Citation: Xianhong Chen, Pengchao Ruan, Xianwen Wu, Shuquan Liang, Jiang Zhou. Crystal Structures, Reaction Mechanisms, and Optimization Strategies of MnO2 Cathode for Aqueous Rechargeable Zinc Batteries[J]. Acta Physico-Chimica Sinica, ;2022, 38(11): 211100. doi: 10.3866/PKU.WHXB202111003 shu

Crystal Structures, Reaction Mechanisms, and Optimization Strategies of MnO2 Cathode for Aqueous Rechargeable Zinc Batteries

  • Corresponding author: Jiang Zhou, zhou_jiang@csu.edu.cn
  • Received Date: 1 November 2021
    Revised Date: 3 December 2021
    Accepted Date: 7 December 2021
    Available Online: 21 December 2021

    Fund Project: the Hunan Outstanding Youth Talents 2021JJ10064the Program of Youth Talent Support for Hunan Province 2020RC3011the National Natural Science Foundation of China 51932011the National Natural Science Foundation of China 51972346the National Natural Science Foundation of China 51872334the Innovation-Driven Project of Central South University 2020CX024

  • Because of the advantages of high safety, environment-friendliness, affordability, and ease of processing, aqueous rechargeable zinc batteries (ARZBs) are promising candidates for next-generation large-scale energy storage systems. In recent years, various cathode materials based on vanadium/manganese/cobalt oxides, Prussian blue analogs, and organic compounds have been reported. Among them, manganese dioxide (MnO2) is widely used in ARZBs due to their outstanding advantages of low toxicity, eco-friendliness, and high capacity (616 mAh∙g−1 based on two-electron transfer). However, the diversity of the crystal structures of MnO2 and the unpredictability of the electrochemical reaction make it difficult to investigate the specific internal storage mechanism, which impedes further development of the optimal modification strategies. To date, the main recognized energy storage mechanisms are (de)intercalation and dissolution-deposition mechanisms. In the traditional (de)intercalation mechanism, the predominant issues related to MnO2 during the cycling process include Mn dissolution, irreversible phase transformation, structural collapse, and sluggish ion diffusion kinetics. On the other hand, the detailed reaction path for the dissolution-deposition mechanism, which was developed in recent years, remains controversial. In addition, the incomplete dissolution-deposition of MnO2 and the highly acidic environment inevitably leads to corrosion and hydrogen evolution of the zinc anode, as well as low Coulombic efficiency. Accordingly, optimization strategies for different reaction mechanisms have been proposed to make zinc-manganese batteries more competitive. For the (de)intercalation mechanism, modification of composite materials and nanostructure optimization strategies can be adopted to inhibit the dissolution of MnO2 and increase the number of highly active reaction sites, thus enhancing the electrochemical performance. Moreover, the guest pre-intercalation strategy can help optimize the crystal structure of MnO2, preventing the collapse of the internal structure during cycling. Besides, defect engineering and element doping strategies focus on regulating the distribution of the electronic structure for affecting the properties of MnO2, resulting in lowering the energy barrier of zinc insertion. For the dissolution-deposition mechanism, the introduction of a neutral acetate and a halide mediator can effectively facilitate the dissolution-deposition of MnO2. Meanwhile, metal element catalysis can accelerate the reaction kinetics of the MnO2 dissolution-deposition, so that high-rate performance can be achieved. Furthermore, the decoupling battery system can separate the cathodic and anodic electrolytes to restrain the hydrogen and oxygen evolution reactions and enhance the potential difference. The flow battery system can effectively eliminate the influence of concentration polarization and stabilize the ion concentration in the electrolytes, thus leading to a large capacity (> 100 mAh). Undoubtedly, MnO2 as a high-capacity, high-voltage cathode material has broad development prospects for ARZBs. Here, we systematically summarize the crystal structures and reaction mechanisms of MnO2. We also discuss the optimization strategies toward advanced MnO2 cathode materials for resolving the highlighted issues in zinc-manganese batteries, which are expected to provide research directions for the design and development of high-performance ARZBs.
  • 加载中
    1. [1]

      Guduru, R. K.; Icaza, J. C. Nanomater. (Basel) 2016, 6, 41. doi: 10.3390/nano6030041  doi: 10.3390/nano6030041

    2. [2]

      Cao, R.; Mishra, K.; Li, X.; Qian, J.; Engelhard, M. H.; Bowden, M. E.; Han, K. S.; Mueller, K. T.; Henderson, W. A.; Zhang, J. -G. Nano Energy 2016, 30, 825. doi: 10.1016/j.nanoen.2016.09.013  doi: 10.1016/j.nanoen.2016.09.013

    3. [3]

      Gummow, R. J.; Vamvounis, G.; Kannan, M. B.; He, Y. Adv. Mater. 2018, 30, 1801702. doi: 10.1002/adma.201801702  doi: 10.1002/adma.201801702

    4. [4]

      Pan, H. Y.; Li, Q.; Yu, X. Q.; Li, H. Acta Phys. -Chim. Sin. 2021, 37, 2008091.  doi: 10.3866/PKU.WHXB202008091

    5. [5]

      Zhao, Y.; Ren, L.; Wang, A.; Luo, J. Acta Phys. -Chim. Sin. 2021, 37, 2008090.  doi: 10.3866/PKU.WHXB202008090

    6. [6]

      Liu, H.; Wang, J. -G.; You, Z.; Wei, C.; Kang, F.; Wei, B. Mater. Today 2021, 42, 73. doi: 10.1016/j.mattod.2020.08.021  doi: 10.1016/j.mattod.2020.08.021

    7. [7]

      Li, C.; Xie, X.; Liu, H.; Wang, P.; Deng, C.; Lu, B.; Zhou, J.; Liang, S. Natl. Sci. Rev. 2021, nwab177. doi: 10.1093/nsr/nwab177/6370612  doi: 10.1093/nsr/nwab177/6370612

    8. [8]

      Zhu, K.; Wu, T.; Sun, S.; Wen, Y.; Huang, K. ChemElectroChem 2020, 7, 2714. doi: 10.1002/celc.202000472  doi: 10.1002/celc.202000472

    9. [9]

      Tang, F.; He, T.; Zhang, H.; Wu, X.; Li, Y.; Long, F.; Xiang, Y.; Zhu, L.; Wu, J.; Wu, X. J. Electroanal. Chem. 2020, 873, 114368. doi: 10.1016/j.jelechem.2020.114368  doi: 10.1016/j.jelechem.2020.114368

    10. [10]

      Fang, G.; Zhou, J.; Pan, A.; Liang, S. ACS Energy Lett. 2018, 3, 2480. doi: 10.1021/acsenergylett.8b01426  doi: 10.1021/acsenergylett.8b01426

    11. [11]

      Yang, S.; Zhang, M.; Wu, X.; Wu, X.; Zeng, F.; Li, Y.; Duan, S.; Fan, D.; Yang, Y.; Wu, X. J. Electroanal. Chem. 2019, 832, 69. doi: 10.1016/j.jelechem.2018.10.051  doi: 10.1016/j.jelechem.2018.10.051

    12. [12]

      Cui, J.; Wu, X.; Yang, S.; Li, C.; Tang, F.; Chen, J.; Chen, Y.; Xiang, Y.; Wu, X.; He, Z. Front Chem. 2018, 6, 352. doi: 10.3389/fchem.2018.00352  doi: 10.3389/fchem.2018.00352

    13. [13]

      Heng, Y.; Gu, Z.; Guo, J.; Wu, X. Acta Phys. -Chim. Sin. 2021, 37, 2005013.  doi: 10.3866/PKU.WHXB202005013

    14. [14]

      Venkatkarthick, R.; Rodthongkum, N.; Zhang, X.; Wang, S.; Pattananuwat, P.; Zhao, Y.; Liu, R.; Qin, J. ACS Appl. Energy Mater. 2020, 3, 4677. doi: 10.1021/acsaem.0c00309  doi: 10.1021/acsaem.0c00309

    15. [15]

      Zampardi, G.; La Mantia, F. Curr. Opin. Electrochem. 2020, 21, 84. doi: 10.1016/j.coelec.2020.01.014  doi: 10.1016/j.coelec.2020.01.014

    16. [16]

      Zhang, S.; Long, S.; Li, H.; Xu, Q. Chem. Eng. J. 2020, 400, 125898. doi: 10.1016/j.cej.2020.125898  doi: 10.1016/j.cej.2020.125898

    17. [17]

      He, P.; Yan, M.; Zhang, G.; Sun, R.; Chen, L.; An, Q.; Mai, L. Adv. Energy Mater. 2017, 7, 1601920. doi: 10.1002/aenm.201601920  doi: 10.1002/aenm.201601920

    18. [18]

      Yan, J.; Ang, E. H.; Yang, Y.; Zhang, Y.; Ye, M.; Du, W.; Li, C. C. Adv. Funct. Mater. 2021, 31, 2010213. doi: 10.1002/adfm.202010213  doi: 10.1002/adfm.202010213

