Citation: Ying Li, Xueqi Lai, Jinpeng Qu, Qinzhi Lai, Tingfeng Yi. Research Progress in Regulation Strategies of High-Performance Antimony-Based Anode Materials for Sodium Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2022, 38(11): 220404. doi: 10.3866/PKU.WHXB202204049 shu

Research Progress in Regulation Strategies of High-Performance Antimony-Based Anode Materials for Sodium Ion Batteries

  • Corresponding author: Tingfeng Yi, tfyihit@163.com
  • Received Date: 26 April 2022
    Revised Date: 19 May 2022
    Accepted Date: 20 May 2022
    Available Online: 25 May 2022

    Fund Project: the National Natural Science Foundation of China U1960107the National Natural Science Foundation of China 22179019the "333" Talent Project of Hebei Province A202005018the Natural Science Foundation of Hebei Province, China B2020501003the Fundamental Research Funds for the Central Universities, China N2123001

  • Na-ion batteries (SIBs) are promising alternatives for Li-ion batteries owing to the natural abundance of sodium resources and similar energy storage mechanisms. Although significant progress has been achieved in research on SIBs, there remain several challenges to be addressed. One of the major challenges in the construction of high-performance SIBs is the development of suitable anode materials with a large reversible capacity, high cycling stability, and good rate performance. Alloying anode materials mainly composed of elements from Groups IVA and VA, as well as their alloys, have attracted widespread attention because of their low working voltage, high cost-effectiveness, and large theoretical capacity. Alloying-type anode materials can be alloyed with metallic Na to achieve large reversible capacities, ensuring a high energy density. Antimony is a promising anode material for SIBs owing to its high theoretical specific capacity (660 mAh·g−1, corresponding to the full sodiation Na3Sb alloy), small degree of electrode polarization (~0.25 V), appropriate Na+ deintercalation potential (0.5–0.75 V), low price, and environmental friendliness. However, an important challenge for using Sb-based anode materials is that the high specific capacity is accompanied by large volume changes during cycling. Such changes lead to the pulverization of the active materials and their falling off from the collector, which significantly limit their large-scale application in the field of sodium-ion batteries. Therefore, mitigating the volume expansion issue of Sb-based anode materials in the charge-discharge process is very important for the design of high-performance SIBs. In recent years, researchers have attempted to address this issue by designing special structures to prepare various composites, and substantial progress has been achieved in improving the electrochemical performance of SIBs. In this review, the relationship between the structure and properties of Sb-based materials and their applications in SIBs are presented and discussed in detail. The latest research progress on using Sb-based anode materials for SIBs in redox reaction mechanisms along with their morphology design, structure-performance relationship, etc. have been reviewed. The main objective of this review is to explore the determining factors of the performance of Sb-based anode materials to propose suitable modification strategies for improving their reversible capacity and cycle stability. Finally, future developments, challenges, and prospects of Sb-based anode materials for SIBs are discussed. Despite several challenges, Sb-based materials are very promising anode materials for SIBs with alloying reaction mechanisms. To further improve the large-scale application of Sb-based anode materials, it is necessary to optimize the binder, electrode structure, and electrolyte composition. The combination of in-depth studies on the electrochemical reaction mechanisms and advanced characterization technologies is important for the development and construction of advanced Sb-based anode materials for SIBs. Finally, to achieve extensive large-scale applications, it is necessary to further explore environmentally friendly, low-cost, and controllable synthetic technologies to prepare high-performance Sb-based anode materials. This review provides specific perspectives for the construction and optimization of Sb-based anode materials and suggests scope for future work on Sb-based anode materials, thereby promoting the rapid development and practical application of SIBs.
  • 加载中
    1. [1]

      Wang, Y.; Liu, Y.; Liu, Y.; Shen, Q.; Chen, C.; Qiu, F.; Li, P.; Jiao, L.; Qu, X. J. Energy Chem. 2021, 54, 225. doi: 10.1016/j.jechem.2020.05.065  doi: 10.1016/j.jechem.2020.05.065

    2. [2]

      Tian, Y. S.; Zeng, G. B.; Rutt, A.; Shi, T.; Kim, H.; Wang, J. Y.; Koettgen, J.; Sun, Y. Z.; Ouyang, B.; Chen, T. N.; et al. Chem. Rev. 2021, 121, 1623. doi: 10.1021/acs.chemrev.0c00767  doi: 10.1021/acs.chemrev.0c00767

    3. [3]

      Zhang, L. P.; Wang, W.; Lu, S. F.; Xiang, Y. Adv. Energy Mater. 2021, 11, 2003640. doi: 10.1002/aenm.202003640  doi: 10.1002/aenm.202003640

    4. [4]

      Wasalathilake, K. C.; Li, H.; Xu, L.; Yan, C. J. Energy Chem. 2020, 42, 91. doi: 10.1016/j.jechem.2019.06.016  doi: 10.1016/j.jechem.2019.06.016

    5. [5]

      Qiu, S.; Wu, X.; Xiao, L.; Ai, X.; Yang, H.; Cao, Y. ACS Appl. Mater. Interfaces 2016, 8, 1337. doi: 10.1021/acsami.5b10182  doi: 10.1021/acsami.5b10182

    6. [6]

      Yang, K.; Tang, J.; Liu, Y.; Kong, M.; Zhou, B.; Shang, Y.; Zhang, W. H. ACS Nano 2020, 14, 5728. doi: 10.1021/acsnano.0c00366  doi: 10.1021/acsnano.0c00366

    7. [7]

      Qin, B.; Jia, H.; Cai, Y.; Li, M.; Qi, J.; Cao, J.; Feng, J. J. Colloid Interface Sci. 2021, 582, 459. doi: 10.1016/j.jcis.2020.08.050  doi: 10.1016/j.jcis.2020.08.050

    8. [8]

      Edison, E.; Sreejith, S.; Madhavi, S. ACS Appl. Mater. Interfaces 2017, 9, 39399. doi: 10.1021/acsami.7b13096  doi: 10.1021/acsami.7b13096

    9. [9]

      Wang, S.; Yang, G.; Nasir, M. S.; Wang, X.; Wang, J.; Yan, W. Acta Phys. -Chim. Sin. 2021, 37, 2001003.  doi: 10.3866/PKU.WHXB202001003

    10. [10]

      Dong, S. Y.; Lv, N.; Wu, Y. L.; Zhang, Y. Z.; Zhu, G. Y.; Dong, X. C. Nano Today 2022, 42, 101349. doi: 10.1016/j.nantod.2021.101349  doi: 10.1016/j.nantod.2021.101349

    11. [11]

      Li, H. X.; Wang, J. W.; Jiao, L. F.; Tao, Z. L.; Liang, J. Acta Phys. -Chim. Sin. 2020, 36, 1904017.  doi: 10.3866/PKU.WHXB201904017

    12. [12]

      Hakim, C.; Sabi, N.; Saadoune, I. J. Energy Chem. 2021, 61, 47. doi: 10.1016/j.jechem.2021.02.027.  doi: 10.1016/j.jechem.2021.02.027

    13. [13]

      Chen, Z. Z.; Hou, J. G.; Zhou, J.; Huang, P.; Wang, H. Q.; Xu, C. X. Rare Met. 2021, 40, 3185. doi: 10.1007/s12598-021-01748-7.  doi: 10.1007/s12598-021-01748-7

    14. [14]

      Peng, P. P.; Wu, Y. R.; Li, X. Z.; Zhang, J. H.; Li, Y. W.; Cui, P.; Yi, T. F. Rare Met. 2021, 40, 3049. doi: 10.1007/s12598-021-01742-z  doi: 10.1007/s12598-021-01742-z

    15. [15]

      Xia, Q. B.; Liu, H. W.; Zhao, X. S. J. Mater. Chem. A 2022, 10, 3889. doi: 10.1039/d1ta09567f  doi: 10.1039/d1ta09567f

    16. [16]

      Usiskin, R.; Lu, Y. X.; Popovic, J.; Law, M.; Balaya, P.; Hu, Y. S.; Maier, J. Nat. Rev. Mater. 2021, 6, 1020. doi: 10.1038/s41578-021-00324-w  doi: 10.1038/s41578-021-00324-w

    17. [17]

      Xu, G. G.; Wang, Q.; Su, Y.; Liu, M. N.; Li, Q. W.; Zhang, Y. G. Acta Phys. -Chim. Sin. 2022, 38, 2009073.  doi: 10.3866/PKU.WHXB202009073

    18. [18]

      Cai, Z.; Peng, Z.; Liu, X.; Sun, R.; Qin, Z.; Fan, H.; Zhang, Y. Chin. Chem. Lett. 2021, 32, 3607. doi: 10.1016/j.cclet.2021.04.011.  doi: 10.1016/j.cclet.2021.04.011

    19. [19]

      Zhang, P.; Cao, B.; Soomro, R. A.; Sun, N.; Xu, B. Chin. Chem. Lett. 2021, 32, 282. doi: 10.1016/j.cclet.2020.10.006.  doi: 10.1016/j.cclet.2020.10.006

    20. [20]

      Sayed, S. Y.; Kalisvaart, W. P.; Luber, E. J.; Olsen, B. C.; Buriak, J. M. ACS Appl. Energy Mater. 2020, 3, 9950. doi: 10.1021/acsaem.0c01641  doi: 10.1021/acsaem.0c01641

    21. [21]

      Liu, S.; Li, X. Z.; Huang, B.; Yang, J.W.; Chen, Q.Q.; Li, Y. W.; Xiao, S. H. Rare Met. 2021, 40, 2392. doi: 10.1007/s12598-021-01729-w.  doi: 10.1007/s12598-021-01729-w

    22. [22]

      Men, S.; Zheng, H.; Ma, D.; Huang, X.; Kang, X. J. Energy Chem. 2021, 54, 124. doi: 10.1016/j.jechem.2020.05.046  doi: 10.1016/j.jechem.2020.05.046

    23. [23]

      Kim, I. T.; Allcorn, E.; Manthiram, A. Phys. Chem. Chem. Phys. 2014, 16, 12884. doi: 10.1039/c4cp01240b  doi: 10.1039/c4cp01240b

    24. [24]

      Cao, B.; Li, X. F. Acta Phys. -Chim. Sin. 2020, 36, 1905003.  doi: 10.3866/PKU.WHXB201905003

    25. [25]

      Zhang, H.; Yang, Y.; Ren, D.; Wang, L.; He, X. Energy Storage Mater. 2021, 36, 147. doi: 10.1016/j.ensm.2020.12.027  doi: 10.1016/j.ensm.2020.12.027

    26. [26]

      Yu. P.; Tang. W.; Wu, F.F.; Zhang, C.; Luo, H.Y.; Liu, H.; Wang, Z.G. Rare Met. 2020, 39, 1019. doi: 10.1007/s12598-020-01443-z  doi: 10.1007/s12598-020-01443-z

    27. [27]

      Darwiche, A.; Toiron, M.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. J. Power Sources 2015, 280, 588. doi: 10.1016/j.jpowsour.2015.01.138  doi: 10.1016/j.jpowsour.2015.01.138

    28. [28]

      Lin, Z.; Wang, G.; Xiong, X.; Zheng, J.; Ou, X.; Yang, C. Electrochim. Acta 2018, 269, 225. doi: 10.1016/j.electacta.2018.03.010  doi: 10.1016/j.electacta.2018.03.010

    29. [29]

      Sarkar, S.; Peter, S. C. J. Mater. Chem. A 2021, 9, 5164. doi: 10.1039/d0ta12063d  doi: 10.1039/d0ta12063d

    30. [30]

      Song, J. H.; Xiao, D. D.; Jia, H. P.; Zhu, G. M.; Engelhard, M.; Xiao, B. W.; Feng, S.; Li, D. S.; Reed, D.; Sprenkle, V. L.; et al. Nanoscale 2019, 11, 348. doi: 10.1039/c8nr08461k  doi: 10.1039/c8nr08461k

    31. [31]

      Kim, I. T.; Allcorn, E.; Manthiram, A. Energy Technol. 2013, 1, 319. doi: 10.1002/ente.201300023  doi: 10.1002/ente.201300023

    32. [32]

      Usui, H.; Domi, Y.; Itoda, Y.; Sakaguchi, H. Energy & Fuels 2021, 35, 18833. doi: 10.1021/acs.energyfuels.1c02987  doi: 10.1021/acs.energyfuels.1c02987

    33. [33]

      Sarkar, S.; Roy, S.; Zhao, Y.; Zhang, J. Nano Res. 2021, 14, 3690. doi: 10.1007/s12274-021-3334-y  doi: 10.1007/s12274-021-3334-y

    34. [34]

      Liang, S. Z.; Cheng, Y. J.; Zhu, J.; Xia, Y. G.; Muller-Buschbaum, P. Small Methods 2020, 4, 2000218. doi: 10.1002/smtd.202000218  doi: 10.1002/smtd.202000218

    35. [35]

      Zhang, D.; Wang, C.; Xue, H.; Wang, S.; Shen, Y.; Wang, Z.; Chang, L.; Liu, W.; Cheng, Y.; Wang, L. Appl. Surf. Sci. 2021, 563, 150297. doi: 10.1016/j.apsusc.2021.150297  doi: 10.1016/j.apsusc.2021.150297

    36. [36]

      Orzech, Marcin W.; Mazzali, F.; McGettrick, J. D.; Pleydell-Pearce, C.; Watson, T. M.; Voice, W.; Jarvis, D.; Margadonna, S. J. Mater. Chem. A 2017, 5, 23198. doi: 10.1039/c7ta07648g  doi: 10.1039/c7ta07648g

    37. [37]

      Youn, D. H.; Park, H.; Loeffler, K. E.; Kim, J. -H.; Heller, A.; Mullins, C. B. ChemElectroChem 2018, 5, 391. doi: 10.1002/celc.201700828  doi: 10.1002/celc.201700828

    38. [38]

      Yang, Q.; Zhou, J.; Zhang, G.; Guo, C.; Li, M.; Zhu, Y.; Qian, Y. J. Mater. Chem. A 2017, 5, 12144. doi: 10.1039/c7ta03060f  doi: 10.1039/c7ta03060f

    39. [39]

      Li, P. X.; Guo, X.; Wang, S. J.; Zang, R.; Li, X. M.; Man, Z. M.; Li, P.; Liu, S. S.; Wu, Y. H.; Wang, G. X. J. Mater. Chem. A 2019, 7, 2553. doi: 10.1039/c8ta09551e  doi: 10.1039/c8ta09551e

    40. [40]

      Gao, L.; Lu, D. J.; Yang, Y. H.; Guan, R. Z.; Zhang, D. M.; Sun, C. Y.; Liu, S.; Bian, X. F. J. Non-Cryst. Solids 2022, 581, 121396. doi: 10.1016/j.jnoncrysol.2022.121396  doi: 10.1016/j.jnoncrysol.2022.121396

    41. [41]

      Mao, J.; Zhou, T.; Zheng, Y.; Gao, H.; Liu, H. k.; Guo, Z. J. Mater. Chem. A 2018, 6, 3284. doi: 10.1039/c7ta10500b  doi: 10.1039/c7ta10500b

    42. [42]

      Nguyen, A. -G.; Le, H. T. T.; Verma, R.; Vu, D. -L.; Park, C. -J. Chem. Eng. J. 2022, 429, 132359. doi: 10.1016/j.cej.2021.132359  doi: 10.1016/j.cej.2021.132359

    43. [43]

      Xu, X.; Si, L.; Zhou, X.; Tu, F.; Zhu, X.; Bao, J. J. Power Sources 2017, 349, 37. doi: 10.1016/j.jpowsour.2017.03.026  doi: 10.1016/j.jpowsour.2017.03.026

    44. [44]

      Yuan, Y.; Jan, S.; Wang, Z.; Jin, X. J. Mater. Chem. A 2018, 6, 5555. doi: 10.1039/c8ta00592c  doi: 10.1039/c8ta00592c

    45. [45]

      Park, J. -S.; Kang, Y. C. Chem. Eng. J. 2019, 373, 227. doi: 10.1016/j.cej.2019.05.036  doi: 10.1016/j.cej.2019.05.036

    46. [46]

      Zhang, W.; Liu, T. F.; Wang, Y.; Liu, Y. J.; Nai, J. W.; Zhang, L.; Sheng, O. W.; Tao, X. Y. Nano Energy 2021, 90, 106475. doi: 10.1016/j.nanoen.2021.106475  doi: 10.1016/j.nanoen.2021.106475

    47. [47]

      Su, J.; Li, W.; Duan, T.; Xiao, B.; Wang, X.; Pei, Y.; Zeng, X. C. Carbon 2019, 153, 767. doi: 10.1016/j.carbon.2019.07.053  doi: 10.1016/j.carbon.2019.07.053

    48. [48]

      Song, K.; Liu, C.; Mi, L.; Chou, S.; Chen, W.; Shen, C. Small 2021, 17, 1903194. doi: 10.1002/smll.201903194  doi: 10.1002/smll.201903194

    49. [49]

      He, J.; Wei, Y. Q.; Zhai, T. Y.; Li, H. Q. Mat. Chem. Front. 2018, 2, 437. doi: 10.1039/c7qm00480j  doi: 10.1039/c7qm00480j

    50. [50]

      Jing, W. T.; Yang, C. C.; Jiang, Q. J. Mater. Chem. A 2020, 8, 2913. doi: 10.1039/c9ta11782b  doi: 10.1039/c9ta11782b

    51. [51]

      Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. J. Am. Chem. Soc. 2012, 134, 20805. doi: 10.1021/ja310347x  doi: 10.1021/ja310347x

    52. [52]

      Baggetto, L.; Hah, H. -Y.; Jumas, J. -C.; Johnson, C. E.; Johnson, J. A.; Keum, J. K.; Bridges, C. A.; Veith, G. M. J. Power Sources 2014, 267, 329. doi: 10.1016/j.jpowsour.2014.05.083  doi: 10.1016/j.jpowsour.2014.05.083

    53. [53]

      Kong, B.; Zu, L.; Peng, C.; Zhang, Y.; Zhang, W.; Tang, J.; Selomulya, C.; Zhang, L.; Chen, H.; Wang, Y.; et al. J. Am. Chem. Soc. 2016, 138, 16533. doi: 10.1021/jacs.6b10782  doi: 10.1021/jacs.6b10782

    54. [54]

      Allan, P. K.; Griffin, J. M.; Darwiche, A.; Borkiewicz, O. J.; Wiaderek, K. M.; Chapman, K. W.; Morris, A. J.; Chupas, P. J.; Monconduit, L.; Grey, C. P. J. Am. Chem. Soc. 2016, 138, 2352. doi: 10.1021/jacs.5b13273  doi: 10.1021/jacs.5b13273

    55. [55]

      Liu, S.; Feng, J.; Bian, X.; Liu, J.; Xu, H. Energy Environ. Sci. 2016, 9, 1229. doi: 10.1039/c5ee03699b  doi: 10.1039/c5ee03699b

    56. [56]

      Chen, B.; Yang, L.; Bai, X.; Wu, Q.; Liang, M.; Wang, Y.; Zhao, N.; Shi, C.; Zhou, B.; He, C. Small 2021, 17, e2006824. doi: 10.1002/smll.202006824  doi: 10.1002/smll.202006824

    57. [57]

      Wang, N.; Bai, Z.; Qian, Y.; Yang, J. Adv Mater 2016, 28, 4126. doi: 10.1002/adma.201505918  doi: 10.1002/adma.201505918

    58. [58]

      Wang, N.; Bai, Z.; Qian, Y.; Yang, J. ACS Appl. Mater. Interfaces 2017, 9, 447. doi: 10.1021/acsami.6b13193  doi: 10.1021/acsami.6b13193

    59. [59]

      He, M.; Kravchyk, K.; Walter, M.; Kovalenko, M. V. Nano Lett. 2014, 14, 1255. doi: 10.1021/nl404165c  doi: 10.1021/nl404165c

    60. [60]

      Hou, H.; Jing, M.; Yang, Y.; Zhu, Y.; Fang, L.; Song, W.; Pan, C.; Yang, X.; Ji, X. ACS Appl. Mater. Interfaces 2014, 6, 16189. doi: 10.1021/am504310k  doi: 10.1021/am504310k

    61. [61]

      Hou, H.; Jing, M.; Yang, Y.; Zhang, Y.; Zhu, Y.; Song, W.; Yang, X.; Ji, X. J. Mater. Chem. A 2015, 3, 2971. doi: 10.1039/c4ta06476c  doi: 10.1039/c4ta06476c

    62. [62]

      Liang, L.; Xu, Y.; Wang, C.; Wen, L.; Fang, Y.; Mi, Y.; Zhou, M.; Zhao, H.; Lei, Y. Energy Environ. Sci. 2015, 8, 2954. doi: 10.1039/c5ee00878f  doi: 10.1039/c5ee00878f

    63. [63]

      Liu, Y.; Zhou, B.; Liu, S.; Ma, Q.; Zhang, W. H. ACS Nano 2019, 13, 5885. doi: 10.1021/acsnano.9b01660  doi: 10.1021/acsnano.9b01660

    64. [64]

      Upadhyay, S.; Srivastava, P. Mater. Chem. Phys. 2020, 241, 122381. doi: 10.1016/j.matchemphys.2019.122381  doi: 10.1016/j.matchemphys.2019.122381

    65. [65]

      Sengupta, A.; Frauenheim, T. Mater. Today Energy 2017, 5, 347. doi: 10.1016/j.mtener.2017.08.002  doi: 10.1016/j.mtener.2017.08.002

    66. [66]

      Ji, J.; Song, X.; Liu, J.; Yan, Z.; Huo, C.; Zhang, S.; Su, M.; Liao, L.; Wang, W.; Ni, Z.; et al. Nat. Commun. 2016, 7, 13352. doi: 10.1038/ncomms13352  doi: 10.1038/ncomms13352

    67. [67]

      Chen, H. A.; Sun, H.; Wu, C. R.; Wang, Y. X.; Lee, P. H.; Pao, C. W.; Lin, S. Y. ACS Appl. Mater. Interfaces 2018, 10, 15058. doi: 10.1021/acsami.8b02394  doi: 10.1021/acsami.8b02394

    68. [68]

      Ares, P.; Aguilar-Galindo, F.; Rodriguez-San-Miguel, D.; Aldave, D. A.; Diaz-Tendero, S.; Alcami, M.; Martin, F.; Gomez-Herrero, J.; Zamora, F. Adv. Mater. 2016, 28, 6332. doi: 10.1002/adma.201602128  doi: 10.1002/adma.201602128

    69. [69]

      Lin, W.; Lian, Y.; Zeng, G.; Chen, Y.; Wen, Z.; Yang, H. Nano Res. 2018, 11, 5968. doi: 10.1007/s12274-018-2110-0  doi: 10.1007/s12274-018-2110-0

    70. [70]

      Tian, W.; Zhang, S.; Huo, C.; Zhu, D.; Li, Q.; Wang, L.; Ren, X.; Xie, L.; Guo, S.; Chu, P. K.; et al. ACS Nano 2018, 12, 1887. doi: 10.1021/acsnano.7b08714  doi: 10.1021/acsnano.7b08714

    71. [71]

      Yang, Y.; Leng, S.; Shi, W. Electrochem. Commun. 2021, 126, 107025. doi: 10.1016/j.elecom.2021.107025  doi: 10.1016/j.elecom.2021.107025

    72. [72]

      Zheng, X. -T.; Chen, K. -T.; Hsieh, Y. -Y.; Tuan, H. -Y. ACS Sustain. Chem. Eng. 2020, 8, 18535. doi: 10.1021/acssuschemeng.0c06477  doi: 10.1021/acssuschemeng.0c06477

    73. [73]

      Li, J. B.; Ding, Z. B.; Li, J. L.; Wang, C. Y.; Pan, L. K.; Wang, G. X. Chem. Eng. J. 2021, 407, 127199. doi: 10.1016/j.cej.2020.127199  doi: 10.1016/j.cej.2020.127199

    74. [74]

      Wang, Y.; Niu, P.; Li, J. Z.; Wang, S. L.; Li, L. Energy Storage Mater. 2021, 34, 436. doi: 10.1016/j.ensm.2020.10.003  doi: 10.1016/j.ensm.2020.10.003

    75. [75]

      Wu, J. X.; Ihsan-Ul-Haq, M.; Ciucci, F.; Huang, B. L.; Kim, J. K. Energy Storage Mater. 2021, 34, 582. doi: 10.1016/j.ensm.2020.10.007  doi: 10.1016/j.ensm.2020.10.007

    76. [76]

      Zhang, Y.; Xie, J.; Zhu, T.; Cao, G.; Zhao, X.; Zhang, S. J. Power Sources 2014, 247, 204. doi: 10.1016/j.jpowsour.2013.08.096  doi: 10.1016/j.jpowsour.2013.08.096

    77. [77]

      Hu, L.; Zhu, X.; Du, Y.; Li, Y.; Zhou, X.; Bao, J. Chem. Mat. 2015, 27, 8138. doi: 10.1021/acs.chemmater.5b03920  doi: 10.1021/acs.chemmater.5b03920

    78. [78]

      Liu, X.; Gao, M.; Yang, H.; Zhong, X.; Yu, Y. Nano Res. 2017, 10, 4360. doi: 10.1007/s12274-017-1627-y  doi: 10.1007/s12274-017-1627-y

    79. [79]

      Gu, J.; Du, Z.; Zhang, C.; Ma, J.; Li, B.; Yang, S. Adv. Energy Mater. 2017, 7, 1700447. doi: 10.1002/aenm.201700447  doi: 10.1002/aenm.201700447

    80. [80]

      Li, X.; Qu, J.; Xie, H.; Song, Q.; Fu, G.; Yin, H. Electrochim. Acta 2020, 332, 135501. doi: 10.1016/j.electacta.2019.135501  doi: 10.1016/j.electacta.2019.135501

    81. [81]

      Xia, X. H.; Chao, D. L.; Zhang, Y. Q.; Zhan, J. Y.; Zhong, Y.; Wang, X. L.; Wang, Y. D.; Shen, Z. X.; Tu, J. P.; Fan, H. J. Small 2016, 12, 3048. doi: 10.1002/smll.201600633  doi: 10.1002/smll.201600633

    82. [82]

      Wang, J. M.; Wang, B. B.; Liu, X. J.; Bai, J. T.; Wang, H.; Wang, G. Chem. Eng. J. 2020, 382, 123050. doi: 10.1016/j.cej.2019.123050  doi: 10.1016/j.cej.2019.123050

    83. [83]

      Yousaf, M.; Wang, Y. S.; Chen, Y. J.; Wang, Z. P.; Firdous, A.; Ali, Z.; Mahmood, N.; Zou, R. Q.; Guo, S. J.; Han, R. P. S. Adv. Energy Mater. 2019, 9, 1900567. doi: 10.1002/aenm.201900567  doi: 10.1002/aenm.201900567

    84. [84]

      Zhou, X.; Dai, Z.; Bao, J.; Guo, Y. -G. J. Mater. Chem. A 2013, 1, 13727. doi: 10.1039/c3ta13438e  doi: 10.1039/c3ta13438e

    85. [85]

      Liu, X.; Du, Y.; Xu, X.; Zhou, X.; Dai, Z.; Bao, J. J. Phys. Chem. C 2016, 120, 3214. doi: 10.1021/acs.jpcc.5b11926  doi: 10.1021/acs.jpcc.5b11926

    86. [86]

      Schulze, M. C.; Belson, R. M.; Kraynak, L. A.; Prieto, A. L. Energy Storage Mater. 2020, 25, 572. doi: 10.1016/j.ensm.2019.09.025  doi: 10.1016/j.ensm.2019.09.025

    87. [87]

      Liu, C.; Zeng, F.; Xu, L.; Liu, S.; Liu, J.; Ai, X.; Yang, H.; Cao, Y. J. Mater. Sci. Technol. 2020, 55, 81. doi: 10.1016/j.jmst.2019.05.031  doi: 10.1016/j.jmst.2019.05.031

    88. [88]

      Li, X.; Qu, J.; Hu, Z.; Xie, H.; Yin, H. Int. J. Hydrog. Energy 2021, 46, 17071. doi: 10.1016/j.ijhydene.2021.02.157  doi: 10.1016/j.ijhydene.2021.02.157

    89. [89]

      Pan, Q. G.; Tong, Z. P.; Su, Y. Q.; Qin, S.; Tang, Y. B. Adv. Funct. Mater. 2021, 31, 2103912. doi: 10.1002/adfm.202103912  doi: 10.1002/adfm.202103912

    90. [90]

      Xiao, S. H.; Li, X. Y.; Li, T. S.; Xiang, Y.; Chen, J. S. J. Mater. Chem. A 2021, 9, 7317. doi: 10.1039/d0ta12417f  doi: 10.1039/d0ta12417f

    91. [91]

      Feng, X. Y.; Fang, H.; Wu, N.; Liu, P. C.; Jena, P.; Nanda, J.; Mitlin, D. Joule 2022, 6, 543. doi: 10.1016/j.joule.2022.01.015  doi: 10.1016/j.joule.2022.01.015

    92. [92]

      Wang, H.; Shao, Y.; Mei, S.; Lu, Y.; Zhang, M.; Sun, J. K.; Matyjaszewski, K.; Antonietti, M.; Yuan, J. Chem. Rev. 2020, 120, 9363. doi: 10.1021/acs.chemrev.0c00080  doi: 10.1021/acs.chemrev.0c00080

