Citation: Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts[J]. Acta Physico-Chimica Sinica, ;2022, 38(11): 220102. doi: 10.3866/PKU.WHXB202201021 shu

Advances in Nanostructured Silicon Carbide Photocatalysts

  • Corresponding author: Xin Li, xinli@scau.edu.cn; xinliscau@126.com
  • Received Date: 13 January 2022
    Revised Date: 11 February 2022
    Accepted Date: 17 March 2022
    Available Online: 24 March 2022

    Fund Project: the National Natural Science Foundation of China 21975084the National Natural Science Foundation of China 51672089

  • Industrialization undoubtedly boosts economic development and improves the standard of living; however, it also leads to some serious problems, including the energy crisis, environmental pollution, and global warming. These problems are associated with or caused by the high carbon dioxide (CO2) and sulfur dioxide (SO2) emissions from the burning of fossil fuels such as coal, oil, and gas. Photocatalysis is considered one of the most promising technologies for eliminating these problems because of the possibility of converting CO2 into hydrocarbon fuels and other valuable chemicals using solar energy, hydrogen (H2) production from water (H2O) electrolysis, and degradation of pollutants. Among the various photocatalysts, silicon carbide (SiC) has great potential in the fields of photocatalysis, photoelectrocatalysis, and electrocatalysis because of its good electrical properties and photoelectrochemistry. This review is divided into six sections: introduction, fundamentals of nanostructured SiC, synthesis methods for obtaining nanostructured SiC photocatalysts, strategies for improving the activity of nanostructured SiC photocatalysts, applications of nanostructured SiC photocatalysts, and conclusions and prospects. The fundamentals of nanostructured SiC include its physicochemical characteristics. It possesses a range of unique physical properties, such as extreme hardness, high mechanical stability at high temperatures, a low thermal expansion coefficient, wide bandgap, and superior thermal conductivity. It also possesses exceptional chemical characteristics, such as high oxidation and corrosion resistance. The synthesis methods for obtaining nanostructured SiC have been systematically summarized as follows: Template growth, sol-gel, organic precursor pyrolysis, solvothermal synthesis, arc discharge, carbon thermal reduction, and electrospinning. These synthesis methods require high temperatures, and the reaction mechanism involves SiC formation via the reaction between carbon and silicon oxide. In the section of the review involving the strategies for improving the activity of nanostructured SiC photocatalysts, seven strategies are discussed, viz., element doping, construction of Z-scheme (or S-scheme) systems, supported co-catalysts, visible photosensitization, construction of semiconductor heterojunctions, supported carbon materials, and construction of nanostructures. All of these strategies, except element doping and visible photosensitization, concentrate on enhancing the separation of holes and electrons, while suppressing their recombination, thus improving the photocatalytic performance of the nanostructured SiC photocatalysts. Regarding the element doping and visible photosensitization strategies, element doping can narrow the bandgap of SiC, which generates more holes and electrons to improve photocatalytic activity. On the other hand, the principle of visible photosensitization is that photo-induced electrons move from photosensitizers to the conduction band of SiC to participate in the reaction, thus enhancing the photocatalytic performance. In the section on the applications of nanostructured SiC, photocatalytic H2 production, pollutant degradation, CO2 reduction, photoelectrocatalytic, and electrocatalytic applications will be discussed. The mechanism of a photocatalytic reaction requires the SiC photocatalyst to produce photo-induced electrons and holes during irradiation, which participate in the photocatalytic reaction. For example, photo-induced electrons can transform protons into H2, as well as CO2 into methane, methanol, or formic acid. Furthermore, photo-induced holes can convert organic waste into H2O and CO2. For photoelectrocatalytic and electrocatalytic applications, SiC is used as a catalyst under high temperatures and highly acidic or basic environments because of its remarkable physicochemical characteristics, including low thermal expansion, superior thermal conductivity, and high oxidation and corrosion resistance. The last section of the review will reveal the major obstacles impeding the industrial application of nanostructured SiC photocatalysts, such as insufficient visible absorption, slow reaction kinetics, and hard fabrication, as well as provide some ideas on how to overcome these obstacles.
  • 加载中
    1. [1]

      Friedlingstein, P.; Jones, M. W.; O'Sullivan, M.; Andrew, R. M.; Bakker, D. C. E.; Hauck, J.; Le Quéré, C.; Peters, G. P.; Peters, W.; Pongratz, J.; et al. Earth Syst. Sci. Data Discuss. 2021, 2021, 1. doi: 10.5194/essd-2021-386  doi: 10.5194/essd-2021-386

    2. [2]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    3. [3]

      Li, X.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2016, 45, 2603. doi: 10.1039/c5cs00838g  doi: 10.1039/c5cs00838g

    4. [4]

      Li, X.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Xie, J. Small 2016, 12, 6640. doi: 10.1002/smll.201600382  doi: 10.1002/smll.201600382

    5. [5]

      Wang, H.; Zhao, R.; Hu, H.; Fan, X.; Zhang, D.; Wang, D. ACS Appl. Mater. Interfaces 2020, 12, 40176. doi: 10.1021/acsami.0c01013  doi: 10.1021/acsami.0c01013

    6. [6]

      Hou, Z. -H.; Chen, J. -P.; Xie, L. -J.; Wei, X. -X.; Guo, S. -Q.; Chen, C. -M. Appl. Surf. Sci. 2021, 543, 148779. doi: 10.1016/j.apsusc.2020.148779  doi: 10.1016/j.apsusc.2020.148779

    7. [7]

      Zhou, X.; Gao, Q.; Li, X.; Liu, Y.; Zhang, S.; Fang, Y.; Li, J. J. Mater. Chem. A 2015, 3, 10999. doi: 10.1039/c5ta02516h  doi: 10.1039/c5ta02516h

    8. [8]

      Marien, C. B. D.; Le Pivert, M.; Azais, A.; M'Bra, I. C.; Drogui, P.; Dirany, A.; Robert, D. J. Hazard. Mater. 2019, 370, 164. doi: 10.1016/j.jhazmat.2018.06.009  doi: 10.1016/j.jhazmat.2018.06.009

    9. [9]

      Oliveros, A.; Guiseppi-Elie, A.; Saddow, S. E. Biomed. Microdev. 2013, 15, 353. doi: 10.1007/s10544-013-9742-3  doi: 10.1007/s10544-013-9742-3

    10. [10]

      Jian, J.; Sun, J. Solar RRL 2020, 4, 2000111. doi: 10.1002/solr.202000111  doi: 10.1002/solr.202000111

    11. [11]

      Zhuang, D.; Edgar, J. H. Mat. Sci. Eng. R-Rep. 2005, 48, 1. doi: 10.1016/j.mser.2004.11.002  doi: 10.1016/j.mser.2004.11.002

    12. [12]

      Wellmann, P. J. Semicond. Sci. Technol. 2018, 33, 103001. doi: 10.1088/1361-6641/aad831  doi: 10.1088/1361-6641/aad831

    13. [13]

      She, X.; Huang, A. Q.; Lucia, O.; Ozpineci, B. IEEE Trans. Ind. Electron. 2017, 64, 8193. doi: 10.1109/tie.2017.2652401  doi: 10.1109/tie.2017.2652401

    14. [14]

      Shcherban, N. D. J. Ind. Eng. Chem. 2017, 50, 15. doi: 10.1016/j.jiec.2017.02.002  doi: 10.1016/j.jiec.2017.02.002

    15. [15]

      Dhar, S.; Seitz, O.; Halls, M. D.; Choi, S.; Chabal, Y. J.; Feldman, L. C. J. Am. Chem. Soc. 2009, 131, 16808. doi: 10.1021/ja9053465  doi: 10.1021/ja9053465

    16. [16]

      Pei, L. Z.; Tang, Y. H.; Chen, Y. W.; Guo, C.; Li, X. X.; Yuan, Y.; Zhang, Y. J. Appl. Phys. 2006, 99, 114306. doi: 10.1063/1.2202111  doi: 10.1063/1.2202111

    17. [17]

      Zhou, J.; Wei, B.; Yao, Z.; Lin, H.; Tan, R.; Chen, W.; Guo, X. J. Alloy. Compd. 2020, 819, 153021. doi: 10.1016/j.jallcom.2019.153021  doi: 10.1016/j.jallcom.2019.153021

    18. [18]

      Liu, Z.; Shen, W.; Bu, W.; Chen, H.; Hua, Z.; Zhang, L.; Li, L.; Shi, J.; Tan, S. Micropor. Mesopor. Mater. 2005, 82, 137. doi: 10.1016/j.micromeso.2005.02.022  doi: 10.1016/j.micromeso.2005.02.022

    19. [19]

      Dai, H.; Wong, E. W.; Lu, Y. Z.; Fan, S.; Lieber, C. M. Nature 1995, 375, 769. doi: 10.1038/375769a0  doi: 10.1038/375769a0

    20. [20]

