Crystal Structures, Reaction Mechanisms, and Optimization Strategies of MnO2 Cathode for Aqueous Rechargeable Zinc Batteries
- Corresponding author: Jiang Zhou, zhou_jiang@csu.edu.cn
Citation:
Xianhong Chen, Pengchao Ruan, Xianwen Wu, Shuquan Liang, Jiang Zhou. Crystal Structures, Reaction Mechanisms, and Optimization Strategies of MnO2 Cathode for Aqueous Rechargeable Zinc Batteries[J]. Acta Physico-Chimica Sinica,
;2022, 38(11): 211100.
doi:
10.3866/PKU.WHXB202111003
Guduru, R. K.; Icaza, J. C. Nanomater. (Basel) 2016, 6, 41. doi: 10.3390/nano6030041
doi: 10.3390/nano6030041
Cao, R.; Mishra, K.; Li, X.; Qian, J.; Engelhard, M. H.; Bowden, M. E.; Han, K. S.; Mueller, K. T.; Henderson, W. A.; Zhang, J. -G. Nano Energy 2016, 30, 825. doi: 10.1016/j.nanoen.2016.09.013
doi: 10.1016/j.nanoen.2016.09.013
Gummow, R. J.; Vamvounis, G.; Kannan, M. B.; He, Y. Adv. Mater. 2018, 30, 1801702. doi: 10.1002/adma.201801702
doi: 10.1002/adma.201801702
Pan, H. Y.; Li, Q.; Yu, X. Q.; Li, H. Acta Phys. -Chim. Sin. 2021, 37, 2008091.
doi: 10.3866/PKU.WHXB202008091
Zhao, Y.; Ren, L.; Wang, A.; Luo, J. Acta Phys. -Chim. Sin. 2021, 37, 2008090.
doi: 10.3866/PKU.WHXB202008090
Liu, H.; Wang, J. -G.; You, Z.; Wei, C.; Kang, F.; Wei, B. Mater. Today 2021, 42, 73. doi: 10.1016/j.mattod.2020.08.021
doi: 10.1016/j.mattod.2020.08.021
Li, C.; Xie, X.; Liu, H.; Wang, P.; Deng, C.; Lu, B.; Zhou, J.; Liang, S. Natl. Sci. Rev. 2021, nwab177. doi: 10.1093/nsr/nwab177/6370612
doi: 10.1093/nsr/nwab177/6370612
Zhu, K.; Wu, T.; Sun, S.; Wen, Y.; Huang, K. ChemElectroChem 2020, 7, 2714. doi: 10.1002/celc.202000472
doi: 10.1002/celc.202000472
Tang, F.; He, T.; Zhang, H.; Wu, X.; Li, Y.; Long, F.; Xiang, Y.; Zhu, L.; Wu, J.; Wu, X. J. Electroanal. Chem. 2020, 873, 114368. doi: 10.1016/j.jelechem.2020.114368
doi: 10.1016/j.jelechem.2020.114368
Fang, G.; Zhou, J.; Pan, A.; Liang, S. ACS Energy Lett. 2018, 3, 2480. doi: 10.1021/acsenergylett.8b01426
doi: 10.1021/acsenergylett.8b01426
Yang, S.; Zhang, M.; Wu, X.; Wu, X.; Zeng, F.; Li, Y.; Duan, S.; Fan, D.; Yang, Y.; Wu, X. J. Electroanal. Chem. 2019, 832, 69. doi: 10.1016/j.jelechem.2018.10.051
doi: 10.1016/j.jelechem.2018.10.051
Cui, J.; Wu, X.; Yang, S.; Li, C.; Tang, F.; Chen, J.; Chen, Y.; Xiang, Y.; Wu, X.; He, Z. Front Chem. 2018, 6, 352. doi: 10.3389/fchem.2018.00352
doi: 10.3389/fchem.2018.00352
Heng, Y.; Gu, Z.; Guo, J.; Wu, X. Acta Phys. -Chim. Sin. 2021, 37, 2005013.
doi: 10.3866/PKU.WHXB202005013
Venkatkarthick, R.; Rodthongkum, N.; Zhang, X.; Wang, S.; Pattananuwat, P.; Zhao, Y.; Liu, R.; Qin, J. ACS Appl. Energy Mater. 2020, 3, 4677. doi: 10.1021/acsaem.0c00309
doi: 10.1021/acsaem.0c00309
Zampardi, G.; La Mantia, F. Curr. Opin. Electrochem. 2020, 21, 84. doi: 10.1016/j.coelec.2020.01.014
doi: 10.1016/j.coelec.2020.01.014
Zhang, S.; Long, S.; Li, H.; Xu, Q. Chem. Eng. J. 2020, 400, 125898. doi: 10.1016/j.cej.2020.125898
doi: 10.1016/j.cej.2020.125898
He, P.; Yan, M.; Zhang, G.; Sun, R.; Chen, L.; An, Q.; Mai, L. Adv. Energy Mater. 2017, 7, 1601920. doi: 10.1002/aenm.201601920
doi: 10.1002/aenm.201601920
Yan, J.; Ang, E. H.; Yang, Y.; Zhang, Y.; Ye, M.; Du, W.; Li, C. C. Adv. Funct. Mater. 2021, 31, 2010213. doi: 10.1002/adfm.202010213
doi: 10.1002/adfm.202010213
Mei, L.; Xu, J.; Wei, Z.; Liu, H.; Li, Y.; Ma, J.; Dou, S. Small 2017, 13, 1701441. doi: 10.1002/smll.201701441
doi: 10.1002/smll.201701441
Zhang, N.; Chen, X.; Yu, M.; Niu, Z.; Cheng, F.; Chen, J. Chem. Soc. Rev. 2020, 49, 4203. doi: 10.1039/c9cs00349e
doi: 10.1039/c9cs00349e
Liu, X.; Yi, J.; Wu, K.; Jiang, Y.; Liu, Y.; Zhao, B.; Li, W.; Zhang, J. Nanotechnology2020, 31, 122001. doi: 10.1088/1361-6528/ab5b38
doi: 10.1088/1361-6528/ab5b38
Zhao, Y.; Zhu, Y.; Zhang, X. InfoMat 2019, 2, 237. doi: 10.1002/inf2.12042
doi: 10.1002/inf2.12042
Tang, B.; Shan, L.; Liang, S.; Zhou, J. Energy Environ. Sci. 2019, 12, 3288. doi: 10.1039/c9ee02526j
doi: 10.1039/c9ee02526j
Huang, S.; Zhu, J.; Tian, J.; Niu, Z. Chemistry 2019, 25, 14480. doi: 10.1002/chem.201902660
doi: 10.1002/chem.201902660
Gao, J.; Xie, X.; Liang, S.; Lu, B.; Zhou, J. Nanomicro. Lett. 2021, 13, 69. doi: 10.1007/s40820-021-00595-6
doi: 10.1007/s40820-021-00595-6
Feng, Q.; Kanoh, H.; Miyai, Y.; Ooi, K. Chem. Mater. 1995, 7, 1722. doi: 10.1021/cm00057a023
doi: 10.1021/cm00057a023
Chen, Y.; Liu, C.; Li, F.; Cheng, H. J. Alloys Compd. 2005, 397, 282. doi: 10.1016/j.jallcom.2004.12.049
doi: 10.1016/j.jallcom.2004.12.049
Xu, C.; Du, H.; Li, B.; Kang, F.; Zeng, Y. Electrochem. Solid-State Lett. 2009, 12, 4. doi: 10.1149/1.3065967
doi: 10.1149/1.3065967
Xu, C.; Li, B.; Du, H.; Kang, F. Angew. Chem. Int. Ed. Engl. 2012, 51, 933. doi: 10.1002/anie.201106307
doi: 10.1002/anie.201106307
Islam, S.; Alfaruqi, M. H.; Mathew, V.; Song, J.; Kim, S.; Kim, S.; Jo, J.; Baboo, J. P.; Pham, D. T.; Putro, D. Y.; Sun, Y. -K.; Kim, J. J. Mater. Chem. A 2017, 5, 23299. doi: 10.1039/c7ta07170a
doi: 10.1039/c7ta07170a
Kim, S.; Koo, B. -R.; Jo, Y. -R.; An, H. -R.; Lee, Y. -G.; Huang, C.; An, G. -H. J. Mater. Chem. A 2021, 5, 1900740. doi: 10.1039/D1TA04051K
doi: 10.1039/D1TA04051K
Ding, S.; Zhang, M.; Qin, R.; Fang, J.; Ren, H.; Yi, H.; Liu, L.; Zhao, W.; Li, Y.; Yao, L.; Li, S.; Zhao, Q.; Pan, F. Nanomicro. Lett. 2021, 13, 173. doi: 10.1007/s40820-021-00691-7
doi: 10.1007/s40820-021-00691-7
Devaraj, S.; Munichandraiah, N. J. Phys. Chem. C 2008, 112, 4406. doi: 10.1021/jp7108785
doi: 10.1021/jp7108785
Chabre, Y.; Pannetier Prog, J. Solid. State Chem. 1995, 23, 1. doi: 10.1016/0079-6786(94)00005-2
doi: 10.1016/0079-6786(94)00005-2
Takakazu, Y.; Takayuki, S. Inorganica Chim. Acta 1986, 117, L27. doi: 10.1016/S0020-1693(00)82175-1
doi: 10.1016/S0020-1693(00)82175-1
Kumar, G.; Sampath, S. Solid State Ionics 2003, 160, 289. doi: 10.1016/s0167-2738(03)00209-1
doi: 10.1016/s0167-2738(03)00209-1
Alfaruqi, M. H.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Baboo, J. P.; Choi, S. H.; Kim, J. Chem. Mater. 2015, 27, 3609. doi: 10.1021/cm504717p
doi: 10.1021/cm504717p
Dose, W. M.; Sharma, N.; Webster, N. A. S.; Peterson, V. K.; Donne, S. W. J. Phys. Chem. C 2014, 118, 24257. doi: 10.1021/jp506914j
doi: 10.1021/jp506914j
Yang, R.; Fan, Y.; Ye, R.; Tang, Y.; Cao, X.; Yin, Z.; Zeng, Z. Adv Mater 2021, 33, 2004862. doi: 10.1002/adma.202004862
doi: 10.1002/adma.202004862
Hunter, J. C. J. Solid State Chem. 1981, 39, 142. doi: 10.1016/0022-4596(81)90323-6
doi: 10.1016/0022-4596(81)90323-6
Yuan, C.; Zhang, Y.; Pan, Y.; Liu, X.; Wang, G.; Cao, D. Electrochim. Acta 2014, 116, 404. doi: 10.1016/j.electacta.2013.11.090
doi: 10.1016/j.electacta.2013.11.090
Alfaruqi, M. H.; Gim, J.; Kim, S.; Song, J.; Pham, D. T.; Jo, J.; Xiu, Z.; Mathew, V.; Kim, J. Electrochem Commun. 2015, 60, 121. doi: 10.1016/j.elecom.2015.08.019
doi: 10.1016/j.elecom.2015.08.019
Jin, Y.; Zou, L.; Liu, L.; Engelhard, M. H.; Patel, R. L.; Nie, Z.; Han, K. S.; Shao, Y.; Wang, C.; Zhu, J.; et al. Adv. Mater. 2019, 31, 1900567. doi: 10.1002/adma.201900567
doi: 10.1002/adma.201900567
Li, Y.; Wang, S.; Salvador, J. R.; Wu, J.; Liu, B.; Yang, W.; Yang, J.; Zhang, W.; Liu, J.; Yang, J. Chem. Mater. 2019, 31, 2036. doi: 10.1021/acs.chemmater.8b05093
doi: 10.1021/acs.chemmater.8b05093
Zhang, N.; Cheng, F.; Liu, J.; Wang, L.; Long, X.; Liu, X.; Li, F.; Chen, J. Nat. Commun. 2017, 8, 405. doi: 10.1038/s41467-017-00467-x
doi: 10.1038/s41467-017-00467-x
Jiang, Y.; Ba, D.; Li, Y.; Liu, J. Adv. Sci. (Weinh) 2020, 7, 1902795. doi: 10.1002/advs.201902795
doi: 10.1002/advs.201902795
Song, M.; Tan, H.; Chao, D.; Fan, H. J. Adv. Funct. Mater. 2018, 28, 1802564. doi: 10.1002/adfm.201802564
doi: 10.1002/adfm.201802564
Zeng, L.; Zhang, G.; Huang, X.; Wang, H.; Zhou, T.; Xie, H. Vacuum 2021, 192, 110398. doi: 10.1016/j.vacuum.2021.110398
doi: 10.1016/j.vacuum.2021.110398
Xue, T.; Fan, H. J. J. Energy Chem. 2021, 54, 194. doi: 10.1016/j.jechem.2020.05.056
doi: 10.1016/j.jechem.2020.05.056
Guo, X.; Zhou, J.; Bai, C.; Li, X.; Fang, G.; Liang, S. Mater. Today Energy 2020, 16, 100396. doi: 10.1016/j.mtener.2020.100396
doi: 10.1016/j.mtener.2020.100396
Lee, B.; Lee, H. R.; Kim, H.; Chung, K. Y.; Cho, B. W.; Oh, S. H. Chem. Commun. (Camb) 2015, 51, 9265. doi: 10.1039/c5cc02585k
doi: 10.1039/c5cc02585k
Sun, W.; Wang, F.; Hou, S.; Yang, C.; Fan, X.; Ma, Z.; Gao, T.; Han, F.; Hu, R.; Zhu, M.; Wang, C. J. Am. Chem. Soc. 2017, 139, 9775. doi: 10.1021/jacs.7b04471
doi: 10.1021/jacs.7b04471
Zhou, J.; Shan, L.; Tang, B.; Liang, S. Chinese Sci. Bull. 2020, 65, 3562. doi: 10.1360/tb-2020-0352
doi: 10.1360/tb-2020-0352
Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y. Nat. Commun. 2018, 9, 2906. doi: 10.1038/s41467-018-04949-4
doi: 10.1038/s41467-018-04949-4
Wang, S.; Yuan, Z.; Zhang, X.; Bi, S.; Zhou, Z.; Tian, J.; Zhang, Q.; Niu, Z. Angew. Chem. Int. Ed. 2021, 60, 7056. doi: 10.1002/anie.202017098
doi: 10.1002/anie.202017098
Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K. S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; Mueller, K. T.; Liu, J. Nat. Energy 2016, 1, 16039. doi: 10.1038/nenergy.2016.39