    93. [93]

      Zhu, Y.; Han, X.; Xu, Y.; Liu, Y.; Zheng, S.; Xu, K.; Hu, L.; Wang, C. ACS Nano 2013, 7, 6378. doi: 10.1021/nn4025674  doi: 10.1021/nn4025674

    94. [94]

      Wu, L.; Hu, X.; Qian, J.; Pei, F.; Wu, F.; Mao, R.; Ai, X.; Yang, H.; Cao, Y. Energy Environ. Sci. 2014, 7, 323. doi: 10.1039/c3ee42944j  doi: 10.1039/c3ee42944j

    95. [95]

      Wu, L.; Lu, H.; Xiao, L.; Ai, X.; Yang, H.; Cao, Y. J. Mater. Chem. A 2015, 3, 5708. doi: 10.1039/c4ta06086e  doi: 10.1039/c4ta06086e

    96. [96]

      Liu, H.; Wang, Z.; Wu, Z.; Zhang, S.; Ge, S.; Guo, P.; Hua, M.; Lu, X.; Wang, S.; Zhang, J. J. Alloy. Compd. 2020, 833, 155127. doi: 10.1016/j.jallcom.2020.155127  doi: 10.1016/j.jallcom.2020.155127

    97. [97]

      Wang, M.; Yang, Z.; Wang, J.; Li, W.; Gu, L.; Yu, Y. Small 2015, 11, 5381. doi: 10.1002/smll.201501313  doi: 10.1002/smll.201501313

    98. [98]

      Luo, W.; Zhang, P.; Wang, X.; Li, Q.; Dong, Y.; Hua, J.; Zhou, L.; Mai, L. J. Power Sources 2016, 304, 340. doi: 10.1016/j.jpowsour.2015.11.047  doi: 10.1016/j.jpowsour.2015.11.047

    99. [99]

      Dong, S.; Li, C.; Li, Z.; Ge, X.; Miao, X.; Wang, P.; Zhang, Z.; Yin, L. Energy Storage Mater. 2019, 20, 446. doi: 10.1016/j.ensm.2018.10.024  doi: 10.1016/j.ensm.2018.10.024

    100. [100]

      Li, P.; Yu, L.; Ji, S.; Xu, X.; Liu, Z.; Liu, J.; Liu, J. Chem. Eng. J. 2019, 374, 502. doi: 10.1016/j.cej.2019.05.198  doi: 10.1016/j.cej.2019.05.198

    101. [101]

      Liu, Z.; Yu, X. -Y.; Lou, X. W.; Paik, U. Energy Environ. Sci. 2016, 9, 2314. doi: 10.1039/c6ee01501h  doi: 10.1039/c6ee01501h

    102. [102]

      Song, J.; Yan, P.; Luo, L.; Qi, X.; Rong, X.; Zheng, J.; Xiao, B.; Feng, S.; Wang, C.; Hu, Y. -S.; et al. Nano Energy 2017, 40, 504. doi: 10.1016/j.nanoen.2017.08.051  doi: 10.1016/j.nanoen.2017.08.051

    103. [103]

      Hou, H.; Jing, M.; Yang, Y.; Zhang, Y.; Song, W.; Yang, X.; Chen, J.; Chen, Q.; Ji, X. J. Power Sources 2015, 284, 227. doi: 10.1016/j.jpowsour.2015.03.043  doi: 10.1016/j.jpowsour.2015.03.043

    104. [104]

      Luo, W.; Li, F.; Gaumet, J. -J.; Magri, P.; Diliberto, S.; Zhou, L.; Mai, L. Adv. Energy Mater. 2018, 8, 1703237. doi: 10.1002/aenm.201703237  doi: 10.1002/aenm.201703237

    105. [105]

      Duan, J.; Zhang, W.; Wu, C.; Fan, Q.; Zhang, W.; Hu, X.; Huang, Y. Nano Energy 2015, 16, 479. doi: 10.1016/j.nanoen.2015.07.021  doi: 10.1016/j.nanoen.2015.07.021

    106. [106]

      Wang, J.; Yang, J.; Yin, W.; Hirano, S. -I. J. Mater. Chem. A 2017, 5, 20623. doi: 10.1039/c7ta06770d  doi: 10.1039/c7ta06770d

    107. [107]

      Ye, Z. Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. J. Nano-Micro Lett. 2021, 13, 203. doi: 10.1007/s40820-021-00726-z  doi: 10.1007/s40820-021-00726-z

    108. [108]

      Jing, W. T.; Zhang, Y.; Gu, Y.; Zhu, Y. F.; Yang, C. C.; Jiang, Q. Matter 2019, 1, 720. doi: 10.1016/j.matt.2019.03.010  doi: 10.1016/j.matt.2019.03.010

    109. [109]

      Yu, L.; Zhang, L.; Fu, J.; Yun, J.; Kim, K. H. Chem. Eng. J. 2021, 417, 129106. doi: 10.1016/j.cej.2021.129106  doi: 10.1016/j.cej.2021.129106

    110. [110]

      Li, Q.; Zhang, W.; Peng, J.; Zhang, W.; Liang, Z.; Wu, J.; Feng, J.; Li, H.; Huang, S. ACS Nano 2021, 15, 15104. doi: 10.1021/acsnano.1c05458  doi: 10.1021/acsnano.1c05458

    111. [111]

      Yang, C.; Li, W.; Yang, Z.; Gu, L.; Yu, Y. Nano Energy 2015, 18, 12. doi: 10.1016/j.nanoen.2015.09.008  doi: 10.1016/j.nanoen.2015.09.008

    112. [112]

      Liu, J.; Yu, L.; Wu, C.; Wen, Y.; Yin, K.; Chiang, F. K.; Hu, R.; Liu, J.; Sun, L.; Gu, L.; et al. Nano Lett. 2017, 17, 2034. doi: 10.1021/acs.nanolett.7b00083  doi: 10.1021/acs.nanolett.7b00083

    113. [113]