    19. [19]

      Mei, L.; Xu, J.; Wei, Z.; Liu, H.; Li, Y.; Ma, J.; Dou, S. Small 2017, 13, 1701441. doi: 10.1002/smll.201701441  doi: 10.1002/smll.201701441

    20. [20]

      Zhang, N.; Chen, X.; Yu, M.; Niu, Z.; Cheng, F.; Chen, J. Chem. Soc. Rev. 2020, 49, 4203. doi: 10.1039/c9cs00349e  doi: 10.1039/c9cs00349e

    21. [21]

      Liu, X.; Yi, J.; Wu, K.; Jiang, Y.; Liu, Y.; Zhao, B.; Li, W.; Zhang, J. Nanotechnology2020, 31, 122001. doi: 10.1088/1361-6528/ab5b38  doi: 10.1088/1361-6528/ab5b38

    22. [22]

      Zhao, Y.; Zhu, Y.; Zhang, X. InfoMat 2019, 2, 237. doi: 10.1002/inf2.12042  doi: 10.1002/inf2.12042

    23. [23]

      Tang, B.; Shan, L.; Liang, S.; Zhou, J. Energy Environ. Sci. 2019, 12, 3288. doi: 10.1039/c9ee02526j  doi: 10.1039/c9ee02526j

    24. [24]

      Huang, S.; Zhu, J.; Tian, J.; Niu, Z. Chemistry 2019, 25, 14480. doi: 10.1002/chem.201902660  doi: 10.1002/chem.201902660

    25. [25]

      Gao, J.; Xie, X.; Liang, S.; Lu, B.; Zhou, J. Nanomicro. Lett. 2021, 13, 69. doi: 10.1007/s40820-021-00595-6  doi: 10.1007/s40820-021-00595-6

    26. [26]

      Feng, Q.; Kanoh, H.; Miyai, Y.; Ooi, K. Chem. Mater. 1995, 7, 1722. doi: 10.1021/cm00057a023  doi: 10.1021/cm00057a023

    27. [27]

      Chen, Y.; Liu, C.; Li, F.; Cheng, H. J. Alloys Compd. 2005, 397, 282. doi: 10.1016/j.jallcom.2004.12.049  doi: 10.1016/j.jallcom.2004.12.049

    28. [28]

      Xu, C.; Du, H.; Li, B.; Kang, F.; Zeng, Y. Electrochem. Solid-State Lett. 2009, 12, 4. doi: 10.1149/1.3065967  doi: 10.1149/1.3065967

    29. [29]

      Xu, C.; Li, B.; Du, H.; Kang, F. Angew. Chem. Int. Ed. Engl. 2012, 51, 933. doi: 10.1002/anie.201106307  doi: 10.1002/anie.201106307

    30. [30]

      Islam, S.; Alfaruqi, M. H.; Mathew, V.; Song, J.; Kim, S.; Kim, S.; Jo, J.; Baboo, J. P.; Pham, D. T.; Putro, D. Y.; Sun, Y. -K.; Kim, J. J. Mater. Chem. A 2017, 5, 23299. doi: 10.1039/c7ta07170a  doi: 10.1039/c7ta07170a

    31. [31]

      Kim, S.; Koo, B. -R.; Jo, Y. -R.; An, H. -R.; Lee, Y. -G.; Huang, C.; An, G. -H. J. Mater. Chem. A 2021, 5, 1900740. doi: 10.1039/D1TA04051K  doi: 10.1039/D1TA04051K

    32. [32]

      Ding, S.; Zhang, M.; Qin, R.; Fang, J.; Ren, H.; Yi, H.; Liu, L.; Zhao, W.; Li, Y.; Yao, L.; Li, S.; Zhao, Q.; Pan, F. Nanomicro. Lett. 2021, 13, 173. doi: 10.1007/s40820-021-00691-7  doi: 10.1007/s40820-021-00691-7

    33. [33]

      Devaraj, S.; Munichandraiah, N. J. Phys. Chem. C 2008, 112, 4406. doi: 10.1021/jp7108785  doi: 10.1021/jp7108785

    34. [34]

      Chabre, Y.; Pannetier Prog, J. Solid. State Chem. 1995, 23, 1. doi: 10.1016/0079-6786(94)00005-2  doi: 10.1016/0079-6786(94)00005-2

    35. [35]

      Takakazu, Y.; Takayuki, S. Inorganica Chim. Acta 1986, 117, L27. doi: 10.1016/S0020-1693(00)82175-1  doi: 10.1016/S0020-1693(00)82175-1

    36. [36]

