S.; Zhang, X. H.; Wang, H.; Yang, N. J. ACS Energy Lett. 2021, 6 (3), 949. doi: 10.1021/acsenergylett.1c00043  doi: 10.1021/acsenergylett.1c00043

    26. [26]

      Li, F. S.; Wu, Y. S.; Chou, J.; Winter, M.; Wu, N. L. Adv. Mater. 2015, 27 (1), 13. doi: 10.1002/adma.201403880  doi: 10.1002/adma.201403880

    27. [27]

      Shim, J. H.; Lee, S. J. Power Sources 2016, 324, 475. doi: 10.1016/j.jpowsour.2016.05.094  doi: 10.1016/j.jpowsour.2016.05.094

    28. [28]

      Wang, R. H.; Li, X. H.; Wang, Z. X.; Zhang, H. Nano Energy 2017, 34, 131. doi: 10.1016/j.nanoen.2017.02.037  doi: 10.1016/j.nanoen.2017.02.037

    29. [29]

      Xu, M.; Wang, R.; Reichman, B.; Wang, X. J. Energy Storage 2018, 20, 298. doi: 10.1016/j.est.2018.09.004  doi: 10.1016/j.est.2018.09.004

    30. [30]

      Kim, H.; Lim, K.; Yoon, G.; Park, J. H.; Ku, K.; Lim, H. D.; Sung, Y. E.; Kang, K. Adv. Energy Mater. 2017, 7 (19), 1700418. doi: 10.1002/aenm.201700418  doi: 10.1002/aenm.201700418

    31. [31]

      Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. J. Am. Chem. Soc. 2014, 136 (13), 5039. doi: 10.1021/ja412807w  doi: 10.1021/ja412807w

    32. [32]

      Lu, M.; Tian, Y. Y.; Zheng, X. D.; Gao, J.; Huang, B. J. Power Sources 2012, 219, 188. doi: 10.1016/j.jpowsour.2012.07.044  doi: 10.1016/j.jpowsour.2012.07.044

    33. [33]

      Billaud, J.; Bouville, F.; Magrini, T.; Villevieille, C.; Studart, A. R Nat. Energy 2016, 1, 16097. doi: 10.1038/nenergy.2016.97  doi: 10.1038/nenergy.2016.97

    34. [34]

      Ko, M.; Chae, S.; Ma, J.; Kim, N.; Lee, H. W.; Cui, Y.; Cho, J. Nat. Energy 2020, 5 (4), 34. doi: 10.1038/s41560-020-0587-8  doi: 10.1038/s41560-020-0587-8

    35. [35]

      Kottegoda, I. R. M.; Kadoma, Y.; Ikuta, H.; Uchimoto, Y.; Wakihara, M. Electrochem. Solid State Lett. 2002, 5 (12), A275. doi: 10.1149/1.1516410  doi: 10.1149/1.1516410

    36. [36]

      Wang, J. H.; Yamada, Y.; Sodeyama, K.; Chiang, C. H.; Tateyama, Y.; Yamada, A. Nat. Commun. 2016, 7, 12032. doi: 10.1038/ncomms12032  doi: 10.1038/ncomms12032

    37. [37]

      Okoshi, M.; Yamada, Y.; Yamada, A.; Nakai, H. J. Electrochem. Soc. 2013, 160 (11), A2160. doi: 10.1149/2.074311jes  doi: 10.1149/2.074311jes

    38. [38]

      Kim, K. E.; Jang, J. Y.; Park, I.; Woo, M. H.; Jeong, M. H.; Shin, W. C.; Ue, M.; Choi, N. S. Electrochem. Commun. 2015, 61, 121. doi: 10.1016/j.elecom.2015.10.013  doi: 10.1016/j.elecom.2015.10.013

    39. [39]

      Han, Y. J.; Kim, J.; Yeo, J. S.; An, J. C.; Hong, I. P.; Nakabayashi, K.; Miyawaki, J.; Jung, J. D.; Yoon, S. H. Carbon 2015, 94, 432. doi: 10.1016/j.carbon.2015.07.030  doi: 10.1016/j.carbon.2015.07.030

    40. [40]