doi: 10.1038/nenergy.2016.39
Lee, B.; Seo, H. R.; Lee, H. R.; Yoon, C. S.; Kim, J. H.; Chung, K. Y.; Cho, B. W.; Oh, S. H. ChemSusChem 2016, 9, 2948. doi: 10.1002/cssc.201600702
doi: 10.1002/cssc.201600702
Yang, J.; Cao, J.; Peng, Y.; Yang, W.; Barg, S.; Liu, Z.; Kinloch, I. A.; Bissett, M. A.; Dryfe, R. A. W. ChemSusChem 2020, 13, 4103. doi: 10.1002/cssc.202001216
doi: 10.1002/cssc.202001216
Wang, M.; Zheng, X.; Zhang, X.; Chao, D.; Qiao, S. Z.; Alshareef, H. N.; Cui, Y.; Chen, W. Adv. Energy Mater. 2020, 11, 2002904. doi: 10.1002/aenm.202002904
doi: 10.1002/aenm.202002904
Liu, Z.; Yang, Y.; Liang, S.; Lu, B.; Zhou, J. Small Struct. 2021, 2, 2100119. doi: 10.1002/sstr.202100119
doi: 10.1002/sstr.202100119
Liang, G.; Mo, F.; Li, H.; Tang, Z.; Liu, Z.; Wang, D.; Yang, Q.; Ma, L.; Zhi, C. Adv. Energy Mater. 2019, 9, 1901838. doi: 10.1002/aenm.201901838
doi: 10.1002/aenm.201901838
Chao, D.; Zhou, W.; Ye, C.; Zhang, Q.; Chen, Y.; Gu, L.; Davey, K.; Qiao, S. Z. Angew. Chem. Int. Ed. 2019, 58, 7823. doi: 10.1002/anie.201904174
doi: 10.1002/anie.201904174
Wu, D.; Housel, L. M.; Kim, S. J.; Sadique, N.; Quilty, C. D.; Wu, L.; Tappero, R.; Nicholas, S. L.; Ehrlich, S.; Zhu, Y.; et al. Energy Environ. Sci. 2020, 13, 4322. doi: 10.1039/d0ee02168g
doi: 10.1039/d0ee02168g
Han, M.; Qin, L.; Liu, Z.; Zhang, L.; Li, X.; Lu, B.; Huang, J.; Liang, S.; Zhou, J. Mater. Today Energy 2021, 20, 100626. doi: 10.1016/j.mtener.2020.100626
doi: 10.1016/j.mtener.2020.100626
Chen, X.; Li, W.; Zeng, Z.; Reed, D.; Li, X.; Liu, X. Chem. Eng. J. 2021, 405, 126969. doi: 10.1016/j.cej.2020.126969
doi: 10.1016/j.cej.2020.126969
Corpuz, R. D.; Juan-Corpuz, L. M.; Nguyen, M. T.; Yonezawa, T.; Wu, H. L.; Somwangthanaroj, A.; Kheawhom, S. Int. J. Mol. Sci. 2020, 21, 3113. doi: 10.3390/ijms21093113
doi: 10.3390/ijms21093113
Zhang, Y.; Deng, S.; Li, Y.; Liu, B.; Pan, G.; Liu, Q.; Wang, X.; Xia, X.; Tu, J. Energy Stor. Mater. 2020, 29, 52. doi: 10.1016/j.ensm.2020.04.003
doi: 10.1016/j.ensm.2020.04.003
Fu, Y.; Wei, Q.; Zhang, G.; Wang, X.; Zhang, J.; Hu, Y.; Wang, D.; Zuin, L.; Zhou, T.; Wu, Y.; Sun, S. Adv. Energy Mater. 2018, 8, 1801445. doi: 10.1002/aenm.201801445
doi: 10.1002/aenm.201801445