      Wu, C.; Shen, L.; Chen, S.; Jiang, Y.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. Energy Storage Mater. 2018, 10, 122. doi: 10.1016/j.ensm.2017.08.011  doi: 10.1016/j.ensm.2017.08.011

    114. [114]

      Cui, C.; Xu, J.; Zhang, Y.; Wei, Z.; Mao, M.; Lian, X.; Wang, S.; Yang, C.; Fan, X.; Ma, J.; et al. Nano Lett. 2019, 19, 538. doi: 10.1021/acs.nanolett.8b04468  doi: 10.1021/acs.nanolett.8b04468

    115. [115]

      Chen, B.; Qin, H.; Li, K.; Zhang, B.; Liu, E.; Zhao, N.; Shi, C.; He, C. Nano Energy 2019, 66, 104133. doi: 10.1016/j.nanoen.2019.104133  doi: 10.1016/j.nanoen.2019.104133

    116. [116]

      Yang, J.; Li, J.; Wang, T.; Notten, P. H. L.; Ma, H.; Liu, Z.; Wang, C.; Wang, G. Chem. Eng. J. 2021, 407, 127169. doi: 10.1016/j.cej.2020.127169  doi: 10.1016/j.cej.2020.127169

    117. [117]

      Yu, D. -K.; Park, C. -M. Chem. Eng. J. 2021, 409, 127380. doi: 10.1016/j.cej.2020.127380  doi: 10.1016/j.cej.2020.127380

    118. [118]

      Kim, I. T.; Kim, S. -O.; Manthiram, A. J. Power Sources 2014, 269, 848. doi: 10.1016/j.jpowsour.2014.07.081  doi: 10.1016/j.jpowsour.2014.07.081

    119. [119]

      Kalisvaart, W. P.; Olsen, B. C.; Luber, E. J.; Buriak, J. M. ACS Appl. Energ. Mater. 2019, 2, 2205. doi: 10.1021/acsaem.8b02231  doi: 10.1021/acsaem.8b02231

    120. [120]

      Ji, L.; Gu, M.; Shao, Y.; Li, X.; Engelhard, M. H.; Arey, B. W.; Wang, W.; Nie, Z.; Xiao, J.; Wang, C.; et al. Adv. Mater. 2014, 26, 2901. doi: 10.1002/adma.201304962  doi: 10.1002/adma.201304962

    121. [121]

      Liu, J.; Yang, Z.; Wang, J.; Gu, L.; Maier, J.; Yu, Y. Nano Energy 2015, 16, 389. doi: 10.1016/j.nanoen.2015.07.020  doi: 10.1016/j.nanoen.2015.07.020

    122. [122]

      Jia, H.; Dirican, M.; Zhu, J.; Chen, C.; Yan, C.; Zhu, P.; Li, Y.; Guo, J.; Caydamli, Y.; Zhang, X. J. Alloy. Compd. 2018, 752, 296. doi: 10.1016/j.jallcom.2018.04.141  doi: 10.1016/j.jallcom.2018.04.141

    123. [123]

      Nam, D. -H.; Hong, K. -S.; Lim, S. -J.; Kwon, H. -S. J. Power Sources 2014, 247, 423. doi: 10.1016/j.jpowsour.2013.08.095  doi: 10.1016/j.jpowsour.2013.08.095

    124. [124]

      Wang, L.; Wang, C.; Zhang, N.; Li, F.; Cheng, F.; Chen, J. ACS Energy Lett. 2016, 2, 256. doi: 10.1021/acsenergylett.6b00649  doi: 10.1021/acsenergylett.6b00649

    125. [125]

      Lee, C. W.; Kim, J. -C.; Park, S.; Song, H. J.; Kim, D. -W. Nano Energy 2015, 15, 479. doi: 10.1016/j.nanoen.2015.05.013  doi: 10.1016/j.nanoen.2015.05.013

    126. [126]

      Wu, P.; Zhang, A.; Peng, L.; Zhao, F.; Tang, Y.; Zhou, Y.; Yu, G. ACS Nano 2018, 12, 759. doi: 10.1021/acsnano.7b07985  doi: 10.1021/acsnano.7b07985

    127. [127]

      Wang, Z.; Dong, K.; Wang, D.; Luo, S.; Liu, X.; Liu, Y.; Wang, Q.; Zhang, Y.; Hao, A.; He, C.; et al. Chem. Eng. J. 2020, 384, 123327. doi: 10.1016/j.cej.2019.123327  doi: 10.1016/j.cej.2019.123327

    128. [128]

      Han, J.; Zhu, K.; Liu, P.; Si, Y.; Chai, Y.; Jiao, L. J. Mater. Chem. A 2019, 7, 25268. doi: 10.1039/c9ta09643d  doi: 10.1039/c9ta09643d

    129. [129]

      Li, L.; Seng, K. H.; Li, D.; Xia, Y.; Liu, H. K.; Guo, Z. Nano Res. 2014, 7, 1466. doi: 10.1007/s12274-014-0506-z  doi: 10.1007/s12274-014-0506-z

    130. [130]

      He, M.; Walter, M.; Kravchyk, K. V.; Erni, R.; Widmer, R.; Kovalenko, M. V. Nanoscale 2015, 7, 455. doi: 10.1039/c4nr05604c  doi: 10.1039/c4nr05604c

    131. [131]

      Yi, Z.; Han, Q.; Geng, D.; Wu, Y.; Cheng, Y.; Wang, L. J. Power Sources 2017, 342, 861. doi: 10.1016/j.jpowsour.2017.01.016  doi: 10.1016/j.jpowsour.2017.01.016

    132. [132]

      Zhao, Y.; Manthiram, A. Chem. Mat. 2015, 27, 3096. doi: 10.1021/acs.chemmater.5b00616  doi: 10.1021/acs.chemmater.5b00616

    133. [133]

      Gao, H.; Niu, J.; Zhang, C.; Peng, Z.; Zhang, Z. ACS Nano 2018, 12, 3568. doi: 10.1021/acsnano.8b00643  doi: 10.1021/acsnano.8b00643