      Kumar, G.; Sampath, S. Solid State Ionics 2003, 160, 289. doi: 10.1016/s0167-2738(03)00209-1  doi: 10.1016/s0167-2738(03)00209-1

    37. [37]

      Alfaruqi, M. H.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Baboo, J. P.; Choi, S. H.; Kim, J. Chem. Mater. 2015, 27, 3609. doi: 10.1021/cm504717p  doi: 10.1021/cm504717p

    38. [38]

      Dose, W. M.; Sharma, N.; Webster, N. A. S.; Peterson, V. K.; Donne, S. W. J. Phys. Chem. C 2014, 118, 24257. doi: 10.1021/jp506914j  doi: 10.1021/jp506914j

    39. [39]

      Yang, R.; Fan, Y.; Ye, R.; Tang, Y.; Cao, X.; Yin, Z.; Zeng, Z. Adv Mater 2021, 33, 2004862. doi: 10.1002/adma.202004862  doi: 10.1002/adma.202004862

    40. [40]

      Hunter, J. C. J. Solid State Chem. 1981, 39, 142. doi: 10.1016/0022-4596(81)90323-6  doi: 10.1016/0022-4596(81)90323-6

    41. [41]

      Yuan, C.; Zhang, Y.; Pan, Y.; Liu, X.; Wang, G.; Cao, D. Electrochim. Acta 2014, 116, 404. doi: 10.1016/j.electacta.2013.11.090  doi: 10.1016/j.electacta.2013.11.090

    42. [42]

      Alfaruqi, M. H.; Gim, J.; Kim, S.; Song, J.; Pham, D. T.; Jo, J.; Xiu, Z.; Mathew, V.; Kim, J. Electrochem Commun. 2015, 60, 121. doi: 10.1016/j.elecom.2015.08.019  doi: 10.1016/j.elecom.2015.08.019

    43. [43]

      Jin, Y.; Zou, L.; Liu, L.; Engelhard, M. H.; Patel, R. L.; Nie, Z.; Han, K. S.; Shao, Y.; Wang, C.; Zhu, J.; et al. Adv. Mater. 2019, 31, 1900567. doi: 10.1002/adma.201900567  doi: 10.1002/adma.201900567

    44. [44]

      Li, Y.; Wang, S.; Salvador, J. R.; Wu, J.; Liu, B.; Yang, W.; Yang, J.; Zhang, W.; Liu, J.; Yang, J. Chem. Mater. 2019, 31, 2036. doi: 10.1021/acs.chemmater.8b05093  doi: 10.1021/acs.chemmater.8b05093

    45. [45]

      Zhang, N.; Cheng, F.; Liu, J.; Wang, L.; Long, X.; Liu, X.; Li, F.; Chen, J. Nat. Commun. 2017, 8, 405. doi: 10.1038/s41467-017-00467-x  doi: 10.1038/s41467-017-00467-x

    46. [46]

      Jiang, Y.; Ba, D.; Li, Y.; Liu, J. Adv. Sci. (Weinh) 2020, 7, 1902795. doi: 10.1002/advs.201902795  doi: 10.1002/advs.201902795

    47. [47]

      Song, M.; Tan, H.; Chao, D.; Fan, H. J. Adv. Funct. Mater. 2018, 28, 1802564. doi: 10.1002/adfm.201802564  doi: 10.1002/adfm.201802564

    48. [48]

      Zeng, L.; Zhang, G.; Huang, X.; Wang, H.; Zhou, T.; Xie, H. Vacuum 2021, 192, 110398. doi: 10.1016/j.vacuum.2021.110398  doi: 10.1016/j.vacuum.2021.110398

    49. [49]

      Xue, T.; Fan, H. J. J. Energy Chem. 2021, 54, 194. doi: 10.1016/j.jechem.2020.05.056  doi: 10.1016/j.jechem.2020.05.056

    50. [50]

      Guo, X.; Zhou, J.; Bai, C.; Li, X.; Fang, G.; Liang, S. Mater. Today Energy 2020, 16, 100396. doi: 10.1016/j.mtener.2020.100396  doi: 10.1016/j.mtener.2020.100396

    51. [51]

      Lee, B.; Lee, H. R.; Kim, H.; Chung, K. Y.; Cho, B. W.; Oh, S. H. Chem. Commun. (Camb) 2015, 51, 9265. doi: 10.1039/c5cc02585k  doi: 10.1039/c5cc02585k

    52. [52]

      Sun, W.; Wang, F.; Hou, S.; Yang, C.; Fan, X.; Ma, Z.; Gao, T.; Han, F.; Hu, R.; Zhu, M.; Wang, C. J. Am. Chem. Soc. 2017, 139, 9775. doi: 10.1021/jacs.7b04471  doi: 10.1021/jacs.7b04471

    53. [53]

      Zhou, J.; Shan, L.; Tang, B.; Liang, S. Chinese Sci. Bull. 2020, 65, 3562. doi: 10.1360/tb-2020-0352  doi: 10.1360/tb-2020-0352

    54. [54]

      Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y. Nat. Commun. 2018, 9, 2906. doi: 10.1038/s41467-018-04949-4  doi: 10.1038/s41467-018-04949-4

    55. [55]

      Wang, S.; Yuan, Z.; Zhang, X.; Bi, S.; Zhou, Z.; Tian, J.; Zhang, Q.; Niu, Z. Angew. Chem. Int. Ed. 2021, 60, 7056. doi: 10.1002/anie.202017098  doi: 10.1002/anie.202017098

    56. [56]

      Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K. S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; Mueller, K. T.; Liu, J. Nat. Energy 2016, 1, 16039. doi: 10.1038/nenergy.2016.39  doi: 10.1038/nenergy.2016.39

    57. [57]

      Lee, B.; Seo, H. R.; Lee, H. R.; Yoon, C. S.; Kim, J. H.; Chung, K. Y.; Cho, B. W.; Oh, S. H. ChemSusChem 2016, 9, 2948. doi: 10.1002/cssc.201600702  doi: 10.1002/cssc.201600702

    58. [58]

      Yang, J.; Cao, J.; Peng, Y.; Yang, W.; Barg, S.; Liu, Z.; Kinloch, I. A.; Bissett, M. A.; Dryfe, R. A. W. ChemSusChem 2020, 13, 4103. doi: 10.1002/cssc.202001216  doi: 10.1002/cssc.202001216

    59. [59]

      Wang, M.; Zheng, X.; Zhang, X.; Chao, D.; Qiao, S. Z.; Alshareef, H. N.; Cui, Y.; Chen, W. Adv. Energy Mater. 2020, 11, 2002904. doi: 10.1002/aenm.202002904  doi: 10.1002/aenm.202002904

    60. [60]

      Liu, Z.; Yang, Y.; Liang, S.; Lu, B.; Zhou, J. Small Struct. 2021, 2, 2100119. doi: 10.1002/sstr.202100119  doi: 10.1002/sstr.202100119

    61. [61]

      Liang, G.; Mo, F.; Li, H.; Tang, Z.; Liu, Z.; Wang, D.; Yang, Q.; Ma, L.; Zhi, C. Adv. Energy Mater. 2019, 9, 1901838. doi: 10.1002/aenm.201901838  doi: 10.1002/aenm.201901838

    62. [62]

      Chao, D.; Zhou, W.; Ye, C.; Zhang, Q.; Chen, Y.; Gu, L.; Davey, K.; Qiao, S. Z. Angew. Chem. Int. Ed. 2019, 58, 7823. doi: 10.1002/anie.201904174  doi: 10.1002/anie.201904174

    63. [63]

      Wu, D.; Housel, L. M.; Kim, S. J.; Sadique, N.; Quilty, C. D.; Wu, L.; Tappero, R.; Nicholas, S. L.; Ehrlich, S.; Zhu, Y.; et al. Energy Environ. Sci. 2020, 13, 4322. doi: 10.1039/d0ee02168g  doi: 10.1039/d0ee02168g

    64. [64]

      Han, M.; Qin, L.; Liu, Z.; Zhang, L.; Li, X.; Lu, B.; Huang, J.; Liang, S.; Zhou, J. Mater. Today Energy 2021, 20, 100626. doi: 10.1016/j.mtener.2020.100626  doi: 10.1016/j.mtener.2020.100626

    65. [65]

      Chen, X.; Li, W.; Zeng, Z.; Reed, D.; Li, X.; Liu, X. Chem. Eng. J. 2021, 405, 126969. doi: 10.1016/j.cej.2020.126969  doi: 10.1016/j.cej.2020.126969

    66. [66]

      Corpuz, R. D.; Juan-Corpuz, L. M.; Nguyen, M. T.; Yonezawa, T.; Wu, H. L.; Somwangthanaroj, A.; Kheawhom, S. Int. J. Mol. Sci. 2020, 21, 3113. doi: 10.3390/ijms21093113  doi: 10.3390/ijms21093113

    67. [67]