      Qi, W. B.; Ben, L. B.; Yu, H. L.; Zhan, Y. J.; Zhao, W. W.; Huang, X. J. J. Power Sources 2019, 424, 150. doi: 10.1016/j.jpowsour.2019.03.077  doi: 10.1016/j.jpowsour.2019.03.077

    41. [41]

      Yang, X. G.; Zhang, G. S.; Ge, S. H.; Wang, C. Y. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (28), 7266. doi: 10.1073/pnas.1807115115  doi: 10.1073/pnas.1807115115

    42. [42]

      Tan, D. H. S.; Wu, E. A.; Nguyen, H.; Chen, Z.; Marple, M. A. T.; Doux, J. M.; Wang, X. F.; Yang, H. D.; Banerjee, A.; Meng, Y. S. ACS Energy Lett. 2019, 4 (10), 2418. doi: 10.1021/acsenergylett.9b01693  doi: 10.1021/acsenergylett.9b01693

    43. [43]

      Ma, Z.; Zhuang, Y. C.; Deng, Y. M.; Song, X. N.; Zuo, X. X.; Xiao, X.; Nan, J. M. J. Power Sources 2018, 376, 91. doi: 10.1016/j.jpowsour.2017.11.038  doi: 10.1016/j.jpowsour.2017.11.038

    44. [44]

      Carrillo, A.; Swartz, J. A.; Gamba, J. M.; Kane, R. S.; Chakrapani, N.; Wei, B. Q.; Ajayan, P. M. Nano Lett. 2003, 3 (10), 1437. doi: 10.1021/nl034376x  doi: 10.1021/nl034376x

    45. [45]

      Lee, S. M.; Kim, J.; Moon, J.; Jung, K. N.; Kim, J. H.; Park, G. J.; Choi, J. H.; Rhee, D. Y.; Kim, J. S.; Lee, J. W.; et al. Nat. Commun. 2021, 12 (1), 39. doi: 10.1038/s41467-020-20297-8  doi: 10.1038/s41467-020-20297-8

    46. [46]

      Chen, K. H.; Goel, V.; Namkoong, M. J.; Wied, M.; Muller, S.; Wood, V.; Sakamoto, J.; Thornton, K.; Dasgupta, N. P. Adv. Energy Mater. 2021, 11 (5), 2003336. doi: 10.1002/aenm.202003336  doi: 10.1002/aenm.202003336

    47. [47]

      Kim, D. S.; Chung, D. J.; Bae, J.; Jeong, G.; Kim, H. Electrochim. Acta 2017, 258, 336. doi: 10.1016/j.electacta.2017.11.056  doi: 10.1016/j.electacta.2017.11.056

    48. [48]

      Kim, D. S.; Kim, Y. E.; Kim, H. J. Power Sources 2019, 422, 18. doi: 10.1016/j.jpowsour.2019.03.027  doi: 10.1016/j.jpowsour.2019.03.027

    49. [49]

      Zhou, J. H.; Ma, K. N.; Lian, X. Y.; Shi, Q. T.; Wang, J. Q.; Chen, Z. J.; Guo, L. L.; Liu, Y.; Bachmatiuk, A.; Sun, J. Y.; et al. Small 2022, 18, 15 2107460. doi: 10.1002/smll.202107460  doi: 10.1002/smll.202107460

    50. [50]

      Lei, X. F.; Wang, C. W.; Yi, Z. H.; Liang, Y. G.; Sun, J. T. J. Alloy. Compd. 2007, 429 (1–2), 311. doi: 10.1016/j.jallcom.2006.04.019  doi: 10.1016/j.jallcom.2006.04.019

    51. [51]

      Zhang, W.; Fang, L.; Yue, M.; Yu, Z. Chin. J. Power Sources 2006, 30 (2), 100. doi: 10.1198/108571106X99751  doi: 10.1198/108571106X99751

    52. [52]

      Lu, Y.; Ye, D.; Sun, X.; Wang, Y. Battery Bimonthly 2014, 44 (3), 171. doi: 10.1198/10cr04152215  doi: 10.1198/10cr04152215

    53. [53]