      Tang, C. C.; Fan, S. S.; Dang, H. Y.; Zhao, J. H.; Zhang, C.; Li, P.; Gu, Q. J. Cryst. Growth 2000, 210, 595. doi: 10.1016/s0022-0248(99)00737-x  doi: 10.1016/s0022-0248(99)00737-x

    21. [21]

      Pan, Z. W.; Lai, H. L.; Au, F. C. K.; Duan, X. F.; Zhou, W. Y.; Shi, W. S.; Wang, N.; Lee, C. S.; Wong, N. B.; Lee, S. T.; et al. Adv. Mater. 2000, 12, 1186. doi: 10.1002/1521-4095(200008)12:16<1186::Aid-Adma1186>3.0.Co;2-F  doi: 10.1002/1521-4095(200008)12:16<1186::Aid-Adma1186>3.0.Co;2-F

    22. [22]

      Sun, X. H.; Li, C. P.; Wong, W. K.; Wong, N. B.; Lee, C. S.; Lee, S. T.; Teo, B. K. J. Am. Chem. Soc. 2002, 124, 14464. doi: 10.1021/ja0273997  doi: 10.1021/ja0273997

    23. [23]

      Shen, G.; Chen, D.; Tang, K.; Qian, Y.; Zhang, S. Chem. Phys. Lett. 2003, 375, 177. doi: 10.1016/s0009-2614(03)00877-7  doi: 10.1016/s0009-2614(03)00877-7

    24. [24]

      Zhang, Y.; Shi, E. W.; Chen, Z. Z.; Li, X. B.; Xiao, B. J. Mater. Chem. 2006, 16, 4141. doi: 10.1039/b610168b  doi: 10.1039/b610168b

    25. [25]

      Zhou, J.; Liu, J.; Yang, R.; Lao, C.; Gao, P.; Tummala, R.; Xu, N. S.; Wang, Z. L. Small 2006, 2, 1344. doi: 10.1002/smll.200600098  doi: 10.1002/smll.200600098

    26. [26]

      Wang, J.; Wang, L.; Diao, J.; Xie, X.; Lin, G.; Jia, Q.; Liu, H.; Sui, G. J. Mater. Sci. Technol. 2022, 103, 209. doi: 10.1016/j.jmst.2021.06.044  doi: 10.1016/j.jmst.2021.06.044

    27. [27]

      Wang, X.; Hao, W.; Zhang, P.; Szego, A. E.; Svensson, G.; Hedin, N. J. Colloid Interface Sci. 2021, 602, 480. doi: 10.1016/j.jcis.2021.06.016  doi: 10.1016/j.jcis.2021.06.016

    28. [28]

      Remyamol, T.; Gopi, R.; Ajith, M. R.; Pant, B. J. Eur. Ceram. Soc. 2021, 41, 1828. doi: 10.1016/j.jeurceramsoc.2020.10.060  doi: 10.1016/j.jeurceramsoc.2020.10.060

    29. [29]

      Su, K.; Wang, Y.; Hu, K.; Fang, X.; Yao, J.; Li, Q.; Yang, J. ACS Appl. Mater. Interfaces 2021, 13, 22017. doi: 10.1021/acsami.1c03543  doi: 10.1021/acsami.1c03543

    30. [30]

      Yoo, S. C.; Kang, B.; Van Trinh, P.; Phuong, D. D.; Hong, S. H. Sci. Rep. 2020, 10, 12896. doi: 10.1038/s41598-020-69341-z  doi: 10.1038/s41598-020-69341-z

    31. [31]

      Xiao, C.; Chen, L.; Tang, Y.; Zhang, X.; Zheng, K.; Tian, X. Compos. Part A-Appl. Sci. Manuf. 2019, 116, 98. doi: 10.1016/j.compositesa.2018.10.023  doi: 10.1016/j.compositesa.2018.10.023

    32. [32]

      Tian, Q.; Wu, N.; Wang, B.; Wang, Y. Mater. Lett. 2019, 239, 109. doi: 10.1016/j.matlet.2018.12.077  doi: 10.1016/j.matlet.2018.12.077

    33. [33]

      Zhang, H.; Shen, P.; Shaga, A.; Guo, R.; Jiang, Q. Mater. Lett. 2016, 183, 299. doi: 10.1016/j.matlet.2016.07.126  doi: 10.1016/j.matlet.2016.07.126

    34. [34]

      Naderi, N.; Hashim, M. R. J. Alloy. Compd. 2013, 552, 356. doi: 10.1016/j.jallcom.2012.11.085  doi: 10.1016/j.jallcom.2012.11.085

    35. [35]

      Gu, L.; Ma, D.; Yao, S.; Liu, X.; Han, X.; Shen, W.; Bao, X. Chemistry 2009, 15, 13449. doi: 10.1002/chem.200901982  doi: 10.1002/chem.200901982

    36. [36]

      Eom, J. -H.; Kim, Y. -W.; Song, I. -H.; Kim, H. -D. J. Eur. Ceram. Soc. 2008, 28, 1029. doi: 10.1016/j.jeurceramsoc.2007.09.009  doi: 10.1016/j.jeurceramsoc.2007.09.009

    37. [37]

      Vogli, E.; Mukerji, J.; Hoffman, C.; Kladny, R.; Sieber, H.; Greil, P. J. Am. Ceram. Soc. 2001, 84, 1236. doi: 10.1111/j.1151-2916.2001.tb00822.x  doi: 10.1111/j.1151-2916.2001.tb00822.x

    38. [38]

      Cheng, Y.; Zhang, J.; Zhang, Y.; Chen, X.; Wang, Y.; Ma, H.; Cao, X. Eur. J. Inorg. Chem. 2009, 2009, 4248. doi: 10.1002/ejic.200900418  doi: 10.1002/ejic.200900418

    39. [39]

      Chen, W.; Wee, A. T. S. J. Phys. D Appl. Phys. 2007, 40, 6287. doi: 10.1088/0022-3727/40/20/s13  doi: 10.1088/0022-3727/40/20/s13

    40. [40]

      Xi, G.; He, Y.; Wang, C. Chemistry 2010, 16, 5184. doi: 10.1002/chem.200902490  doi: 10.1002/chem.200902490

    41. [41]

      Xie, W.; Möbus, G.; Zhang, S. J. Mater. Chem. 2011, 21, 18325. doi: 10.1039/c1jm13186a  doi: 10.1039/c1jm13186a

    42. [42]

      Shi, Y. F.; Meng, Y.; Chen, D. H.; Cheng, S. J.; Chen, P.; Yang, H. F.; Wan, Y.; Zhao, D. Y. Adv. Funct. Mater. 2006, 16, 561. doi: 10.1002/adfm.200500643  doi: 10.1002/adfm.200500643

    43. [43]

      Li, Y.; Wang, Q.; Fan, H.; Sang, S.; Li, Y.; Zhao, L. Ceram. Int. 2014, 40, 1481. doi: 10.1016/j.ceramint.2013.07.032  doi: 10.1016/j.ceramint.2013.07.032

    44. [44]

      Ding, J.; Zhu, H.; Li, G.; Deng, C.; Li, J. Appl. Surf. Sci. 2014, 320, 620. doi: 10.1016/j.apsusc.2014.09.149  doi: 10.1016/j.apsusc.2014.09.149

    45. [45]

      Xu, D.; Zhen, C.; Zhao, H. Ceram. Int. 2020, 46, 19629. doi: 10.1016/j.ceramint.2020.04.166  doi: 10.1016/j.ceramint.2020.04.166

    46. [46]

      Meng, G. W.; Zhang, L. D.; Mo, C. M.; Zhang, S. Y.; Qin, Y.; Feng, S. P.; Li, H. J. J. Mater. Res. 2011, 13, 2533. doi: 10.1557/jmr.1998.0353  doi: 10.1557/jmr.1998.0353

    47. [47]

      Shi, Y.; Zhang, F.; Hu, Y. S.; Sun, X.; Zhang, Y.; Lee, H. I.; Chen, L.; Stucky, G. D. J. Am. Chem. Soc. 2010, 132, 5552. doi: 10.1021/ja1001136  doi: 10.1021/ja1001136

    48. [48]

      Cai, K. F.; Lei, Q.; Zhang, A. X. J. Nanosci. Nanotechnol. 2007, 7, 580. doi: 10.1166/jnn.2007.143  doi: 10.1166/jnn.2007.143

    49. [49]

      Mitchell, B. S.; Zhang, H. Y.; Maljkovic, N.; Ade, M.; Kurtenbach, D.; Muller, E. J. Am. Ceram. Soc. 1999, 82, 2249. doi: 10.1111/j.1151-2916.1999.tb02070.x  doi: 10.1111/j.1151-2916.1999.tb02070.x

    50. [50]

      Hu, J. Q.; Lu, Q. Y.; Tang, K. B.; Deng, B.; Jiang, R. R.; Qian, Y. T.; Yu, W. C.; Zhou, G. E.; Liu, X. M.; Wu, J. X. J. Phys. Chem. B 2000, 104, 5251. doi: 10.1021/jp000124y  doi: 10.1021/jp000124y

