Citation: Nanxiang Zhang, