Research and Application of Fast-Charging Graphite Anodes for Lithium-Ion Batteries
- Corresponding author: Xunhui Xiong, esxxiong@scut.edu.cn †These authors contributed equally to this work.
Citation:
Xiaobo Ding, Qianhui Huang, Xunhui Xiong. Research and Application of Fast-Charging Graphite Anodes for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica,
;2022, 38(11): 220405.
doi:
10.3866/PKU.WHXB202204057
(a) Chen, C.; Liang, Q. W.; Chen, Z. X.; Zhu, W. Y.; Wang, Z. J.; Li, Y.; Wu, X. W.; Xiong, X. H. Angew. Chem. Int. Ed. 2021, 60 (51), 26718. doi: 10.1002/anie.202110441
(b) Wu, F. X.; Maier, J.; Yu, Y. Chem. Soc. Rev. 2020, 49 (5), 1569. doi: 10.1039/c7cs00863e
(c) Chen, C.; Liang, Q. W.; Wang, G.; Liu, D. D.; Xiong, X. H. Adv. Funct. Mater. 2022, 32 (4), 2107249. doi: 10.1002/adfm.202107249
(a) Collin, R.; Miao, Y.; Yokochi, A.; Enjeti, P.; von Jouanne, A. Energies 2019, 12 (10), 1839. doi: 10.3390/en12101839
(b) Deb, N.; Singh, R.; Brooks, R. R.; Bai, K. Energies 2021, 14 (22), 7566. doi: 10.3390/en14227566
Cai, W. L.; Yao, Y. X.; Zhu, G. L.; Yan, C.; Jiang, L. L.; He, C. X.; Huang, J. Q.; Zhang, Q. Chem. Soc. Rev. 2020, 49 (12), 3806. doi: 10.1039/c9cs00728h
doi: 10.1039/c9cs00728h
Zhang, S. S. Chemelectrochem 2020, 7 (17), 3569. doi: 10.1002/celc.202000650
doi: 10.1002/celc.202000650
Huang, S.; Wu, X. Y.; Cavalheiro, G. M.; Du, X. N.; Liu, B. Z.; Du, Z. J.; Zhang, G. S. J. Electrochem. Soc. 2019, 166 (14), A3254. doi: 10.1149/2.0441914jes
doi: 10.1149/2.0441914jes
Tanim, T. R.; Dufek, E. J.; Evans, M.; Dickerson, C.; Jansen, A. N.; Polzin, B. J.; Dunlop, A. R.; Trask, S. E.; Jackman, R.; Bloom, I.; et al. J. Electrochem. Soc. 2019, 166 (10), A1926. doi: 10.1149/2.0731910jes
doi: 10.1149/2.0731910jes
Deb, S.; Tammi, K.; Kalita, K.; Mahanta, P. Wiley Interdiscip. Rev. Energy Environ. 2018, 7 (6), e306. doi: 10.1002/wene.306
doi: 10.1002/wene.306
Previati, G.; Mastinu, G.; Gobbi, M. Energies 2022, 15 (4), 1326. doi: 10.3390/en15041326
doi: 10.3390/en15041326
Ahmed, S.; Bloom, I.; Jansen, A. N.; Tanim, T.; Dufek, E. J.; Pesaran, A.; Burnham, A.; Carlson, R. B.; Dias, F.; Hardy, K.; et al. J. Power Sources 2017, 367, 250. doi: 10.1016/j.jpowsour.2017.06.055
doi: 10.1016/j.jpowsour.2017.06.055
Raboaca, M. S.; Meheden, M.; Musat, A.; Viziteu, A.; Creanga, A.; Vlad, V.; Filote, C.; Rata, M.; Lavric, A. Int. J. Energy Res. 2022, 46 (2), 523. doi: 10.1002/er.7206
doi: 10.1002/er.7206
Li, L.; Zhang, D.; Deng, J. P.; Gou, Y. C.; Fang, J. F.; Cui, H.; Zhao, Y. Q.; Cao, M. H. Carbon 2021, 183, 721. doi: 10.1016/j.carbon.2021.07.053
doi: 10.1016/j.carbon.2021.07.053
Logan, E. R.; Dahn, J. R. Trends Chem. 2020, 2 (4), 354. doi: 10.1016/j.trechm.2020.01.011
doi: 10.1016/j.trechm.2020.01.011
Liu, Y. Y.; Zhu, Y. Y.; Cui, Y. Nat. Energy 2019, 4 (7), 540. doi: 10.1038/s41560-019-0405-3
doi: 10.1038/s41560-019-0405-3
Weiss, M.; Ruess, R.; Kasnatscheew, J.; Levartovsky, Y.; Levy, N. R.; Minnmann, P.; Stolz, L.; Waldmann, T.; Wohlfahrt-Mehrens, M.; Aurbach, D.; et al. Adv. Energy Mater. 2021, 11 (33), 2101126. doi: 10.1002/aenm.202101126
doi: 10.1002/aenm.202101126
Xie, W. L.; Liu, X. H.; He, R.; Li, Y. L.; Gao, X. L.; Li, X. H.; Peng, Z. X.; Feng, S. W.; Feng, X. N.; Yang, S. C. J. Energy Storage 2020, 32, 101837. doi: 10.1016/j.est.2020.101837
doi: 10.1016/j.est.2020.101837
Cai, W. L.; Yan, C.; Yao, Y. X.; Xu, L.; Xu, R.; Jiang, L. L.; Huang, J. Q.; Zhang, Q. Small Struct. 2020, 1 (1), 2000010. doi: 10.1002/sstr.202000010
doi: 10.1002/sstr.202000010
Zhao, L.; Ding, B. C.; Qin, X. Y.; Wang, Z. J.; Lv, W.; He, Y. B.; Yang, Q. H.; Kang, F. Y. Adv. Mater. 2022, 34 2106704. doi: 10.1002/adma.202106704
doi: 10.1002/adma.202106704
Rangom, Y.; Duignan, T. T.; Zhao, X. S. ACS Appl. Mater. Interfaces 2021, 13 (36), 42662. doi: 10.1021/acsami.1c09559
doi: 10.1021/acsami.1c09559
Kabra, V.; Parmananda, M.; Fear, C.; Usseglio-Viretta, F. L. E.; Colclasure, A.; Smith, K.; Mukherjee, P. P. ACS Appl. Mater. Interfaces 2020, 12 (50), 55795. doi: 10.1021/acsami.0c15144
doi: 10.1021/acsami.0c15144
Liu; Q.; Du; C.; Shen; B.; Zuo; P.; Cheng; X. RSC Adv. 2016, 6 (18), 88683. doi: 10.1039/c6ra19482f
doi: 10.1039/c6ra19482f
Kim, N.; Chae, S.; Ma, J.; Ko, M.; Cho, J. Nat. Commun. 2017, 8 (1), 812. doi: 10.1038/s41467-017-00973-y
doi: 10.1038/s41467-017-00973-y
Zou, Y. G.; Cao, Z.; Zhang, J. L.; Wahyudi, W.; Wu, Y. Q.; Liu, G.; Li, Q.; Cheng, H. R.; Zhang, D. Y.; Park, G. T.; et al. Adv. Mater. 2021, 33 (43), 2102964. doi: 10.1002/adma.202102964
doi: 10.1002/adma.202102964
Yao, F.; Gunes, F.; Ta, H. Q.; Lee, S. M.; Chae, S. J.; Sheem, K. Y.; Cojocaru, C. S.; Xie, S. S.; Lee, Y. H. J. Am. Chem. Soc. 2012, 134 (20), 8646. doi: 10.1021/ja301586m
doi: 10.1021/ja301586m
Kaskhedikar, N. A.; Maier, J. Adv. Mater. 2009, 21 (25–26), 2664. doi: 10.1002/adma.200901079
doi: 10.1002/adma.200901079
Yu, D. D.; Zhu, Q. N.; Cheng, L. W.; Dong, S.; Zhang, X. H.; Wang, H.; Yang, N. J. ACS Energy Lett. 2021, 6 (3), 949. doi: 10.1021/acsenergylett.1c00043
doi: 10.1021/acsenergylett.1c00043
Li, F. S.; Wu, Y. S.; Chou, J.; Winter, M.; Wu, N. L. Adv. Mater. 2015, 27 (1), 13. doi: 10.1002/adma.201403880
doi: 10.1002/adma.201403880
Shim, J. H.; Lee, S. J. Power Sources 2016, 324, 475. doi: 10.1016/j.jpowsour.2016.05.094
doi: 10.1016/j.jpowsour.2016.05.094
Wang, R. H.; Li, X. H.; Wang, Z. X.; Zhang, H. Nano Energy 2017, 34, 131. doi: 10.1016/j.nanoen.2017.02.037
doi: 10.1016/j.nanoen.2017.02.037
Xu, M.; Wang, R.; Reichman, B.; Wang, X. J. Energy Storage 2018, 20, 298. doi: 10.1016/j.est.2018.09.004
doi: 10.1016/j.est.2018.09.004
Kim, H.; Lim, K.; Yoon, G.; Park, J. H.; Ku, K.; Lim, H. D.; Sung, Y. E.; Kang, K. Adv. Energy Mater. 2017, 7 (19), 1700418. doi: 10.1002/aenm.201700418
doi: 10.1002/aenm.201700418
Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. J. Am. Chem. Soc. 2014, 136 (13), 5039. doi: 10.1021/ja412807w
doi: 10.1021/ja412807w
Lu, M.; Tian, Y. Y.; Zheng, X. D.; Gao, J.; Huang, B. J. Power Sources 2012, 219, 188. doi: 10.1016/j.jpowsour.2012.07.044
doi: 10.1016/j.jpowsour.2012.07.044
Billaud, J.; Bouville, F.; Magrini, T.; Villevieille, C.; Studart, A. R Nat. Energy 2016, 1, 16097. doi: 10.1038/nenergy.2016.97
doi: 10.1038/nenergy.2016.97
Ko, M.; Chae, S.; Ma, J.; Kim, N.; Lee, H. W.; Cui, Y.; Cho, J. Nat. Energy 2020, 5 (4), 34. doi: 10.1038/s41560-020-0587-8
doi: 10.1038/s41560-020-0587-8
Kottegoda, I. R. M.; Kadoma, Y.; Ikuta, H.; Uchimoto, Y.; Wakihara, M. Electrochem. Solid State Lett. 2002, 5 (12), A275. doi: 10.1149/1.1516410
doi: 10.1149/1.1516410
Wang, J. H.; Yamada, Y.; Sodeyama, K.; Chiang, C. H.; Tateyama, Y.; Yamada, A. Nat. Commun. 2016, 7, 12032. doi: 10.1038/ncomms12032
doi: 10.1038/ncomms12032
Okoshi, M.; Yamada, Y.; Yamada, A.; Nakai, H. J. Electrochem. Soc. 2013, 160 (11), A2160. doi: 10.1149/2.074311jes
doi: 10.1149/2.074311jes
Kim, K. E.; Jang, J. Y.; Park, I.; Woo, M. H.; Jeong, M. H.; Shin, W. C.; Ue, M.; Choi, N. S. Electrochem. Commun. 2015, 61, 121. doi: 10.1016/j.elecom.2015.10.013
doi: 10.1016/j.elecom.2015.10.013
Han, Y. J.; Kim, J.; Yeo, J. S.; An, J. C.; Hong, I. P.; Nakabayashi, K.; Miyawaki, J.; Jung, J. D.; Yoon, S. H. Carbon 2015, 94, 432. doi: 10.1016/j.carbon.2015.07.030
doi: 10.1016/j.carbon.2015.07.030
Qi, W. B.; Ben, L. B.; Yu, H. L.; Zhan, Y. J.; Zhao, W. W.; Huang, X. J. J. Power Sources 2019, 424, 150. doi: 10.1016/j.jpowsour.2019.03.077
doi: 10.1016/j.jpowsour.2019.03.077
Yang, X. G.; Zhang, G. S.; Ge, S. H.; Wang, C. Y. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (28), 7266. doi: 10.1073/pnas.1807115115
doi: 10.1073/pnas.1807115115
Tan, D. H. S.; Wu, E. A.; Nguyen, H.; Chen, Z.; Marple, M. A. T.; Doux, J. M.; Wang, X. F.; Yang, H. D.; Banerjee, A.; Meng, Y. S. ACS Energy Lett. 2019, 4 (10), 2418. doi: 10.1021/acsenergylett.9b01693
doi: 10.1021/acsenergylett.9b01693
Ma, Z.; Zhuang, Y. C.; Deng, Y. M.; Song, X. N.; Zuo, X. X.; Xiao, X.; Nan, J. M. J. Power Sources 2018, 376, 91. doi: 10.1016/j.jpowsour.2017.11.038
doi: 10.1016/j.jpowsour.2017.11.038
Carrillo, A.; Swartz, J. A.; Gamba, J. M.; Kane, R. S.; Chakrapani, N.; Wei, B. Q.; Ajayan, P. M. Nano Lett. 2003, 3 (10), 1437. doi: 10.1021/nl034376x
doi: 10.1021/nl034376x
Lee, S. M.; Kim, J.; Moon, J.; Jung, K. N.; Kim, J. H.; Park, G. J.; Choi, J. H.; Rhee, D. Y.; Kim, J. S.; Lee, J. W.; et al. Nat. Commun. 2021, 12 (1), 39. doi: 10.1038/s41467-020-20297-8
doi: 10.1038/s41467-020-20297-8
Chen, K. H.; Goel, V.; Namkoong, M. J.; Wied, M.; Muller, S.; Wood, V.; Sakamoto, J.; Thornton, K.; Dasgupta, N. P. Adv. Energy Mater. 2021, 11 (5), 2003336. doi: 10.1002/aenm.202003336
doi: 10.1002/aenm.202003336
Kim, D. S.; Chung, D. J.; Bae, J.; Jeong, G.; Kim, H. Electrochim. Acta 2017, 258, 336. doi: 10.1016/j.electacta.2017.11.056
doi: 10.1016/j.electacta.2017.11.056
Kim, D. S.; Kim, Y. E.; Kim, H. J. Power Sources 2019, 422, 18. doi: 10.1016/j.jpowsour.2019.03.027
doi: 10.1016/j.jpowsour.2019.03.027
Zhou, J. H.; Ma, K. N.; Lian, X. Y.; Shi, Q. T.; Wang, J. Q.; Chen, Z. J.; Guo, L. L.; Liu, Y.; Bachmatiuk, A.; Sun, J. Y.; et al. Small 2022, 18, 15 2107460. doi: 10.1002/smll.202107460
doi: 10.1002/smll.202107460
Lei, X. F.; Wang, C. W.; Yi, Z. H.; Liang, Y. G.; Sun, J. T. J. Alloy. Compd. 2007, 429 (1–2), 311. doi: 10.1016/j.jallcom.2006.04.019
doi: 10.1016/j.jallcom.2006.04.019
Zhang, W.; Fang, L.; Yue, M.; Yu, Z. Chin. J. Power Sources 2006, 30 (2), 100. doi: 10.1198/108571106X99751
doi: 10.1198/108571106X99751
Lu, Y.; Ye, D.; Sun, X.; Wang, Y. Battery Bimonthly 2014, 44 (3), 171. doi: 10.1198/10cr04152215
doi: 10.1198/10cr04152215
Ma, S. Q.; Li, Y. K.; Lan, J.; Liu, Y. E.; Yin, L. S.; Chin. J. Power Sources 2020, 44 (11), 1580. doi: 10.3969/j.issn.1002-087X.2020.11.005
doi: 10.3969/j.issn.1002-087X.2020.11.005
Yoshio, M.; Wang, H. Y.; Fukuda, K.; Umeno, T.; Abe, T.; Ogumi, Z. J. Mater. Chem. 2004, 14 (11), 1754. doi: 10.1039/b316702j
doi: 10.1039/b316702j
Cheng, Q.; Yuge, R.; Nakahara, K.; Tamura, N.; Miyamoto, S. J. Power Sources 2015, 284, 258. doi: 10.1016/j.jpowsour.2015.03.036
doi: 10.1016/j.jpowsour.2015.03.036
Kim, J.; Jeghan, S. M. N.; Lee, G. Microporous Mesoporous Mat. 2020, 305, 110325. doi: 10.1016/j.micromeso.2020.110325
doi: 10.1016/j.micromeso.2020.110325
Son, D. K.; Kim, J.; Raj, M. R.; Lee, G. Carbon 2021, 175, 187. doi: 10.1016/j.carbon.2021.01.015
doi: 10.1016/j.carbon.2021.01.015
Zou, L.; Kang, F. Y.; Zheng, Y. P.; Shen, W. C. Electrochim. Acta 2009, 54 (15), 3930. doi: 10.1016/j.electacta.2009.02.012
doi: 10.1016/j.electacta.2009.02.012
Zhao, Q.; Hao, X. G.; Su, S. M.; Ma, J. B.; Hu, Y.; Liu, Y.; Kang, F. Y.; He, Y. B. J. Mater. Chem. A 2019, 7 (26), 15871. doi: 10.1039/c9ta04240g
doi: 10.1039/c9ta04240g
Lin, Y. X.; Huang, Z. H.; Yu, X. L.; Shen, W. C.; Zheng, Y. P.; Kang, F. Y. Electrochim. Acta 2014, 116, 170. doi: 10.1016/j.electacta.2013.11.057
doi: 10.1016/j.electacta.2013.11.057
Li, J. H.; Hou, S. Y.; Su, J. R.; Li, K.; Wei, L. B.; Ma, L. Q.; Shen, W. C.; Kang, F. Y.; Huang, Z. H. New Carbon Mater. 2019, 34 (2), 205. doi: 10.1016/s1872-5805(19)60012-0
doi: 10.1016/s1872-5805(19)60012-0
Xu, J.; Wang, X.; Yuan, N. Y.; Hu, B. Q.; Ding, J. N.; Ge, S. H. J. Power Sources 2019, 430, 74. doi: 10.1016/j.jpowsour.2019.05.024
doi: 10.1016/j.jpowsour.2019.05.024
Kim, T. H.; Jeon, E. K.; Ko, Y.; Jang, B. Y.; Kim, B. S.; Song, H. K. J. Mater. Chem. A 2014, 2 (20), 7600. doi: 10.1039/c3ta15360f
doi: 10.1039/c3ta15360f
Cheng, Q.; Zhang, Y. J. Electrochem. Soc. 2018, 165 (5), A1104. doi: 10.1149/2.1171805jes
doi: 10.1149/2.1171805jes
Yeo, J. S.; Park, T. H.; Seo, M. H.; Miyawaki, J.; Mochida, I.; Yoon, S. H. Int. J. Electroanal. Chem. 2013, 8 (1), 1308. doi: 10.1016/j.jelechem.2013.02.009
doi: 10.1016/j.jelechem.2013.02.009
Park, M. S.; Kim, J. H.; Jo, Y. N.; Oh, S. H.; Kim, H.; Kim, Y. J. J. Mater. Chem. 2011, 21 (44), 17960. doi: 10.1039/c1jm13158c
doi: 10.1039/c1jm13158c
Zhang, S. S. Infomat 2021, 3 (1), 125. doi: 10.1002/inf2.12159
doi: 10.1002/inf2.12159
Gao, N.; Kim, S.; Chinnam, P.; Dufek, E. J.; Colclasure, A. M.; Jansen, A.; Son, S. B.; Bloom, I.; Dunlop, A.; Trask, S.; et al. Energy Storage Mater. 2022, 44, 296. doi: 10.1016/j.ensm.2021.10.011
doi: 10.1016/j.ensm.2021.10.011
Liu, T. C.; Lin, L. P.; Bi, X. X.; Tian, L. L.; Yang, K.; Liu, J. J.; Li, M. F.; Chen, Z. H.; Lu, J.; Amine, K.; et al. Nat. Nanotech. 2019, 14 (1), 50. doi: 10.1038/s41565-018-0284-y
doi: 10.1038/s41565-018-0284-y
Wang, Z. X.; Qi, F. L.; Yin, L. C.; Shi, Y.; Sun, C. G.; An, B. G.; Cheng, H. M.; Li, F. Adv. Energy Mater. 2020, 10 (14), 1903843. doi: 10.1002/aenm.201903843
doi: 10.1002/aenm.201903843
Jiang, L. L.; Yan, C.; Yao, Y. X.; Cai, W. L.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2021, 60 (7), 3402. doi: 10.1002/anie.202009738
doi: 10.1002/anie.202009738
Mallarapu, A.; Bharadwaj, V. S.; Santhanagopalan, S. J. Mater. Chem. A 2021, 9 (8), 4858. doi: 10.1039/d0ta10166d
doi: 10.1039/d0ta10166d
Xu, K.; von Cresce, A.; Lee, U. Langmuir 2010, 26 (13), 11538. doi: 10.1021/la1009994
doi: 10.1021/la1009994
Moon, H.; Mandai, T.; Tatara, R.; Ueno, K.; Yamazaki, A.; Yoshida, K.; Seki, S.; Dokko, K.; Watanabe, M. J. Phys. Chem. C 2015, 119 (8), 3957. doi: 10.1021/jp5128578
doi: 10.1021/jp5128578
Okoshi, M.; Yamada, Y.; Komaba, S.; Yamada, A.; Nakai, H. J. Electrochem. Soc. 2017, 164 (2), A54. doi: 10.1149/2.0211702jes
doi: 10.1149/2.0211702jes
Du, Z. J.; Wood, D. L.; Belharouak, I. Electrochem. Commun. 2019, 103, 109. doi: 10.1016/j.elecom.2019.04.013
doi: 10.1016/j.elecom.2019.04.013
Zhang, L. F.; Chai, L. L.; Zhang, L.; Shen, M.; Zhang, X. L.; Battaglia, V. S.; Stephenson, T.; Zheng, H. H. Electrochim. Acta 2014, 127, 39-44. doi: 10.1016/j.electacta.2014.02.008
doi: 10.1016/j.electacta.2014.02.008
Chen, Z. H.; Lu, W. Q.; Liu, J.; Amine, K. Electrochim. Acta 2006, 51 (16), 3322. doi: 10.1016/j.electacta.2005.09.027
doi: 10.1016/j.electacta.2005.09.027
Wrodnigg, G. H.; Besenhard, J. O.; Winter, M. J. Electrochem. Soc. 1999, 146 (2), 47. doi: 10.1149/1.1391630
doi: 10.1149/1.1391630
Matsuo, Y.; Fumita, K.; Fukutsuka, T.; Sugie, Y.; Koyama, H.; Inoue, K. J. Power Sources 2003, 119, 373. doi: 10.1016/s0378-7753(03)00271-4
doi: 10.1016/s0378-7753(03)00271-4
Son, H. B.; Jeong, M. Y.; Han, J. G.; Kim, K.; Kim, K. H.; Jeong, K. M.; Choi, N. S. J. Power Sources 2018, 400, 147. doi: 10.1016/j.jpowsour.2018.08.022
doi: 10.1016/j.jpowsour.2018.08.022
Shi, J. L.; Ehteshami, N.; Ma, J. L.; Zhang, H.; Liu, H. D.; Zhang, X.; Li, J.; Paillard, E. J. Power Sources 2019, 429, 67. doi: 10.1016/j.jpowsour.2019.04.113
doi: 10.1016/j.jpowsour.2019.04.113
Komaba, S.; Itabashi, T.; Kaplan, B.; Groult, H.; Kumagai, N. Electrochem. Commun. 2003, 5 (11), 962. doi: 10.1016/j.elecom.2003.09.003
doi: 10.1016/j.elecom.2003.09.003
Honghe, Z.; Yanbao, F.; Hucheng, Z.; Abe, T.; Ogumi, Z. Electrochem. Solid State Lett. 2006, 9 (3), A115. doi: 10.1149/1.2161447
doi: 10.1149/1.2161447
Zheng, J. M.; Yan, P. F.; Cao, R. G.; Xiang, H. F.; Engelhard, M. H.; Polzin, B. J.; Wang, C. M.; Zhang, J. G.; Xu, W. ACS Appl. Mater. Interfaces 2016, 8 (8), 5715. doi: 10.1021/acsami.5b12517
doi: 10.1021/acsami.5b12517
Wu, M. S.; Lin, J. C.; Chiang, P. C. J. Electrochem. Solid State Lett. 2004, 7 (7), A206. doi: 10.1149/1.1739313
doi: 10.1149/1.1739313
Yoon, T.; Chapman, N.; Seo, D. M.; Lucht, B. L. J. Electrochem. Soc. 2017, 164 (9), A2082. doi: 10.1149/2.1421709jes
doi: 10.1149/2.1421709jes
Jeong, S. K.; Inaba, M.; Iriyama, Y.; Abe, T.; Ogumi, Z. Electrochem. Solid State Lett. 2003, 6 (1), A1. doi: 10.1149/1.1526781
doi: 10.1149/1.1526781
Yamada, Y.; Wang, J. H.; Ko, S.; Watanabe, E.; Yamada, A. Nat. Energy 2019, 4 (5), 42. doi: 10.1038/s41560-019-0375-5
doi: 10.1038/s41560-019-0375-5
Chen, S. R.; Yu, Z. X.; Gordin, M. L.; Yi, R.; Song, J. X.; Wang, D. H. ACS Appl. Mater. Interfaces 2017, 9 (8), 6959. doi: 10.1021/acsami.6b11008
doi: 10.1021/acsami.6b11008
Zhang, S. S. J. Power Sources 2006, 161 (2), 1385. doi: 10.1016/j.jpowsour.2006.06.040
doi: 10.1016/j.jpowsour.2006.06.040
Keil, P.; Jossen, A. J. Energy Storage 2016, 6, 125. doi: 10.1016/j.est.2016.02.005
doi: 10.1016/j.est.2016.02.005
Li, J.; Murphy, E.; Winnick, J.; Kohl, P. A. J. Power Sources 2001, 102 (1–2), 302. doi: 10.1016/s0378-7753(01)00820-5
doi: 10.1016/s0378-7753(01)00820-5
Yang, X. G.; Liu, T.; Gao, Y.; Ge, S. H.; Leng, Y. J.; Wang, D. H.; Wang, C. Y. Joule 2019, 3 (12), 3002. doi: 10.1016/j.joule.2019.09.021
doi: 10.1016/j.joule.2019.09.021
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Yang LIU , Lijun WANG , Hongyu WANG , Zhidong CHEN , Lin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358