    51. [51]

      Lu, Q.; Hu, J.; Tang, K.; Qian, Y.; Zhou, G.; Liu, X.; Zhu, J. Appl. Phys. Lett. 1999, 75, 507. doi: 10.1063/1.124431  doi: 10.1063/1.124431

    52. [52]

      Ju, Z.; Xing, Z.; Guo, C.; Yang, L.; Xu, L.; Qian, Y. Eur. J. Inorg. Chem. 2008, 2008, 3883. doi: 10.1002/ejic.200800198  doi: 10.1002/ejic.200800198

    53. [53]

      Zou, G.; Dong, C.; Xiong, K.; Li, H.; Jiang, C.; Qian, Y. Appl. Phys. Lett. 2006, 88, 071913. doi: 10.1063/1.2174123  doi: 10.1063/1.2174123

    54. [54]

      Wang, C. H.; Chang, Y. H.; Yen, M. Y.; Peng, C. W.; Lee, C. Y.; Chiu, H. T. Adv. Mater. 2005, 17, 419. doi: 10.1002/adma.200400939  doi: 10.1002/adma.200400939

    55. [55]

      Seeger, T.; Kohler-Redlich, P.; Ruhle, M. Adv. Mater. 2000, 12, 279. doi: 10.1002/(Sici)1521-4095(200002)12:4<279::Aid-Adma279>3.0.Co;2-1  doi: 10.1002/(Sici)1521-4095(200002)12:4<279::Aid-Adma279>3.0.Co;2-1

    56. [56]

      Li, Y. B.; Xie, S. S.; Zou, X. P.; Tang, D. S.; Liu, Z. Q.; Zhou, W. Y.; Wang, G. J. Cryst. Growth 2001, 223, 125. doi: 10.1016/s0022-0248(01)00597-8  doi: 10.1016/s0022-0248(01)00597-8

    57. [57]

      Chiu, S. C.; Huang, C. W.; Li, Y. Y. J. Phys. Chem. C 2007, 111, 10294. doi: 10.1021/jp0687192  doi: 10.1021/jp0687192

    58. [58]

      Kumar, P. V.; Gupta, G. S. Steel. Res. Int. 2002, 73, 31. doi: 10.1002/srin.200200170  doi: 10.1002/srin.200200170

    59. [59]

      Shin, D. G.; Riu, D. H.; Kim, H. E. J. Ceram. Process. Res. 2008, 9, 209.

    60. [60]

      Li, X.; Yu, J.; Low, J.; Fang, Y.; Xiao, J.; Chen, X. J. Mater. Chem. A 2015, 3, 2485. doi: 10.1039/c4ta04461d  doi: 10.1039/c4ta04461d

    61. [61]

      Jiao, Z. -F.; Tian, Y. -M.; Zhang, B.; Hao, C. -H.; Qiao, Y.; Wang, Y. -X.; Qin, Y.; Radius, U.; Braunschweig, H.; Marder, T. B.; et al. J. Catal. 2020, 389, 517. doi: 10.1016/j.jcat.2020.06.025  doi: 10.1016/j.jcat.2020.06.025

    62. [62]

      Wang, L.; Li, Y.; Wu, C.; Li, X.; Shao, G.; Zhang, P. Chin. J. Catal. 2022, 43, 507. doi: 10.1016/s1872-2067(21)63898-6  doi: 10.1016/s1872-2067(21)63898-6

    63. [63]

      Do, T. -N.; Idrees, M.; Amin, B.; Hieu, N. N.; Phuc, H. V.; Hieu, N. V.; Hoa, L. T.; Nguyen, C. V. RSC Adv. 2020, 10, 32027. doi: 10.1039/d0ra05579d  doi: 10.1039/d0ra05579d

    64. [64]

      Bai, J.; Shen, R.; Chen, W.; Xie, J.; Zhang, P.; Jiang, Z.; Li, X. Chem. Eng. J. 2022, 429, 132587. doi: 10.1016/j.cej.2021.132587  doi: 10.1016/j.cej.2021.132587

    65. [65]

      Ahuja, P.; Ujjain, S. K.; Kanojia, R.; Attri, P. J. Compos. Sci. 2021, 5, 82. doi: 10.3390/jcs5030082  doi: 10.3390/jcs5030082

    66. [66]

      Shaposhnikov, V. L.; Sobolev, N. A. J. Phys. : Condens. Matter 2004, 16, 1761. doi: 10.1088/0953-8984/16/10/008  doi: 10.1088/0953-8984/16/10/008

    67. [67]

      Demichelis, F.; Pirri, C. F.; Tresso, E. J. Appl. Phys. 1992, 72, 1327. doi: 10.1063/1.351742  doi: 10.1063/1.351742

    68. [68]

      Yang, T.; Chang, X.; Chen, J.; Chou, K. C.; Hou, X. Nanoscale 2015, 7, 8955. doi: 10.1039/c5nr01742d  doi: 10.1039/c5nr01742d

    69. [69]

      Li, Z.; Zhou, W.; Su, X.; Luo, F.; Zhu, D.; Liu, P. J. Am. Ceram. Soc. 2008, 91, 2607. doi: 10.1111/j.1551-2916.2008.02526.x  doi: 10.1111/j.1551-2916.2008.02526.x

    70. [70]

      Clegg, W. J. J. Am. Ceram. Soc. 2000, 83, 1039. doi: 10.1111/j.1151-2916.2000.tb01327.x  doi: 10.1111/j.1151-2916.2000.tb01327.x

    71. [71]

      Quintanilla, A.; Casas, J. A.; Miranzo, P.; Osendi, M. I.; Belmonte, M. Appl. Catal. B-Environ. 2018, 235, 246. doi: 10.1016/j.apcatb.2018.04.066  doi: 10.1016/j.apcatb.2018.04.066

    72. [72]

      Ma, S. B.; Sun, Y. P.; Zhao, B. C.; Tong, P.; Zhu, X. B.; Song, W. H. Phys. B-Condens. Matter 2007, 394, 122. doi: 10.1016/j.physb.2007.02.028  doi: 10.1016/j.physb.2007.02.028

    73. [73]

      Li, H.; Chen, J.; Hou, H.; Pan, H.; Ma, X.; Yang, J.; Wang, L.; Crittenden, J. C. Water Res. 2017, 126, 274. doi: 10.1016/j.watres.2017.09.001  doi: 10.1016/j.watres.2017.09.001

    74. [74]

      Wageh, S.; Al-Ghamdi, A. A.; Jafer, R.; Li, X.; Zhangc, P. Chin. J. Catal. 2021, 42, 667. doi: 10.1016/s1872-2067(20)63705-6  doi: 10.1016/s1872-2067(20)63705-6

    75. [75]

      Peng, Y.; Guo, X.; Yang, J.; Xie, T.; Wang, J.; Wang, Y.; Liu, S. J. Dispers. Sci. Technol. 2020, 1. doi: 10.1080/01932691.2020.1844734  doi: 10.1080/01932691.2020.1844734

    76. [76]

      Xu, Q. L.; Zhang, L. Y.; Yu, J. G.; Wageh, S.; Al-Ghamdi, A. A.; Jaroniec, M. Mater. Today 2018, 21, 1042. doi: 10.1016/j.mattod.2018.04.008  doi: 10.1016/j.mattod.2018.04.008

    77. [77]

      Di, T. M.; Xu, Q. L.; Ho, W. K.; Tang, H.; Xiang, Q. J.; Yu, J. G. ChemCatChem 2019, 11, 1394. doi: 10.1002/cctc.201802024  doi: 10.1002/cctc.201802024

    78. [78]

      Jiang, T.; Wang, K.; Guo, T.; Wu, X.; Zhang, G. Chin. J. Catal. 2020, 41, 161. doi: 10.1016/s1872-2067(19)63391-7  doi: 10.1016/s1872-2067(19)63391-7

    79. [79]

      Liu, C.; Feng, Y.; Han, Z.; Sun, Y.; Wang, X.; Zhang, Q.; Zou, Z. Chin. J. Catal. 2021, 42, 164. doi: 10.1016/s1872-2067(20)63608-7  doi: 10.1016/s1872-2067(20)63608-7

    80. [80]

      Liu, D.; Chen, S. T.; Li, R. J.; Peng, T. Y. Acta Phys. -Chim. Sin. 2021, 37, 2010017.  doi: 10.3866/PKU.WHXB202010017

    81. [81]

      Zhang, L. Y.; Zhang, J. J.; Yu, H. G.; Yu, J. G. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

    82. [82]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    83. [83]

      Fu, J. W.; Xu, Q. L.; Low, J. X.; Jiang, C. J.; Yu, J. G. Appl. Catal. B-Environ. 2019, 243, 556. doi: 10.1016/j.apcatb.2018.11.011  doi: 10.1016/j.apcatb.2018.11.011

    84. [84]

      Li, S.; Wang, C.; Cai, M.; Yang, F.; Liu, Y.; Chen, J.; Zhang, P.; Li, X.; Chen, X. Chem. Eng. J. 2022, 428, 131158. doi: 10.1016/j.cej.2021.131158  doi: 10.1016/j.cej.2021.131158

    85. [85]

      Shen, R.; Lu, X.; Zheng, Q.; Chen, Q.; Ng, Y. H.; Zhang, P.; Li, X. Solar RRL 2021, 5, 2100177. doi: 10.1002/solr.202100177  doi: 10.1002/solr.202100177

    86. [86]

      Fei, X. G.; Tan, H. Y.; Cheng, B.; Zhu, B. C.; Zhang, L. Y. Acta Phys. -Chim. Sin. 2021, 37, 2010027.  doi: 10.3866/PKU.WHXB202010027

    87. [87]

      Wageh, S.; Al-Ghamdi, A. A.; Liu, L. J. Acta Phys. -Chim. Sin. 2021, 37, 2010024.  doi: 10.3866/PKU.WHXB202010024

    88. [88]

      He, F.; Meng, A.; Cheng, B.; Ho, W.; Yu, J. Chin. J. Catal. 2020, 41, 9. doi: 10.1016/s1872-2067(19)63382-6  doi: 10.1016/s1872-2067(19)63382-6

    89. [89]

      Liu, L.; Hu, T.; Dai, K.; Zhang, J.; Liang, C. Chin. J. Catal. 2021, 42, 46. doi: 10.1016/s1872-2067(20)63560-4  doi: 10.1016/s1872-2067(20)63560-4

    90. [90]

      Liu, Y.; Hao, X. Q.; Hu, H. Q.; Jin, Z. L. Acta Phys. -Chim. Sin. 2021, 37, 2008030.  doi: 10.3866/PKU.WHXB202008030

    91. [91]

      Xie, Q.; He, W.; Liu, S.; Li, C.; Zhang, J.; Wong, P. K. Chin. J. Catal. 2020, 41, 140. doi: 10.1016/s1872-2067(19)63481-9  doi: 10.1016/s1872-2067(19)63481-9

    92. [92]

      Wang, D.; Guo, Z.; Peng, Y.; Yuan, W. Catal. Commun. 2015, 61, 53. doi: 10.1016/j.catcom.2014.12.008  doi: 10.1016/j.catcom.2014.12.008

    93. [93]

      Bai, J.; Chen, W.; Shen, R.; Jiang, Z.; Zhang, P.; Liu, W.; Li, X. J. Mater. Sci. Technol. 2022, 112, 85. doi: 10.1016/j.jmst.2021.11.003  doi: 10.1016/j.jmst.2021.11.003

    94. [94]

      G, M.; A, S.; G. A, S. J.; S, K. J. Mol. Catal. A-Chem. 2016, 411, 167. doi: 10.1016/j.molcata.2015.10.020  doi: 10.1016/j.molcata.2015.10.020

    95. [95]

      Liao, X.; Chen, J.; Wang, M.; Liu, Z.; Ding, L.; Li, Y. J. Alloy. Compd. 2016, 658, 642. doi: 10.1016/j.jallcom.2015.10.269  doi: 10.1016/j.jallcom.2015.10.269

    96. [96]

      Chen, Z.; Bing, F.; Liu, Q.; Zhang, Z.; Fang, X. J. Mater. Chem. A 2015, 3, 4652. doi: 10.1039/c4ta06530a  doi: 10.1039/c4ta06530a

    97. [97]

      Wang, D.; Guo, Z.; Peng, Y.; Yuan, W. Chem. Eng. J. 2015, 281, 102. doi: 10.1016/j.cej.2015.06.103  doi: 10.1016/j.cej.2015.06.103

    98. [98]

      Liu, M. -P.; Su, T.; Sun, L.; Du, H. -B. RSC Adv. 2016, 6, 4063. doi: 10.1039/c5ra24643a  doi: 10.1039/c5ra24643a

    99. [99]

      Peng, Y.; Guo, Z.; Yang, J.; Wang, D.; Yuan, W. J. Mater. Chem. A 2014, 2, 6296. doi: 10.1039/c4ta00468j  doi: 10.1039/c4ta00468j

    100. [100]

      Shen, R.; Ding, Y.; Li, S.; Zhang, P.; Xiang, Q.; Ng, Y. H.; Li, X. Chin. J. Catal. 2021, 42, 25. doi: 10.1016/s1872-2067(20)63600-2  doi: 10.1016/s1872-2067(20)63600-2

    101. [101]

      Shen, R.; He, K.; Zhang, A.; Li, N.; Ng, Y. H.; Zhang, P.; Hu, J.; Li, X. Appl. Catal. B-Environ. 2021, 291, 120104. doi: 10.1016/j.apcatb.2021.120104  doi: 10.1016/j.apcatb.2021.120104

    102. [102]

      Ren, D.; Liang, Z.; Ng, Y. H.; Zhang, P.; Xiang, Q.; Li, X. Chem. Eng. J. 2020, 390, 124496. doi: 10.1016/j.cej.2020.124496  doi: 10.1016/j.cej.2020.124496

    103. [103]

      Liang, Z.; Shen, R.; Ng, Y. H.; Zhang, P.; Xiang, Q.; Li, X. J. Mater. Sci. Technol. 2020, 56, 89. doi: 10.1016/j.jmst.2020.04.032  doi: 10.1016/j.jmst.2020.04.032

    104. [104]

      Yang, J.; Wang, D.; Han, H.; Li, C. Acc. Chem. Res. 2013, 46, 1900. doi: 10.1021/ar300227e  doi: 10.1021/ar300227e

    105. [105]

      Dai, H.; Chen, Y.; Lin, Y.; Xu, G.; Yang, C.; Tong, Y.; Guo, L.; Chen, G. Electrochim. Acta 2012, 85, 644. doi: 10.1016/j.electacta.2012.08.109  doi: 10.1016/j.electacta.2012.08.109

    106. [106]

      Wang, M.; Chen, J.; Liao, X.; Liu, Z.; Zhang, J.; Gao, L.; Li, Y. Int. J. Hydrog. Energy 2014, 39, 14581. doi: 10.1016/j.ijhydene.2014.07.068  doi: 10.1016/j.ijhydene.2014.07.068

    107. [107]

      Cai, C.; Zhu, X. B.; Zheng, G. Q.; Yuan, Y. N.; Huang, X. Q.; Cao, F. H.; Yang, J. F.; Zhang, Z. Surf. Coat. Technol. 2011, 205, 3448. doi: 10.1016/j.surfcoat.2010.12.002  doi: 10.1016/j.surfcoat.2010.12.002

    108. [108]

      Vershinin, N. N.; Bakaev, V. A.; Berestenko, V. I.; Efimov, O. N.; Kurkin, E. N.; Kabachkov, E. N. High Energy Chem. 2017, 51, 46. doi: 10.1134/s0018143916060199  doi: 10.1134/s0018143916060199

    109. [109]

      Wang, B.; Wang, Y.; Lei, Y.; Wu, N.; Gou, Y.; Han, C.; Xie, S.; Fang, D. Nano Res. 2016, 9, 886. doi: 10.1007/s12274-015-0971-z  doi: 10.1007/s12274-015-0971-z

    110. [110]

      Guo, X.; Tong, X.; Wang, Y.; Chen, C.; Jin, G.; Guo, X. -Y. J. Mater. Chem. A 2013, 1, 4657. doi: 10.1039/c3ta10600d  doi: 10.1039/c3ta10600d

    111. [111]

      Hao, C. H.; Guo, X. N.; Pan, Y. T.; Chen, S.; Jiao, Z. F.; Yang, H.; Guo, X. Y. J. Am. Chem. Soc. 2016, 138, 9361. doi: 10.1021/jacs.6b04175  doi: 10.1021/jacs.6b04175

    112. [112]

      Lai, Y. C.; Tsai, Y. C. Chem. Commun. 2012, 48, 6696. doi: 10.1039/c2cc32399k  doi: 10.1039/c2cc32399k

    113. [113]

      Yun, S.; Wang, L.; Zhao, C.; Wang, Y.; Ma, T. Phys. Chem. Chem. Phys. 2013, 15, 4286. doi: 10.1039/c3cp44048f  doi: 10.1039/c3cp44048f

    114. [114]

      Tsai, Y. -L.; Li, C. -T.; Huang, T. -Y.; Lee, C. -T.; Lin, C. -Y.; Chu, C. -W.; Vittal, R.; Ho, K. -C. ChemElectroChem 2014, 1, 1031. doi: 10.1002/celc.201300242  doi: 10.1002/celc.201300242

    115. [115]

      Pessoa, R. S.; Fraga, M. A.; Santos, L. V.; Massi, M.; Maciel, H. S. Mater. Sci. Semicon. Process. 2015, 29, 56. doi: 10.1016/j.mssp.2014.05.053  doi: 10.1016/j.mssp.2014.05.053

    116. [116]

      Zhou, X.; Gao, Q.; Yang, S.; Fang, Y. Chin. J. Catal. 2020, 41, 62. doi: 10.1016/s1872-2067(19)63421-2  doi: 10.1016/s1872-2067(19)63421-2

    117. [117]

      Zhang, J.; Liu, L. Z.; Yang, L.; Gan, Z. X.; Wu, X. L.; Chu, P. K. Appl. Phys. Lett. 2014, 104, 231902. doi: 10.1063/1.4882164  doi: 10.1063/1.4882164

    118. [118]

      Hu, J.; Zhong, Z.; Zhang, F.; Xing, W.; Jin, W.; Xu, N. Ind. Eng. Chem. Res. 2016, 55, 6661. doi: 10.1021/acs.iecr.6b00988  doi: 10.1021/acs.iecr.6b00988

    119. [119]

      Liao, X.; Liu, Z.; Ding, L.; Chen, J.; Tang, W. RSC Adv. 2015, 5, 99143. doi: 10.1039/c5ra19193a  doi: 10.1039/c5ra19193a

    120. [120]

      Chen, Y. X.; Xu, X.; Liu, P. Y.; Xie, W. G.; Chen, K.; Shui, L. L.; Shang, C. Q.; Chen, Z. H.; Ma, X. G.; Zhou, G. F.; Shi, T. T.; Wang, X. J. Phys. Chem. C 2020, 124, 1362. doi: 10.1021/acs.jpcc.9b08740  doi: 10.1021/acs.jpcc.9b08740

    121. [121]

      Alivov, Y. I.; Xiao, B.; Fan, Q.; Morkoç, H.; Johnstone, D. Appl. Phys. Lett. 2006, 89, 152115. doi: 10.1063/1.2360924  doi: 10.1063/1.2360924

    122. [122]

      Digdaya, I. A.; Rodriguez, P. P.; Ma, M.; Adhyaksa, G. W. P.; Garnett, E. C.; Smets, A. H. M.; Smith, W. A. J. Mater. Chem. A 2016, 4, 6842. doi: 10.1039/c5ta09435f  doi: 10.1039/c5ta09435f

    123. [123]

      Mishra, G.; Parida, K. M.; Singh, S. K. ACS Sustain. Chem. Eng. 2015, 3, 245. doi: 10.1021/sc500570k  doi: 10.1021/sc500570k

    124. [124]

      Gondal, M. A.; Ilyas, A. M.; Baig, U. Appl. Surf. Sci. 2016, 378, 8. doi: 10.1016/j.apsusc.2016.03.135  doi: 10.1016/j.apsusc.2016.03.135

    125. [125]

      Lu, W.; Wang, D.; Guo, L.; Jia, Y.; Ye, M.; Huang, J.; Li, Z.; Peng, Y.; Yuan, W.; Chen, X. Adv. Mater. Process. 2015, 27, 7986. doi: 10.1002/adma.201503606  doi: 10.1002/adma.201503606

    126. [126]

      Zhou, X.; Li, X.; Gao, Q.; Yuan, J.; Wen, J.; Fang, Y.; Liu, W.; Zhang, S.; Liu, Y. Catal. Sci. Technol. 2015, 5, 2798. doi: 10.1039/c4cy01757a  doi: 10.1039/c4cy01757a

    127. [127]

      Zhu, K.; Guo, L.; Lin, J.; Hao, W.; Shang, J.; Jia, Y.; Chen, L.; Jin, S.; Wang, W.; Chen, X. Appl. Phys. Lett. 2012, 100, 023113. doi: 10.1063/1.3676042  doi: 10.1063/1.3676042

    128. [128]

      Lin, S.; Zhao, X. S.; Li, Y. F.; Huang, K.; Jia, R. X.; Liang, C.; Xu, X.; Zhou, Y. F.; Wang, H.; Fan, D. Y.; et al. Mater. Lett. 2014, 132, 380. doi: 10.1016/j.matlet.2014.06.116  doi: 10.1016/j.matlet.2014.06.116

    129. [129]

      Yang, J.; Zeng, X.; Chen, L.; Yuan, W. Appl. Phys. Lett. 2013, 102, 083101. doi: 10.1063/1.4792695  doi: 10.1063/1.4792695

    130. [130]

      Huang, D.; Yin, L.; Niu, J. Environ. Sci. Technol. 2016, 50, 5857. doi: 10.1021/acs.est.6b00652  doi: 10.1021/acs.est.6b00652

    131. [131]

      Hou, H.; Dong, C.; Wang, L.; Gao, F.; Wei, G.; Zheng, J.; Cheng, X.; Tang, B.; Yang, W. CrystEngComm 2013, 15, 2002. doi: 10.1039/c3ce26862d  doi: 10.1039/c3ce26862d

    132. [132]

      Liu, H.; She, G.; Mu, L.; Shi, W. Mater. Res. Bull. 2012, 47, 917. doi: 10.1016/j.materresbull.2011.12.046  doi: 10.1016/j.materresbull.2011.12.046

    133. [133]

      Zhang, J.; Chen, J.; Xin, L.; Wang, M. Mat. Sci. Eng. B 2014, 179, 6. doi: 10.1016/j.mseb.2013.09.016  doi: 10.1016/j.mseb.2013.09.016

    134. [134]

      Hao, J. -Y.; Wang, Y. -Y.; Tong, X. -L.; Jin, G. -Q.; Guo, X. -Y. Catal. Today 2013, 212, 220. doi: 10.1016/j.cattod.2012.09.023  doi: 10.1016/j.cattod.2012.09.023

    135. [135]

      Dragomir, M.; Valant, M.; Fanetti, M.; Mozharivskyj, Y. RSC Adv. 2016, 6, 21795. doi: 10.1039/c6ra00789a  doi: 10.1039/c6ra00789a

    136. [136]

      Shen, R.; Ren, D.; Ding, Y.; Guan, Y.; Ng, Y. H.; Zhang, P.; Li, X. Sci. China Mater. 2020, 63, 2153. doi: 10.1007/s40843-020-1456-x  doi: 10.1007/s40843-020-1456-x

    137. [137]

      Pan, J. B.; Shen, S.; Zhou, W.; Tang, J.; Ding, H. Z.; Wang, J. B.; Chen, L.; Au, C. T.; Yin, S. F. Acta Phys. -Chim. Sin. 2020, 36, 1905068.  doi: 10.3866/PKU.WHXB201905068

    138. [138]

      Zhang, R. L.; Wang, C.; Chen, H.; Zhao, H.; Liu, J.; Li, Y.; Su, B. L. Acta Phys. -Chim. Sin. 2020, 36, 1803014.  doi: 10.3866/PKU.WHXB201803014

    139. [139]

      Jin, Z. L.; Li, Y. B.; Hao, X. Q. Acta Phys. -Chim. Sin. 2021, 37, 1912033.  doi: 10.3866/PKU.WHXB201912033

    140. [140]

      Li, S. S.; Sun, J. R.; Guan, J. Q. Chin. J. Catal. 2021, 42, 511. doi: 10.1016/s1872-2067(20)63693-2  doi: 10.1016/s1872-2067(20)63693-2

    141. [141]

      Xiao, N.; Li, S. S.; Li, X. L.; Ge, L.; Gao, Y. Q.; Li, N. Chin. J. Catal. 2020, 41, 642. doi: 10.1016/s1872-2067(19)63469-8  doi: 10.1016/s1872-2067(19)63469-8

    142. [142]

      Liu, S.; Zhang, C.; Sun, Y.; Chen, Q.; He, L.; Zhang, K.; Zhang, J.; Liu, B.; Chen, L. -F. Coord. Chem. Rev. 2020, 413, 213266. doi: 10.1016/j.ccr.2020.213266  doi: 10.1016/j.ccr.2020.213266

    143. [143]

      Jia, R.; Gui, Q.; Sui, L.; Huang, Y.; Lu, H.; Dong, H.; Ma, S.; Gan, Z.; Dong, L.; Yu, L. J. Mater. Chem. A 2021, 9, 14768. doi: 10.1039/d1ta03830c  doi: 10.1039/d1ta03830c

    144. [144]

      Ren, D.; Shen, R.; Jiang, Z.; Lu, X.; Li, X. Chin. J. Catal. 2020, 41, 31. doi: 10.1016/s1872-2067(19)63467-4  doi: 10.1016/s1872-2067(19)63467-4

    145. [145]

      Bai, J. X.; Shen, R. C.; Jiang, Z. M.; Zhang, P.; Li, Y. J.; Li, X. Chin. J. Catal. 2022, 43, 359. doi: 10.1016/s1872-2067(21)63883-4  doi: 10.1016/s1872-2067(21)63883-4

    146. [146]