      Zhang, Y.; Deng, S.; Li, Y.; Liu, B.; Pan, G.; Liu, Q.; Wang, X.; Xia, X.; Tu, J. Energy Stor. Mater. 2020, 29, 52. doi: 10.1016/j.ensm.2020.04.003  doi: 10.1016/j.ensm.2020.04.003

    68. [68]

      Fu, Y.; Wei, Q.; Zhang, G.; Wang, X.; Zhang, J.; Hu, Y.; Wang, D.; Zuin, L.; Zhou, T.; Wu, Y.; Sun, S. Adv. Energy Mater. 2018, 8, 1801445. doi: 10.1002/aenm.201801445  doi: 10.1002/aenm.201801445

    69. [69]

      Bi, S.; Wu, Y.; Cao, A.; Tian, J.; Zhang, S.; Niu, Z. Mater. Today Energy 2020, 18, 100548. doi: 10.1016/j.mtener.2020.100548  doi: 10.1016/j.mtener.2020.100548

    70. [70]

      Wu, B.; Zhang, G.; Yan, M.; Xiong, T.; He, P.; He, L.; Xu, X.; Mai, L. Small 2018, 14, 1703850. doi: 10.1002/smll.201703850  doi: 10.1002/smll.201703850

    71. [71]

      Guo, S.; Liang, S.; Zhang, B.; Fang, G.; Ma, D.; Zhou, J. ACS Nano 2019, 13, 13456. doi: 10.1021/acsnano.9b07042  doi: 10.1021/acsnano.9b07042

    72. [72]

      Zeng, Y.; Zhang, X.; Meng, Y.; Yu, M.; Yi, J.; Wu, Y.; Lu, X.; Tong, Y. Adv. Mater. 2017, 29, 1700274. doi: 10.1002/adma.201700274  doi: 10.1002/adma.201700274

    73. [73]

      Li, Z.; Huang, Y.; Zhang, J.; Jin, S.; Zhang, S.; Zhou, H. Nanoscale 2020, 12, 4150. doi: 10.1039/c9nr09870d  doi: 10.1039/c9nr09870d

    74. [74]

      Mao, J.; Wu, F. -F.; Shi, W. -H.; Liu, W. -X.; Xu, X. -L.; Cai, G. -F.; Li, Y. -W.; Cao, X. -H. Chinese J. Polym. Sci. 2019, 38, 514. doi: 10.1007/s10118-020-2353-6  doi: 10.1007/s10118-020-2353-6

    75. [75]

      Guo, G. Y.; JinSong, H.; LiJun, W. Adv. Mater. 2008, 20, 2878. doi: 10.1002/adma.200800627  doi: 10.1002/adma.200800627

    76. [76]

      Kim, J. M.; Huh, Y. S.; Han, Y. -K.; Cho, M. S.; Kim, H. J. Electrochem. Commun. 2012, 14, 32. doi: 10.1016/j.elecom.2011.10.023  doi: 10.1016/j.elecom.2011.10.023

    77. [77]

      Liu, D. -S.; Mai, Y.; Chen, S.; Liu, S.; Ang, E. H.; Ye, M.; Yang, Y.; Zhang, Y.; Geng, H.; Li, C. C. Electrochimica Acta 2021, 370, 137740. doi: 10.1016/j.electacta.2021.137740  doi: 10.1016/j.electacta.2021.137740

    78. [78]

      Alfaruqi, M. H.; Gim, J.; Kim, S.; Song, J.; Jo, J.; Kim, S.; Mathew, V.; Kim, J. J. Power Sources 2015, 288, 320. doi: 10.1016/j.jpowsour.2015.04.140  doi: 10.1016/j.jpowsour.2015.04.140

    79. [79]

      Guo, C.; Liu, H.; Li, J.; Hou, Z.; Liang, J.; Zhou, J.; Zhu, Y.; Qian, Y. Electrochim. Acta 2019, 304, 370. doi: 10.1016/j.electacta.2019.03.008  doi: 10.1016/j.electacta.2019.03.008

    80. [80]

      Wang, Y.; Wu, Z.; Jiang, L.; Tian, W.; Zhang, C.; Cai, C.; Hu, L. Nanoscale Adv. 2019, 1, 4365. doi: 10.1039/c9na00519f  doi: 10.1039/c9na00519f

    81. [81]

      Liu, Y.; Chi, X.; Han, Q.; Du, Y.; Huang, J.; Liu, Y.; Yang, J. J. Power Sources 2019, 443, 227244. doi: 10.1016/j.jpowsour.2019.227244  doi: 10.1016/j.jpowsour.2019.227244

    82. [82]