      Ma, S. Q.; Li, Y. K.; Lan, J.; Liu, Y. E.; Yin, L. S.; Chin. J. Power Sources 2020, 44 (11), 1580. doi: 10.3969/j.issn.1002-087X.2020.11.005  doi: 10.3969/j.issn.1002-087X.2020.11.005

    54. [54]

      Yoshio, M.; Wang, H. Y.; Fukuda, K.; Umeno, T.; Abe, T.; Ogumi, Z. J. Mater. Chem. 2004, 14 (11), 1754. doi: 10.1039/b316702j  doi: 10.1039/b316702j

    55. [55]

      Cheng, Q.; Yuge, R.; Nakahara, K.; Tamura, N.; Miyamoto, S. J. Power Sources 2015, 284, 258. doi: 10.1016/j.jpowsour.2015.03.036  doi: 10.1016/j.jpowsour.2015.03.036

    56. [56]

      Kim, J.; Jeghan, S. M. N.; Lee, G. Microporous Mesoporous Mat. 2020, 305, 110325. doi: 10.1016/j.micromeso.2020.110325  doi: 10.1016/j.micromeso.2020.110325

    57. [57]

      Son, D. K.; Kim, J.; Raj, M. R.; Lee, G. Carbon 2021, 175, 187. doi: 10.1016/j.carbon.2021.01.015  doi: 10.1016/j.carbon.2021.01.015

    58. [58]

      Zou, L.; Kang, F. Y.; Zheng, Y. P.; Shen, W. C. Electrochim. Acta 2009, 54 (15), 3930. doi: 10.1016/j.electacta.2009.02.012  doi: 10.1016/j.electacta.2009.02.012

    59. [59]

      Zhao, Q.; Hao, X. G.; Su, S. M.; Ma, J. B.; Hu, Y.; Liu, Y.; Kang, F. Y.; He, Y. B. J. Mater. Chem. A 2019, 7 (26), 15871. doi: 10.1039/c9ta04240g  doi: 10.1039/c9ta04240g

    60. [60]

      Lin, Y. X.; Huang, Z. H.; Yu, X. L.; Shen, W. C.; Zheng, Y. P.; Kang, F. Y. Electrochim. Acta 2014, 116, 170. doi: 10.1016/j.electacta.2013.11.057  doi: 10.1016/j.electacta.2013.11.057

    61. [61]

      Li, J. H.; Hou, S. Y.; Su, J. R.; Li, K.; Wei, L. B.; Ma, L. Q.; Shen, W. C.; Kang, F. Y.; Huang, Z. H. New Carbon Mater. 2019, 34 (2), 205. doi: 10.1016/s1872-5805(19)60012-0  doi: 10.1016/s1872-5805(19)60012-0

    62. [62]

      Xu, J.; Wang, X.; Yuan, N. Y.; Hu, B. Q.; Ding, J. N.; Ge, S. H. J. Power Sources 2019, 430, 74. doi: 10.1016/j.jpowsour.2019.05.024  doi: 10.1016/j.jpowsour.2019.05.024

    63. [63]

      Kim, T. H.; Jeon, E. K.; Ko, Y.; Jang, B. Y.; Kim, B. S.; Song, H. K. J. Mater. Chem. A 2014, 2 (20), 7600. doi: 10.1039/c3ta15360f  doi: 10.1039/c3ta15360f

    64. [64]

      Cheng, Q.; Zhang, Y. J. Electrochem. Soc. 2018, 165 (5), A1104. doi: 10.1149/2.1171805jes  doi: 10.1149/2.1171805jes

    65. [65]

      Yeo, J. S.; Park, T. H.; Seo, M. H.; Miyawaki, J.; Mochida, I.; Yoon, S. H. Int. J. Electroanal. Chem. 2013, 8 (1), 1308. doi: 10.1016/j.jelechem.2013.02.009  doi: 10.1016/j.jelechem.2013.02.009

    66. [66]

      Park, M. S.; Kim, J. H.; Jo, Y. N.; Oh, S. H.; Kim, H.; Kim, Y. J. J. Mater. Chem. 2011, 21 (44), 17960. doi: 10.1039/c1jm13158c  doi: 10.1039/c1jm13158c

    67. [67]