Bi, S.; Wu, Y.; Cao, A.; Tian, J.; Zhang, S.; Niu, Z. Mater. Today Energy 2020, 18, 100548. doi: 10.1016/j.mtener.2020.100548
doi: 10.1016/j.mtener.2020.100548
Wu, B.; Zhang, G.; Yan, M.; Xiong, T.; He, P.; He, L.; Xu, X.; Mai, L. Small 2018, 14, 1703850. doi: 10.1002/smll.201703850
doi: 10.1002/smll.201703850
Guo, S.; Liang, S.; Zhang, B.; Fang, G.; Ma, D.; Zhou, J. ACS Nano 2019, 13, 13456. doi: 10.1021/acsnano.9b07042
doi: 10.1021/acsnano.9b07042
Zeng, Y.; Zhang, X.; Meng, Y.; Yu, M.; Yi, J.; Wu, Y.; Lu, X.; Tong, Y. Adv. Mater. 2017, 29, 1700274. doi: 10.1002/adma.201700274
doi: 10.1002/adma.201700274
Li, Z.; Huang, Y.; Zhang, J.; Jin, S.; Zhang, S.; Zhou, H. Nanoscale 2020, 12, 4150. doi: 10.1039/c9nr09870d
doi: 10.1039/c9nr09870d
Mao, J.; Wu, F. -F.; Shi, W. -H.; Liu, W. -X.; Xu, X. -L.; Cai, G. -F.; Li, Y. -W.; Cao, X. -H. Chinese J. Polym. Sci. 2019, 38, 514. doi: 10.1007/s10118-020-2353-6
doi: 10.1007/s10118-020-2353-6
Guo, G. Y.; JinSong, H.; LiJun, W. Adv. Mater. 2008, 20, 2878. doi: 10.1002/adma.200800627
doi: 10.1002/adma.200800627
Kim, J. M.; Huh, Y. S.; Han, Y. -K.; Cho, M. S.; Kim, H. J. Electrochem. Commun. 2012, 14, 32. doi: 10.1016/j.elecom.2011.10.023
doi: 10.1016/j.elecom.2011.10.023
Liu, D. -S.; Mai, Y.; Chen, S.; Liu, S.; Ang, E. H.; Ye, M.; Yang, Y.; Zhang, Y.; Geng, H.; Li, C. C. Electrochimica Acta 2021, 370, 137740. doi: 10.1016/j.electacta.2021.137740
doi: 10.1016/j.electacta.2021.137740
Alfaruqi, M. H.; Gim, J.; Kim, S.; Song, J.; Jo, J.; Kim, S.; Mathew, V.; Kim, J. J. Power Sources 2015, 288, 320. doi: 10.1016/j.jpowsour.2015.04.140
doi: 10.1016/j.jpowsour.2015.04.140
Guo, C.; Liu, H.; Li, J.; Hou, Z.; Liang, J.; Zhou, J.; Zhu, Y.; Qian, Y. Electrochim. Acta 2019, 304, 370. doi: 10.1016/j.electacta.2019.03.008
doi: 10.1016/j.electacta.2019.03.008
Wang, Y.; Wu, Z.; Jiang, L.; Tian, W.; Zhang, C.; Cai, C.; Hu, L. Nanoscale Adv. 2019, 1, 4365. doi: 10.1039/c9na00519f
doi: 10.1039/c9na00519f
Liu, Y.; Chi, X.; Han, Q.; Du, Y.; Huang, J.; Liu, Y.; Yang, J. J. Power Sources 2019, 443, 227244. doi: 10.1016/j.jpowsour.2019.227244
doi: 10.1016/j.jpowsour.2019.227244
Huang, J.; Zhou, J.; Liang, S. Acta Phys. -Chim. Sin. 2021, 37, 2005020.