    134. [134]

      Guo, S.; Li, H.; Lu, Y.; Liu, Z.; Hu, X. Energy Storage Mater. 2020, 27, 270. doi: 10.1016/j.ensm.2020.02.003  doi: 10.1016/j.ensm.2020.02.003

    135. [135]

      Liao, S.; Sun, Y.; Wang, J.; Cui, H.; Wang, C. Electrochim. Acta 2016, 211, 11. doi: 10.1016/j.electacta.2016.06.018  doi: 10.1016/j.electacta.2016.06.018

    136. [136]

      Nie, A.; Gan, L. -y.; Cheng, Y.; Tao, X.; Yuan, Y.; Sharifi-Asl, S.; He, K.; Asayesh-Ardakani, H.; Vasiraju, V.; Lu, J.; et al. Adv. Funct. Mater. 2016, 26, 543. doi: 10.1002/adfm.201504461  doi: 10.1002/adfm.201504461

    137. [137]

      Darwiche, A.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Electrochem. Commun. 2013, 32, 18. doi: 10.1016/j.elecom.2013.03.029  doi: 10.1016/j.elecom.2013.03.029

    138. [138]

      Zhu, J.; Shang, C.; Wang, Z.; Zhang, J.; Liu, Y.; Gu, S.; Zhou, L.; Cheng, H.; Gu, Y.; Lu, Z. ChemElectroChem 2018, 5, 1098. doi: 10.1002/celc.201701270  doi: 10.1002/celc.201701270

    139. [139]

      Ma, J.; Prieto, A. L. Chem. Commun. 2019, 55, 6938. doi: 10.1039/c9cc00001a  doi: 10.1039/c9cc00001a

    140. [140]

      Bai, M.; Zhang, K.; Du, D.; Tang, X.; Liu, Y.; Wang, H.; Zhang, M.; Liu, S.; Ma, Y. Energy Storage Mater. 2021, 42, 219. doi: 10.1016/j.ensm.2021.07.032  doi: 10.1016/j.ensm.2021.07.032

    141. [141]

      Xiao, L.; Cao, Y.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z.; Liu, J. Chem. Commun. 2012, 48, 3321. doi: 10.1039/c2cc17129e  doi: 10.1039/c2cc17129e

    142. [142]

      Ji, L.; Zhou, W.; Chabot, V.; Yu, A.; Xiao, X. ACS Appl. Mater. Interfaces 2015, 7, 24895. doi: 10.1021/acsami.5b08274  doi: 10.1021/acsami.5b08274

    143. [143]

      Jia, H.; Dirican, M.; Chen, C.; Zhu, J.; Zhu, P.; Yan, C.; Li, Y.; Dong, X.; Guo, J.; Zhang, X. ACS Appl. Mater. Interfaces 2018, 10, 9696. doi: 10.1021/acsami.7b18921  doi: 10.1021/acsami.7b18921

    144. [144]

      Qin, J.; Wang, T.; Liu, D.; Liu, E.; Zhao, N.; Shi, C.; He, F.; Ma, L.; He, C. Adv. Mater. 2018, 30, 1704670. doi: 10.1002/adma.201704670  doi: 10.1002/adma.201704670

    145. [145]

      Wang, Z.; Dong, K.; Wang, D.; Chen, F.; Luo, S.; Liu, Y.; He, C.; Shi, C.; Zhao, N. Chem. Eng. J. 2019, 371, 356. doi: 10.1016/j.cej.2019.04.045  doi: 10.1016/j.cej.2019.04.045

    146. [146]

      Li, C.; Pei, Y. R.; Zhao, M.; Yang, C. C.; Jiang, Q. Chem. Eng. J. 2021, 420, 129617. doi: 10.1016/j.cej.2021.129617  doi: 10.1016/j.cej.2021.129617

    147. [147]

      Li, J.; Pu, J.; Liu, Z.; Wang, J.; Wu, W.; Zhang, H.; Ma, H. ACS Appl. Mater. Interfaces 2017, 9, 25250. doi: 10.1021/acsami.7b04635  doi: 10.1021/acsami.7b04635

    148. [148]

      Walter, M.; Doswald, S.; Kovalenko, M. V. J. Mater. Chem. A 2016, 4, 7053. doi: 10.1039/c5ta10568d  doi: 10.1039/c5ta10568d

    149. [149]

      Choi, J. -H.; Ha, C. -W.; Choi, H. -Y.; Seong, J. -W.; Park, C. -M.; Lee, S. M. J. Power Sources 2018, 386, 34. doi: 10.1016/j.jpowsour.2018.03.032  doi: 10.1016/j.jpowsour.2018.03.032

    150. [150]

      Ma, W.; Yin, K.; Gao, H.; Niu, J.; Peng, Z.; Zhang, Z. Nano Energy 2018, 54, 349. doi: 10.1016/j.nanoen.2018.10.027  doi: 10.1016/j.nanoen.2018.10.027

    151. [151]

      Fehse, M.; Sougrati, M. T.; Darwiche, A.; Gabaudan, V.; La Fontaine, C.; Monconduit, L.; Stievano, L. J. Mater. Chem. A 2018, 6, 8724. doi: 10.1039/c8ta02248h  doi: 10.1039/c8ta02248h

    152. [152]

      Xie, H.; Kalisvaart, W. P.; Olsen, B. C.; Luber, E. J.; Mitlin, D.; Buriak, J. M. J. Mater. Chem. A 2017, 5, 9661. doi: 10.1039/c7ta01443k  doi: 10.1039/c7ta01443k

  • 加载中
    1. [1]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    2. [2]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    3. [3]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    4. [4]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    5. [5]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    6. [6]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    7. [7]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    8. [8]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    9. [9]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    10. [10]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    11. [11]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    12. [12]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    13. [13]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    14. [14]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    15. [15]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    16. [16]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    17. [17]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    18. [18]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    19. [19]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    20. [20]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

Metrics
  • PDF Downloads(66)
  • Abstract views(1899)
  • HTML views(344)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return