      Jiang, Z.; Chen, Q.; Zheng, Q.; Shen, R.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2021, 37, 2010059.  doi: 10.3866/PKU.WHXB202010059

    147. [147]

      Peng, Y.; Guo, Z.; Wang, D.; Pan, N.; Yuan, W. Appl. Phys. Lett. 2015, 107, 012102. doi: 10.1063/1.4923399  doi: 10.1063/1.4923399

    148. [148]

      Wang, Y.; Guo, X.; Dong, L.; Jin, G.; Wang, Y.; Guo, X. -Y. Int. J. Hydrog. Energ. 2013, 38, 12733. doi: 10.1016/j.ijhydene.2013.07.062  doi: 10.1016/j.ijhydene.2013.07.062

    149. [149]

      Zhang, Y.; Xu, Y.; Li, T.; Wang, Y. Particuology 2012, 10, 46. doi: 10.1016/j.partic.2011.08.001  doi: 10.1016/j.partic.2011.08.001

    150. [150]

      Sun, L.; Wang, B.; Wang, Y. Int. J. Appl. Ceram. Technol. 2018, 15, 111. doi: 10.1111/ijac.12792  doi: 10.1111/ijac.12792

    151. [151]

      Liu, Y.; Gao, F.; Wang, L.; Yang, W.; He, X.; Hou, H. J. Mater. Sci. Mater. Electron. 2018, 30, 1487. doi: 10.1007/s10854-018-0419-9  doi: 10.1007/s10854-018-0419-9

    152. [152]

      Zhou, X.; Liu, Y.; Li, X.; Gao, Q.; Liu, X.; Fang, Y. Chem. Commun. 2014, 50, 1070. doi: 10.1039/c3cc47790h  doi: 10.1039/c3cc47790h

    153. [153]

      Hao, J. -Y.; Wang, Y. -Y.; Tong, X. -L.; Jin, G. -Q.; Guo, X. -Y. Int. J. Hydrog. Energ. 2012, 37, 15038. doi: 10.1016/j.ijhydene.2012.08.021  doi: 10.1016/j.ijhydene.2012.08.021

    154. [154]

      Cao, D.; An, H.; Yan, X.; Zhao, Y.; Yang, G.; Mei, H. Acta Phys. -Chim. Sin. 2020, 36, 1901051.  doi: 10.3866/PKU.WHXB201901051

    155. [155]

      Du, Z.; Sun, P.; Wu, K.; Zheng, X.; Zhang, X.; Huang, J.; Sun, D.; Zheng, Y.; Li, Q. Energy Technol. 2019, 7, 1900017. doi: 10.1002/ente.201900017  doi: 10.1002/ente.201900017

    156. [156]

      Wang, D.; Liu, N.; Guo, Z.; Wang, W.; Guo, L.; Yuan, W.; Chen, X. Phys. Chem. Chem. Phys. 2018, 20, 4787. doi: 10.1039/c7cp08363g  doi: 10.1039/c7cp08363g

    157. [157]

      Mishra, G.; Parida, K. M.; Singh, S. K. RSC Adv. 2014, 4, 12918. doi: 10.1039/c3ra46578k  doi: 10.1039/c3ra46578k

    158. [158]

      Xiao, M.; Hao, M.; Lyu, M.; Moore, E. G.; Zhang, C.; Luo, B.; Hou, J.; Lipton-Duffin, J.; Wang, L. Adv. Funct. Mater. 2019, 29, 1905683. doi: 10.1002/adfm.201905683  doi: 10.1002/adfm.201905683

    159. [159]

      Hao, C. H.; Guo, X. N.; Sankar, M.; Yang, H.; Ma, B.; Zhang, Y. F.; Tong, X. L.; Jin, G. Q.; Guo, X. Y. ACS Appl. Mater. Inter. 2018, 10, 23029. doi: 10.1021/acsami.8b04044  doi: 10.1021/acsami.8b04044

    160. [160]

      Wang, D.; Peng, Y.; Wang, Q.; Pan, N.; Guo, Z.; Yuan, W. Appl. Phys. Lett. 2016, 108, 161601. doi: 10.1063/1.4947196  doi: 10.1063/1.4947196

    161. [161]

      Guo, T.; Jiang, L.; Wang, K.; Li, Y.; Huang, H.; Wu, X.; Zhang, G. Appl. Catal. B-Environ. 2021, 286, 119883. doi: 10.1016/j.apcatb.2021.119883  doi: 10.1016/j.apcatb.2021.119883

    162. [162]

      Nagakawa, H.; Ochiai, T.; Nagata, M. Int. J. Hydrog. Energ. 2018, 43, 2207. doi: 10.1016/j.ijhydene.2017.12.006  doi: 10.1016/j.ijhydene.2017.12.006

    163. [163]

      Peng, Y.; Han, G.; Wang, D.; Wang, K.; Guo, Z.; Yang, J.; Yuan, W. Int. J. Hydrog. Energ. 2017, 42, 14409. doi: 10.1016/j.ijhydene.2017.04.204  doi: 10.1016/j.ijhydene.2017.04.204

    164. [164]

      Bai, S. -W.; Mei, H.; Jin, Z. -P.; Xiao, S. -S.; Cheng, L. -F. Appl. Surf. Sci. 2020, 500, 144009. doi: 10.1016/j.apsusc.2019.144009  doi: 10.1016/j.apsusc.2019.144009

    165. [165]

      Wang, D.; Huang, L.; Guo, Z.; Han, X.; Liu, C.; Wang, W.; Yuan, W. Appl. Surf. Sci. 2018, 456, 871. doi: 10.1016/j.apsusc.2018.06.099  doi: 10.1016/j.apsusc.2018.06.099

    166. [166]

      Wang, B.; Zhang, J.; Huang, F. Appl. Surf. Sci. 2017, 391, 449. doi: 10.1016/j.apsusc.2016.07.056  doi: 10.1016/j.apsusc.2016.07.056

    167. [167]

      Wang, D.; Wang, W.; Wang, Q.; Guo, Z.; Yuan, W. Mater. Lett. 2017, 201, 114. doi: 10.1016/j.matlet.2017.04.140  doi: 10.1016/j.matlet.2017.04.140

    168. [168]

      Dang, H.; Li, B.; Li, C.; Zang, Y.; Xu, P.; Zhao, X.; Fan, H.; Qiu, Y. Electrochim. Acta 2018, 267, 24. doi: 10.1016/j.electacta.2018.02.070  doi: 10.1016/j.electacta.2018.02.070

    169. [169]

      Pan, J.; Zhang, Y.; Guan, Y.; Yan, Y.; Tang, H.; Liu, X.; Wang, M.; Wei, X. Appl. Surf. Sci. 2022, 579, 152171. doi: 10.1016/j.apsusc.2021.152171  doi: 10.1016/j.apsusc.2021.152171

    170. [170]

      Nagakawa, H.; Nagata, M. ACS Appl. Mater. Interfaces 2021, 13, 47511. doi: 10.1021/acsami.1c11888  doi: 10.1021/acsami.1c11888

    171. [171]

      Wang, H. J.; Li, X.; Zhao, X. X.; Li, C. Y.; Song, X. H.; Zhang, P.; Huo, P. W.; Li, X. Chin. J. Catal. 2022, 43, 178. doi: 10.1016/s1872-2067(21)63910-4  doi: 10.1016/s1872-2067(21)63910-4

    172. [172]

      Zou, T.; Xie, C.; Liu, Y.; Zhang, S.; Zou, Z.; Zhang, S. J. Alloy. Compd. 2013, 552, 504. doi: 10.1016/j.jallcom.2012.11.061  doi: 10.1016/j.jallcom.2012.11.061

    173. [173]

      Kim, T. H.; Gómez-Solís, C.; Moctezuma, E.; Lee, S. W. Res. Chem. Intermed. 2013, 40, 1595. doi: 10.1007/s11164-013-1064-9  doi: 10.1007/s11164-013-1064-9

    174. [174]

      Kouame, N. A.; Robert, D.; Keller, V.; Keller, N.; Pham, C.; Nguyen, P. Environ. Sci. Pollut. R 2012, 19, 3727. doi: 10.1007/s11356-011-0719-6  doi: 10.1007/s11356-011-0719-6

    175. [175]

      Hao, D.; Yang, Z.; Jiang, C.; Zhang, J. J. Mater. Sci. Technol. 2013, 29, 1074. doi: 10.1016/j.jmst.2013.08.021  doi: 10.1016/j.jmst.2013.08.021

    176. [176]

      Zhang, T.; Dai, Z.; Liang, B.; Mu, Y. J. Inorg. Organomet. Polym. Mater. 2020, 303. doi: 10.1007/s10904-020-01702-7  doi: 10.1007/s10904-020-01702-7

    177. [177]

      Yang, J.; Peng, Y.; Yang, B.; Li, P. Mater. Res. Exp. 2018, 5, 085511. doi: 10.1088/2053-1591/aad3df  doi: 10.1088/2053-1591/aad3df