doi: 10.3866/PKU.WHXB202005020
Nam, K. W.; Kim, H.; Choi, J. H.; Choi, J. W. Energy Environ. Sci. 2019, 12, 1999. doi: 10.1039/c9ee00718k
doi: 10.1039/c9ee00718k
Zhao, Q.; Song, A.; Ding, S.; Qin, R.; Cui, Y.; Li, S.; Pan, F. Adv. Mater. 2020, 32, 2002450. doi: 10.1002/adma.202002450
doi: 10.1002/adma.202002450
Wang, J.; Sun, X.; Zhao, H.; Xu, L.; Xia, J.; Luo, M.; Yang, Y.; Du, Y. J. Phys. Chem. C 2019, 123, 22735. doi: 10.1021/acs.jpcc.9b05535
doi: 10.1021/acs.jpcc.9b05535
Yan, M.; He, P.; Chen, Y.; Wang, S.; Wei, Q.; Zhao, K.; Xu, X.; An, Q.; Shuang, Y.; Shao, Y.; et al. Adv. Mater. 2018, 30, 1703725. doi: 10.1002/adma.201703725
doi: 10.1002/adma.201703725
Wang, D.; Wang, L.; Liang, G.; Li, H.; Liu, Z.; Tang, Z.; Liang, J.; Zhi, C. ACS Nano 2019, 13, 10643. doi: 10.1021/acsnano.9b04916
doi: 10.1021/acsnano.9b04916
Zhang, H.; Liu, Q.; Wang, J.; Chen, K.; Xue, D.; Liu, J.; Lu, X. J. Mater. Chem. A 2019, 7, 22079. doi: 10.1039/c9ta08418e
doi: 10.1039/c9ta08418e
Zhai, D.; Li, B.; Xu, C.; Du, H.; He, Y.; Wei, C.; Kang, F. J. Power Sources 2011, 196, 7860. doi: 10.1016/j.jpowsour.2011.05.015
doi: 10.1016/j.jpowsour.2011.05.015
Du, M.; Miao, Z.; Li, H.; Sang, Y.; Liu, H.; Wang, S. J. Mater. Chem. A 2021, 9, 19245. doi: 10.1039/d1ta03620c
doi: 10.1039/d1ta03620c
Lian, S.; Sun, C.; Xu, W.; Huo, W.; Luo, Y.; Zhao, K.; Yao, G.; Xu, W.; Zhang, Y.; Li, Z.; et al. Nano Energy 2019, 62, 79. doi: 10.1016/j.nanoen.2019.04.038
doi: 10.1016/j.nanoen.2019.04.038
Fang, G.; Zhu, C.; Chen, M.; Zhou, J.; Tang, B.; Cao, X.; Zheng, X.; Pan, A.; Liang, S. Adv. Funct. Mater. 2019, 29, 1808375. doi: 10.1002/adfm.201808375
doi: 10.1002/adfm.201808375
Liu, Z.; Qin, L.; Chen, X.; Xie, X.; Zhu, B.; Gao, Y.; Zhou, M.; Fang, G.; Liang, S. Mater. Today Energy 2021, 22, 100851. doi: 10.1016/j.mtener.2021.100851
doi: 10.1016/j.mtener.2021.100851
Alfaruqi, M. H.; Islam, S.; Mathew, V.; Song, J.; Kim, S.; Tung, D. P.; Jo, J.; Kim, S.; Baboo, J. P.; Xiu, Z.; Kim, J. Appl. Surf. Sci. 2017, 404, 435. doi: 10.1016/j.apsusc.2017.02.009
doi: 10.1016/j.apsusc.2017.02.009
Zhang, Z.; Li, S.; Zhao, B.; Zhang, X.; Wang, X.; Wen, Z.; Ji, S.; Sun, J. J. Phys. Chem. C 2021, 125, 20195. doi: 10.1021/acs.jpcc.1c05417
doi: 10.1021/acs.jpcc.1c05417
Zhang, M.; Wu, W.; Luo, J.; Zhang, H.; Liu, J.; Liu, X.; Yang, Y.; Lu, X. J. Mater. Chem. A 2020, 8, 11642. doi: 10.1039/d0ta03706k
doi: 10.1039/d0ta03706k
Liu, K.; Tan, S.; Moon, J.; Jafta, C. J.; Li, C.; Kobayashi, T.; Lyu, H.; Bridges, C. A.; Men, S.; Guo, W.; et al. Adv. Energy Mater. 2020, 10, 2000135. doi: 10.1002/aenm.202000135
doi: 10.1002/aenm.202000135