      Zhang, S. S. Infomat 2021, 3 (1), 125. doi: 10.1002/inf2.12159  doi: 10.1002/inf2.12159

    68. [68]

      Gao, N.; Kim, S.; Chinnam, P.; Dufek, E. J.; Colclasure, A. M.; Jansen, A.; Son, S. B.; Bloom, I.; Dunlop, A.; Trask, S.; et al. Energy Storage Mater. 2022, 44, 296. doi: 10.1016/j.ensm.2021.10.011  doi: 10.1016/j.ensm.2021.10.011

    69. [69]

      Liu, T. C.; Lin, L. P.; Bi, X. X.; Tian, L. L.; Yang, K.; Liu, J. J.; Li, M. F.; Chen, Z. H.; Lu, J.; Amine, K.; et al. Nat. Nanotech. 2019, 14 (1), 50. doi: 10.1038/s41565-018-0284-y  doi: 10.1038/s41565-018-0284-y

    70. [70]

      Wang, Z. X.; Qi, F. L.; Yin, L. C.; Shi, Y.; Sun, C. G.; An, B. G.; Cheng, H. M.; Li, F. Adv. Energy Mater. 2020, 10 (14), 1903843. doi: 10.1002/aenm.201903843  doi: 10.1002/aenm.201903843

    71. [71]

      Jiang, L. L.; Yan, C.; Yao, Y. X.; Cai, W. L.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2021, 60 (7), 3402. doi: 10.1002/anie.202009738  doi: 10.1002/anie.202009738

    72. [72]

      Mallarapu, A.; Bharadwaj, V. S.; Santhanagopalan, S. J. Mater. Chem. A 2021, 9 (8), 4858. doi: 10.1039/d0ta10166d  doi: 10.1039/d0ta10166d

    73. [73]

      Xu, K.; von Cresce, A.; Lee, U. Langmuir 2010, 26 (13), 11538. doi: 10.1021/la1009994  doi: 10.1021/la1009994

    74. [74]

      Moon, H.; Mandai, T.; Tatara, R.; Ueno, K.; Yamazaki, A.; Yoshida, K.; Seki, S.; Dokko, K.; Watanabe, M. J. Phys. Chem. C 2015, 119 (8), 3957. doi: 10.1021/jp5128578  doi: 10.1021/jp5128578

    75. [75]

      Okoshi, M.; Yamada, Y.; Komaba, S.; Yamada, A.; Nakai, H. J. Electrochem. Soc. 2017, 164 (2), A54. doi: 10.1149/2.0211702jes  doi: 10.1149/2.0211702jes

    76. [76]

      Du, Z. J.; Wood, D. L.; Belharouak, I. Electrochem. Commun. 2019, 103, 109. doi: 10.1016/j.elecom.2019.04.013  doi: 10.1016/j.elecom.2019.04.013

    77. [77]

      Zhang, L. F.; Chai, L. L.; Zhang, L.; Shen, M.; Zhang, X. L.; Battaglia, V. S.; Stephenson, T.; Zheng, H. H. Electrochim. Acta 2014, 127, 39-44. doi: 10.1016/j.electacta.2014.02.008  doi: 10.1016/j.electacta.2014.02.008

    78. [78]

      Chen, Z. H.; Lu, W. Q.; Liu, J.; Amine, K. Electrochim. Acta 2006, 51 (16), 3322. doi: 10.1016/j.electacta.2005.09.027  doi: 10.1016/j.electacta.2005.09.027

    79. [79]

      Wrodnigg, G. H.; Besenhard, J. O.; Winter, M. J. Electrochem. Soc. 1999, 146 (2), 47. doi: 10.1149/1.1391630  doi: 10.1149/1.1391630

    80. [80]

      Matsuo, Y.; Fumita, K.; Fukutsuka, T.; Sugie, Y.; Koyama, H.; Inoue, K. J. Power Sources 2003, 119, 373. doi: 10.1016/s0378-7753(03)00271-4  doi: 10.1016/s0378-7753(03)00271-4

    81. [81]

      Son, H. B.; Jeong, M. Y.; Han, J. G.; Kim, K.; Kim, K. H.; Jeong, K. M.; Choi, N. S. J. Power Sources 2018, 400, 147. doi: 10.1016/j.jpowsour.2018.08.022  doi: 10.1016/j.jpowsour.2018.08.022