      Huang, J.; Zhou, J.; Liang, S. Acta Phys. -Chim. Sin. 2021, 37, 2005020.  doi: 10.3866/PKU.WHXB202005020

    83. [83]

      Nam, K. W.; Kim, H.; Choi, J. H.; Choi, J. W. Energy Environ. Sci. 2019, 12, 1999. doi: 10.1039/c9ee00718k  doi: 10.1039/c9ee00718k

    84. [84]

      Zhao, Q.; Song, A.; Ding, S.; Qin, R.; Cui, Y.; Li, S.; Pan, F. Adv. Mater. 2020, 32, 2002450. doi: 10.1002/adma.202002450  doi: 10.1002/adma.202002450

    85. [85]

      Wang, J.; Sun, X.; Zhao, H.; Xu, L.; Xia, J.; Luo, M.; Yang, Y.; Du, Y. J. Phys. Chem. C 2019, 123, 22735. doi: 10.1021/acs.jpcc.9b05535  doi: 10.1021/acs.jpcc.9b05535

    86. [86]

      Yan, M.; He, P.; Chen, Y.; Wang, S.; Wei, Q.; Zhao, K.; Xu, X.; An, Q.; Shuang, Y.; Shao, Y.; et al. Adv. Mater. 2018, 30, 1703725. doi: 10.1002/adma.201703725  doi: 10.1002/adma.201703725

    87. [87]

      Wang, D.; Wang, L.; Liang, G.; Li, H.; Liu, Z.; Tang, Z.; Liang, J.; Zhi, C. ACS Nano 2019, 13, 10643. doi: 10.1021/acsnano.9b04916  doi: 10.1021/acsnano.9b04916

    88. [88]

      Zhang, H.; Liu, Q.; Wang, J.; Chen, K.; Xue, D.; Liu, J.; Lu, X. J. Mater. Chem. A 2019, 7, 22079. doi: 10.1039/c9ta08418e  doi: 10.1039/c9ta08418e

    89. [89]

      Zhai, D.; Li, B.; Xu, C.; Du, H.; He, Y.; Wei, C.; Kang, F. J. Power Sources 2011, 196, 7860. doi: 10.1016/j.jpowsour.2011.05.015  doi: 10.1016/j.jpowsour.2011.05.015

    90. [90]

      Du, M.; Miao, Z.; Li, H.; Sang, Y.; Liu, H.; Wang, S. J. Mater. Chem. A 2021, 9, 19245. doi: 10.1039/d1ta03620c  doi: 10.1039/d1ta03620c

    91. [91]

      Lian, S.; Sun, C.; Xu, W.; Huo, W.; Luo, Y.; Zhao, K.; Yao, G.; Xu, W.; Zhang, Y.; Li, Z.; et al. Nano Energy 2019, 62, 79. doi: 10.1016/j.nanoen.2019.04.038  doi: 10.1016/j.nanoen.2019.04.038

    92. [92]

      Fang, G.; Zhu, C.; Chen, M.; Zhou, J.; Tang, B.; Cao, X.; Zheng, X.; Pan, A.; Liang, S. Adv. Funct. Mater. 2019, 29, 1808375. doi: 10.1002/adfm.201808375  doi: 10.1002/adfm.201808375

    93. [93]

      Liu, Z.; Qin, L.; Chen, X.; Xie, X.; Zhu, B.; Gao, Y.; Zhou, M.; Fang, G.; Liang, S. Mater. Today Energy 2021, 22, 100851. doi: 10.1016/j.mtener.2021.100851  doi: 10.1016/j.mtener.2021.100851

    94. [94]

      Alfaruqi, M. H.; Islam, S.; Mathew, V.; Song, J.; Kim, S.; Tung, D. P.; Jo, J.; Kim, S.; Baboo, J. P.; Xiu, Z.; Kim, J. Appl. Surf. Sci. 2017, 404, 435. doi: 10.1016/j.apsusc.2017.02.009  doi: 10.1016/j.apsusc.2017.02.009

    95. [95]

      Zhang, Z.; Li, S.; Zhao, B.; Zhang, X.; Wang, X.; Wen, Z.; Ji, S.; Sun, J. J. Phys. Chem. C 2021, 125, 20195. doi: 10.1021/acs.jpcc.1c05417  doi: 10.1021/acs.jpcc.1c05417

    96. [96]

      Zhang, M.; Wu, W.; Luo, J.; Zhang, H.; Liu, J.; Liu, X.; Yang, Y.; Lu, X. J. Mater. Chem. A 2020, 8, 11642. doi: 10.1039/d0ta03706k  doi: 10.1039/d0ta03706k

    97. [97]