    178. [178]

      Sun, J.; Xia, G.; Yang, W.; Hu, Y.; Shen, W. Water. Sci. Technol. 2020, 82, 704. doi: 10.2166/wst.2020.370  doi: 10.2166/wst.2020.370

    179. [179]

      Weng, J. -H.; Lee, P. -C.; Chen, Y. -S.; Lin, C. B. J. Inorg. Organomet. Polym. Mater. 2019, 30, 1760. doi: 10.1007/s10904-019-01377-9  doi: 10.1007/s10904-019-01377-9

    180. [180]

      Koysuren, O. J. Appl. Polym. Sci. 2019, 137, 48524. doi: 10.1002/app.48524  doi: 10.1002/app.48524

    181. [181]

      Rico-Santacruz, M.; García-Muñoz, P.; Marchal, C.; Batail, N.; Pham, C.; Robert, D.; Keller, N. RSC Adv. 2020, 10, 3817. doi: 10.1039/c9ra09553e  doi: 10.1039/c9ra09553e

    182. [182]

      Allé, P. H.; Garcia-Muñoz, P.; Adouby, K.; Keller, N.; Robert, D. Environ. Chem. Lett. 2020, 19, 1803. doi: 10.1007/s10311-020-01099-2  doi: 10.1007/s10311-020-01099-2

    183. [183]

      Allé, P. H.; Fanou, G. D.; Robert, D.; Adouby, K.; Drogui, P. Appl. Water Sci. 2020, 10, 1. doi: 10.1007/s13201-020-01282-4  doi: 10.1007/s13201-020-01282-4

    184. [184]

      Wang, D.; Huang, L.; Guo, Z.; Jin, S.; Liu, C.; Wang, W.; Yuan, W. ACS Appl. Nano Mater. 2018, 1, 4594. doi: 10.1021/acsanm.8b00907  doi: 10.1021/acsanm.8b00907

    185. [185]

      Garcia-Munoz, P.; Fresno, F.; Lefevre, C.; Robert, D.; Keller, N. ACS Appl. Mater. Inter. 2020, 57025. doi: 10.1021/acsami.0c16647  doi: 10.1021/acsami.0c16647

    186. [186]

      Zhang, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H. Langmuir 2020, 36, 1174. doi: 10.1021/acs.langmuir.9b03760  doi: 10.1021/acs.langmuir.9b03760

    187. [187]

      Koysuren, N. Polym. -Plast. Technol. Mater. 2021, 60, 1620. doi: 10.1080/25740881.2021.1924199  doi: 10.1080/25740881.2021.1924199

    188. [188]

      Zhang, J.; Wu, X. L.; Liu, L. Z.; Yang, L.; Gan, Z. X.; Chu, P. K. AIP Adv. 2015, 5, 037120. doi: 10.1063/1.4915125  doi: 10.1063/1.4915125

    189. [189]

      Bora, L. V.; Mewada, R. K. J. Environ. Chem. Eng. 2017, 5, 5556. doi: 10.1016/j.jece.2017.10.037  doi: 10.1016/j.jece.2017.10.037

    190. [190]

      Chang, F.; Zheng, J.; Wang, X.; Xu, Q.; Deng, B.; Hu, X.; Liu, X. Mater. Sci. Semicon. Process. 2018, 75, 183. doi: 10.1016/j.mssp.2017.11.043  doi: 10.1016/j.mssp.2017.11.043

    191. [191]

      Asadzadeh-Khaneghah, S.; Habibi-Yangjeh, A.; Shahedi Asl, M.; Ahmadi, Z.; Ghosh, S. J. Photochem. Photobiol. A 2020, 392, 112431. doi: 10.1016/j.jphotochem.2020.112431  doi: 10.1016/j.jphotochem.2020.112431

    192. [192]

      M'Bra, I. C.; García-Muñoz, P.; Drogui, P.; Keller, N.; Trokourey, A.; Robert, D. J. Photochem. Photobiol. A 2019, 368, 1. doi: 10.1016/j.jphotochem.2018.09.007  doi: 10.1016/j.jphotochem.2018.09.007

    193. [193]

      Adhikari, S.; Eswar, N. K.; Sangita, S.; Sarkar, D.; Madras, G. J. Photochem. Photobiol. A 2018, 357, 118. doi: 10.1016/j.jphotochem.2018.02.017  doi: 10.1016/j.jphotochem.2018.02.017

    194. [194]

      Masson, R.; Keller, V.; Keller, N. Appl. Catal. B-Environ. 2015, 170-171, 301. doi: 10.1016/j.apcatb.2015.01.030  doi: 10.1016/j.apcatb.2015.01.030

    195. [195]

      Chen, J. -P.; Song, G.; Liu, Z.; Kong, Q. -Q.; Zhang, S. -C.; Chen, C. -M. J. Alloy. Compd. 2020, 833, 155072. doi: 10.1016/j.jallcom.2020.155072  doi: 10.1016/j.jallcom.2020.155072

    196. [196]

      Zhang, X.; Yuan, J.; Zhu, J.; Fan, L.; Chen, H.; He, H.; Wang, Q. Ceram. Int. 2019, 45, 12449. doi: 10.1016/j.ceramint.2019.03.178  doi: 10.1016/j.ceramint.2019.03.178

    197. [197]

      Yang, J.; Peng, Y.; Yang, B. J. Dispers. Sci. Technol. 2019, 40, 408. doi: 10.1080/01932691.2018.1470533  doi: 10.1080/01932691.2018.1470533

    198. [198]

      Li, Y. F.; Zhang, M.; Zhou, L.; Yang, S. J.; Wu, Z. S.; Ma, Y. H. Acta Phys. -Chim. Sin. 2021, 37, 2009030.  doi: 10.3866/PKU.WHXB202009030

    199. [199]

      Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Chem. Rev. 2019, 119, 3962. doi: 10.1021/acs.chemrev.8b00400  doi: 10.1021/acs.chemrev.8b00400

    200. [200]

      Li, X.; Wen, J.; Low, J.; Fang, Y.; Yu, J. Sci. China Mater. 2014, 57, 70. doi: 10.1007/s40843-014-0003-1  doi: 10.1007/s40843-014-0003-1

    201. [201]

      Li, H.; Lei, Y.; Huang, Y.; Fang, Y.; Xu, Y.; Zhu, L.; Li, X. J. Nat. Gas. Chem. 2011, 20, 145. doi: 10.1016/s1003-9953(10)60166-1  doi: 10.1016/s1003-9953(10)60166-1

    202. [202]

      Gondal, M. A.; Ali, M. A.; Chang, X. F.; Shen, K.; Xu, Q. Y.; Yamani, Z. H. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2012, 47, 1571. doi: 10.1080/10934529.2012.680419  doi: 10.1080/10934529.2012.680419

    203. [203]

      Zhi, G.; Guo, X.; Wang, Y.; Jin, G.; Guo, X. Catal. Commun. 2011, 16, 56. doi: 10.1016/j.catcom.2011.08.037  doi: 10.1016/j.catcom.2011.08.037

    204. [204]

      Wang, Y.; Zhang, Z.; Zhang, L.; Luo, Z.; Shen, J.; Lin, H.; Long, J.; Wu, J. C. S.; Fu, X.; Wang, X.; Li, C. J. Am. Chem. Soc. 2018, 140, 14595. doi: 10.1021/jacs.8b09344  doi: 10.1021/jacs.8b09344

    205. [205]

      Wang, Y.; Shang, X.; Shen, J.; Zhang, Z.; Wang, D.; Lin, J.; Wu, J. C. S.; Fu, X.; Wang, X.; Li, C. Nat. Commun. 2020, 11, 1. doi: 10.1038/s41467-020-16742-3  doi: 10.1038/s41467-020-16742-3

    206. [206]

      Nazarkovsky, M.; Alekseev, S.; Huczko, A.; Zaitsev, V.; Dupont, J.; Kai, J.; Xing, Y.; Scofield, A. L.; Chacón, G.; Carreira, R. S. Res. Chem. Intermed. 2019, 45, 4081. doi: 10.1007/s11164-019-03892-3  doi: 10.1007/s11164-019-03892-3

    207. [207]

      Yang, T. C.; Chang, F. C.; Peng, C. Y.; Wang, H. P.; Wei, Y. L. Environ. Technol. 2015, 36, 2987. doi: 10.1080/09593330.2014.960474  doi: 10.1080/09593330.2014.960474

    208. [208]

      Han, C.; Lei, Y.; Wang, B.; Wang, Y. ChemSusChem 2018, 11, 4237. doi: 10.1002/cssc.201802088  doi: 10.1002/cssc.201802088

    209. [209]

      Li, H.; Sun, J. ACS Appl. Mater. Interfaces 2021, 13, 5073. doi: 10.1021/acsami.0c19945  doi: 10.1021/acsami.0c19945

    210. [210]