    82. [82]

      Shi, J. L.; Ehteshami, N.; Ma, J. L.; Zhang, H.; Liu, H. D.; Zhang, X.; Li, J.; Paillard, E. J. Power Sources 2019, 429, 67. doi: 10.1016/j.jpowsour.2019.04.113  doi: 10.1016/j.jpowsour.2019.04.113

    83. [83]

      Komaba, S.; Itabashi, T.; Kaplan, B.; Groult, H.; Kumagai, N. Electrochem. Commun. 2003, 5 (11), 962. doi: 10.1016/j.elecom.2003.09.003  doi: 10.1016/j.elecom.2003.09.003

    84. [84]

      Honghe, Z.; Yanbao, F.; Hucheng, Z.; Abe, T.; Ogumi, Z. Electrochem. Solid State Lett. 2006, 9 (3), A115. doi: 10.1149/1.2161447  doi: 10.1149/1.2161447

    85. [85]

      Zheng, J. M.; Yan, P. F.; Cao, R. G.; Xiang, H. F.; Engelhard, M. H.; Polzin, B. J.; Wang, C. M.; Zhang, J. G.; Xu, W. ACS Appl. Mater. Interfaces 2016, 8 (8), 5715. doi: 10.1021/acsami.5b12517  doi: 10.1021/acsami.5b12517

    86. [86]

      Wu, M. S.; Lin, J. C.; Chiang, P. C. J. Electrochem. Solid State Lett. 2004, 7 (7), A206. doi: 10.1149/1.1739313  doi: 10.1149/1.1739313

    87. [87]

      Yoon, T.; Chapman, N.; Seo, D. M.; Lucht, B. L. J. Electrochem. Soc. 2017, 164 (9), A2082. doi: 10.1149/2.1421709jes  doi: 10.1149/2.1421709jes

    88. [88]

      Jeong, S. K.; Inaba, M.; Iriyama, Y.; Abe, T.; Ogumi, Z. Electrochem. Solid State Lett. 2003, 6 (1), A1. doi: 10.1149/1.1526781  doi: 10.1149/1.1526781

    89. [89]

      Yamada, Y.; Wang, J. H.; Ko, S.; Watanabe, E.; Yamada, A. Nat. Energy 2019, 4 (5), 42. doi: 10.1038/s41560-019-0375-5  doi: 10.1038/s41560-019-0375-5

    90. [90]

      Chen, S. R.; Yu, Z. X.; Gordin, M. L.; Yi, R.; Song, J. X.; Wang, D. H. ACS Appl. Mater. Interfaces 2017, 9 (8), 6959. doi: 10.1021/acsami.6b11008  doi: 10.1021/acsami.6b11008

    91. [91]

      Zhang, S. S. J. Power Sources 2006, 161 (2), 1385. doi: 10.1016/j.jpowsour.2006.06.040  doi: 10.1016/j.jpowsour.2006.06.040

    92. [92]

      Keil, P.; Jossen, A. J. Energy Storage 2016, 6, 125. doi: 10.1016/j.est.2016.02.005  doi: 10.1016/j.est.2016.02.005

    93. [93]

      Li, J.; Murphy, E.; Winnick, J.; Kohl, P. A. J. Power Sources 2001, 102 (1–2), 302. doi: 10.1016/s0378-7753(01)00820-5  doi: 10.1016/s0378-7753(01)00820-5

    94. [94]

      Yang, X. G.; Liu, T.; Gao, Y.; Ge, S. H.; Leng, Y. J.; Wang, D. H.; Wang, C. Y. Joule 2019, 3 (12), 3002. doi: 10.1016/j.joule.2019.09.021  doi: 10.1016/j.joule.2019.09.021

  • 加载中
    1. [1]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    2. [2]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    7. [7]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    10. [10]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    13. [13]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    14. [14]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    15. [15]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    16. [16]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    17. [17]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    18. [18]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    19. [19]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    20. [20]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

Metrics
  • PDF Downloads(113)
  • Abstract views(2835)
  • HTML views(961)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return