      Liu, K.; Tan, S.; Moon, J.; Jafta, C. J.; Li, C.; Kobayashi, T.; Lyu, H.; Bridges, C. A.; Men, S.; Guo, W.; et al. Adv. Energy Mater. 2020, 10, 2000135. doi: 10.1002/aenm.202000135  doi: 10.1002/aenm.202000135

    98. [98]

      Zeng, X.; Liu, J.; Mao, J.; Hao, J.; Wang, Z.; Zhou, S.; Ling, C. D.; Guo, Z. Adv. Energy Mater. 2020, 10, 1904163. doi: 10.1002/aenm.201904163  doi: 10.1002/aenm.201904163

    99. [99]

      Lei, J.; Yao, Y.; Wang, Z.; Lu, Y. -C. Energy Environ. Sci. 2021, 14, 4418. doi: 10.1039/d1ee01120k  doi: 10.1039/d1ee01120k

    100. [100]

      Zheng, X.; Wang, Y.; Xu, Y.; Ahmad, T.; Yuan, Y.; Sun, J.; Luo, R.; Wang, M.; Chuai, M.; Chen, N.; et al. Nano Lett. 2021, 21, 8863. doi: 10.1021/acs.nanolett.1c03319  doi: 10.1021/acs.nanolett.1c03319

    101. [101]

      Zhong, Y.; Xu, X.; Veder, J. P.; Shao, Z. iScience 2020, 23, 100943. doi: 10.1016/j.isci.2020.100943  doi: 10.1016/j.isci.2020.100943

    102. [102]

      Zhou, M.; Weng, Q.; Popov, Z. I.; Yang, Y.; Antipina, L. Y.; Sorokin, P. B.; Wang, X.; Bando, Y.; Golberg, D. ACS Nano 2018, 12, 4148. doi: 10.1021/acsnano.7b08724  doi: 10.1021/acsnano.7b08724

    103. [103]

      Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Chem. Soc. Rev. 2017, 46, 337. doi: 10.1039/c6cs00328a  doi: 10.1039/c6cs00328a

    104. [104]

      Dai, L.; Wang, Y.; Sun, L.; Ding, Y.; Yao, Y.; Yao, L.; Drewett, N. E.; Zhang, W.; Tang, J.; Zheng, W. Adv. Sci. (Weinh) 2021, 8, 2004995. doi: 10.1002/advs.202004995  doi: 10.1002/advs.202004995

    105. [105]

      Zhong, C.; Liu, B.; Ding, J.; Liu, X.; Zhong, Y.; Li, Y.; Sun, C.; Han, X.; Deng, Y.; Zhao, N.; Hu, W. Nat. Energy 2020, 5, 440. doi: 10.1038/s41560-020-0584-y  doi: 10.1038/s41560-020-0584-y

    106. [106]

      Chao, D.; Ye, C.; Xie, F.; Zhou, W.; Zhang, Q.; Gu, Q.; Davey, K.; Gu, L.; Qiao, S. Z. Adv. Mater. 2020, 32, 2001894. doi: 10.1002/adma.202001894  doi: 10.1002/adma.202001894

    107. [107]

      Huang, J.; Xie, Y.; Yan, L.; Wang, B.; Kong, T.; Dong, X.; Wang, Y.; Xia, Y. Energy Environ. Sci. 2021, 14, 883. doi: 10.1039/d0ee03639k  doi: 10.1039/d0ee03639k

    108. [108]

      Gong, K.; Fang, Q.; Gu, S.; Li, S. F. Y.; Yan, Y. Energy Environ. Sci. 2015, 8, 3515. doi: 10.1039/c5ee02341f  doi: 10.1039/c5ee02341f

    109. [109]

      Xie, C.; Li, T.; Deng, C.; Song, Y.; Zhang, H.; Li, X. Energy Environ. Sci. 2020, 13, 135. doi: 10.1039/c9ee03702k  doi: 10.1039/c9ee03702k

    110. [110]

      Li, G.; Chen, W.; Zhang, H.; Gong, Y.; Shi, F.; Wang, J.; Zhang, R.; Chen, G.; Jin, Y.; Wu, T.; et al. Adv. Energy Mater. 2020, 10, 1902085. doi: 10.1002/aenm.201902085  doi: 10.1002/aenm.201902085

  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    7. [7]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    8. [8]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    11. [11]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    12. [12]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    13. [13]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    14. [14]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    15. [15]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    16. [16]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    19. [19]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    20. [20]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

Metrics
  • PDF Downloads(198)
  • Abstract views(5565)
  • HTML views(1514)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return