Zeng, X.; Liu, J.; Mao, J.; Hao, J.; Wang, Z.; Zhou, S.; Ling, C. D.; Guo, Z. Adv. Energy Mater. 2020, 10, 1904163. doi: 10.1002/aenm.201904163
doi: 10.1002/aenm.201904163
Lei, J.; Yao, Y.; Wang, Z.; Lu, Y. -C. Energy Environ. Sci. 2021, 14, 4418. doi: 10.1039/d1ee01120k
doi: 10.1039/d1ee01120k
Zheng, X.; Wang, Y.; Xu, Y.; Ahmad, T.; Yuan, Y.; Sun, J.; Luo, R.; Wang, M.; Chuai, M.; Chen, N.; et al. Nano Lett. 2021, 21, 8863. doi: 10.1021/acs.nanolett.1c03319
doi: 10.1021/acs.nanolett.1c03319
Zhong, Y.; Xu, X.; Veder, J. P.; Shao, Z. iScience 2020, 23, 100943. doi: 10.1016/j.isci.2020.100943
doi: 10.1016/j.isci.2020.100943
Zhou, M.; Weng, Q.; Popov, Z. I.; Yang, Y.; Antipina, L. Y.; Sorokin, P. B.; Wang, X.; Bando, Y.; Golberg, D. ACS Nano 2018, 12, 4148. doi: 10.1021/acsnano.7b08724
doi: 10.1021/acsnano.7b08724
Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Chem. Soc. Rev. 2017, 46, 337. doi: 10.1039/c6cs00328a
doi: 10.1039/c6cs00328a
Dai, L.; Wang, Y.; Sun, L.; Ding, Y.; Yao, Y.; Yao, L.; Drewett, N. E.; Zhang, W.; Tang, J.; Zheng, W. Adv. Sci. (Weinh) 2021, 8, 2004995. doi: 10.1002/advs.202004995
doi: 10.1002/advs.202004995
Zhong, C.; Liu, B.; Ding, J.; Liu, X.; Zhong, Y.; Li, Y.; Sun, C.; Han, X.; Deng, Y.; Zhao, N.; Hu, W. Nat. Energy 2020, 5, 440. doi: 10.1038/s41560-020-0584-y
doi: 10.1038/s41560-020-0584-y
Chao, D.; Ye, C.; Xie, F.; Zhou, W.; Zhang, Q.; Gu, Q.; Davey, K.; Gu, L.; Qiao, S. Z. Adv. Mater. 2020, 32, 2001894. doi: 10.1002/adma.202001894
doi: 10.1002/adma.202001894
Huang, J.; Xie, Y.; Yan, L.; Wang, B.; Kong, T.; Dong, X.; Wang, Y.; Xia, Y. Energy Environ. Sci. 2021, 14, 883. doi: 10.1039/d0ee03639k
doi: 10.1039/d0ee03639k
Gong, K.; Fang, Q.; Gu, S.; Li, S. F. Y.; Yan, Y. Energy Environ. Sci. 2015, 8, 3515. doi: 10.1039/c5ee02341f
doi: 10.1039/c5ee02341f
Xie, C.; Li, T.; Deng, C.; Song, Y.; Zhang, H.; Li, X. Energy Environ. Sci. 2020, 13, 135. doi: 10.1039/c9ee03702k
doi: 10.1039/c9ee03702k
Li, G.; Chen, W.; Zhang, H.; Gong, Y.; Shi, F.; Wang, J.; Zhang, R.; Chen, G.; Jin, Y.; Wu, T.; et al. Adv. Energy Mater. 2020, 10, 1902085. doi: 10.1002/aenm.201902085
doi: 10.1002/aenm.201902085
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Yongzhi LI , Han ZHANG , Gangding WANG , Yanwei SUI , Lei HOU , Yaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307
Linjie ZHU , Xufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Weina Wang , Fengyi Liu , Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
Hongjie SHEN , Haozhe MIAO , Yuhe YANG , Yinghua LI , Deguang HUANG , Xiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
Hexing SONG , Zan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014