      Wang, Y.; Zhang, L.; Zhang, X.; Zhang, Z.; Tong, Y.; Li, F.; Wu, J. C. S.; Wang, X. Appl. Catal. B-Environ. 2017, 206, 158. doi: 10.1016/j.apcatb.2017.01.028  doi: 10.1016/j.apcatb.2017.01.028

    211. [211]

      van Dorp, D. H.; Hijnen, N.; Di Vece, M.; Kelly, J. J. Angew. Chem. Int. Ed. 2009, 48, 6085. doi: 10.1002/anie.200900796  doi: 10.1002/anie.200900796

    212. [212]

      Li, H.; Shi, Y.; Shang, H.; Wang, W.; Lu, J.; Zakharov, A. A.; Hultman, L.; Uhrberg, R. I. G.; Syvajarvi, M.; Yakimova, R.; Zhang, L.; Sun, J. ACS Nano 2020, 14, 4905. doi: 10.1021/acsnano.0c00986  doi: 10.1021/acsnano.0c00986

    213. [213]

      Li, P.; Wang, Y.; Wang, Y.; Jin, G.; Guo, X. Y.; Tong, X. Chin. J. Chem. 2020, 38, 367. doi: 10.1002/cjoc.201900299  doi: 10.1002/cjoc.201900299

    214. [214]

      Li, K.; Jiao, Y.; Yang, Z.; Zhang, J. J. Mater. Sci. Technol. 2019, 35, 159. doi: 10.1016/j.jmst.2018.09.018  doi: 10.1016/j.jmst.2018.09.018

    215. [215]

      Wang, J.; Wang, Y.; Tong, X.; Wang, Y.; Jin, G.; Guo, X. Catal. Commun. 2020, 139, 105971. doi: 10.1016/j.catcom.2020.105971  doi: 10.1016/j.catcom.2020.105971

    216. [216]

      Guo, Z.; Lim, S. H.; Chu, W.; Liu, Y.; Borgna, A. ACS Sustain. Chem. Eng. 2020, 8, 10747. doi: 10.1021/acssuschemeng.0c02257  doi: 10.1021/acssuschemeng.0c02257

    217. [217]

      Qin, Y.; Li, R.; Mi, W.; Shi, W.; Lu, B.; Tong, X. Diam. Relat. Mater. 2021, 111, 108163. doi: 10.1016/j.diamond.2020.108163  doi: 10.1016/j.diamond.2020.108163

    218. [218]

      Wang, W.; Wang, M.; Li, X.; Cai, L.; Shi, S. Q.; Duan, C.; Ni, Y. ACS Sustain. Chem. Eng. 2019, 8, 38. doi: 10.1021/acssuschemeng.9b06606  doi: 10.1021/acssuschemeng.9b06606

    219. [219]

      Sigaeva, S. S.; Shlyapin, D. A.; Temerev, V. L.; Tsyrul'nikov, P. G. Russ. J. Appl. Chem. 2019, 92, 1258. doi: 10.1134/s1070427219090118  doi: 10.1134/s1070427219090118

    220. [220]

      Jiang, L.; Wang, Y.; Dai, L.; Yu, Z.; Yang, Q.; Yang, S.; Jiang, D.; Ma, Z.; Wu, Q.; Zhang, B.; et al. Bioresour. Technol. 2019, 279, 202. doi: 10.1016/j.biortech.2019.01.119  doi: 10.1016/j.biortech.2019.01.119

    221. [221]

      Yu, Z.; Jiang, L.; Wang, Y.; Li, Y.; Ke, L.; Yang, Q.; Peng, Y.; Xu, J.; Dai, L.; Wu, Q.; et al. J. Clean. Prod. 2020, 255, 120179. doi: 10.1016/j.jclepro.2020.120179  doi: 10.1016/j.jclepro.2020.120179

    222. [222]

      Pathak, S.; Saini, S.; Kondamudi, K.; Upadhyayula, S.; Bhattacharya, S. Appl. Catal. B-Environ. 2021, 284, 119613. doi: 10.1016/j.apcatb.2020.119613  doi: 10.1016/j.apcatb.2020.119613

    223. [223]

      Feng, Y.; Yu, Z.; Schuch, J.; Tao, S.; Wiehl, L.; Fasel, C.; Jaegermann, W.; Riedel, R. J. Am. Ceram. Soc. 2019, 103, 508. doi: 10.1111/jace.16731  doi: 10.1111/jace.16731

    224. [224]

      Wang, Y.; Xu, Y.; Liu, Q.; Sun, J.; Ji, S.; Wang, Z. J. J. Chem. Technol. Biotechnol. 2019, 94, 3780. doi: 10.1002/jctb.6078  doi: 10.1002/jctb.6078

    225. [225]

      Duong-Viet, C.; Nhut, J. -M.; Truong-Huu, T.; Tuci, G.; Nguyen-Dinh, L.; Liu, Y.; Pham, C.; Giambastiani, G.; Pham-Huu, C. Catal. Sci. Technol. 2020, 10, 5487. doi: 10.1039/d0cy00945h  doi: 10.1039/d0cy00945h

    226. [226]

      Li, M. Y.; Lu, W. D.; He, L.; Schüth, F.; Lu, A. H. ChemCatChem 2018, 11, 481. doi: 10.1002/cctc.201801742  doi: 10.1002/cctc.201801742

    227. [227]

      Jian, J.; Shi, Y.; Ekeroth, S.; Keraudy, J.; Syväjärvi, M.; Yakimova, R.; Helmersson, U.; Sun, J. J. Mater. Chem. A 2019, 7, 4721. doi: 10.1039/c9ta00020h  doi: 10.1039/c9ta00020h

    228. [228]

      Seifikar Gomi, L.; Afsharpour, M. Appl. Organomet. Chem. 2019, 33, e4830. doi: 10.1002/aoc.4830  doi: 10.1002/aoc.4830

    229. [229]

      Mishra, G.; Behera, G. C.; Singh, S. K.; Parida, K. ACS Omega 2020, 5, 22808. doi: 10.1021/acsomega.0c01921  doi: 10.1021/acsomega.0c01921

    230. [230]

      Peng, K.; Zhou, J.; Gao, H.; Wang, J.; Wang, H.; Su, L.; Wan, P. ACS Appl. Mater. Interfaces 2020, 12, 19519. doi: 10.1021/acsami.0c02046  doi: 10.1021/acsami.0c02046

    231. [231]

      Liao, Z.; Xu, T.; Jiang, Y.; Jiang, B.; Wang, J.; Yang, Y.; Jiao, Y.; Yang, Z.; Zhang, J. Ind. Eng. Chem. Res. 2018, 58, 27. doi: 10.1021/acs.iecr.8b02114  doi: 10.1021/acs.iecr.8b02114

    232. [232]

      Jiang, M.; Liu, Z.; Ding, L.; Chen, J. Catal. Commun. 2017, 96, 46. doi: 10.1016/j.catcom.2017.04.003  doi: 10.1016/j.catcom.2017.04.003

    233. [233]

      Pinzón, M.; Romero, A.; de Lucas Consuegra, A.; de la Osa, A. R.; Sánchez, P. J. Ind. Eng. Chem. 2021, 94, 326. doi: 10.1016/j.jiec.2020.11.003  doi: 10.1016/j.jiec.2020.11.003

    234. [234]

      Seifikar Gomi, L.; Afsharpour, M.; Lianos, P. J. Ind. Eng. Chem. 2020, 89, 448. doi: 10.1016/j.jiec.2020.06.019  doi: 10.1016/j.jiec.2020.06.019

    235. [235]

      Petersen, E. M.; Rao, R. G.; Vance, B. C.; Tessonnier, J. -P. Appl. Catal. B-Environ. 2021, 286, 119904. doi: 10.1016/j.apcatb.2021.119904  doi: 10.1016/j.apcatb.2021.119904

    236. [236]

      Feng, L.; Liu, Y.; Jiang, Q.; Liu, W.; Wu, K. -H.; Ba, H.; Pham-Huu, C.; Yang, W.; Su, D. S. Catal. Today 2020, 357, 231. doi: 10.1016/j.cattod.2019.02.046  doi: 10.1016/j.cattod.2019.02.046

    237. [237]

      Jiang, R.; Jiao, Y.; Xie, Y.; Yang, Z.; Zhang, J. Chem. Eng. Process. 2019, 137, 108. doi: 10.1016/j.cep.2019.02.010  doi: 10.1016/j.cep.2019.02.010

    238. [238]

      Han, C.; Wang, B.; Wu, N.; Shen, S.; Wang, Y. Appl. Surf. Sci. 2020, 515, 145952. doi: 10.1016/j.apsusc.2020.145952  doi: 10.1016/j.apsusc.2020.145952

  • 加载中
    1. [1]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    2. [2]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    5. [5]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    10. [10]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    11. [11]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    15. [15]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    16. [16]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    17. [17]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    19. [19]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(167)
  • Abstract views(2027)
  • HTML views(404)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return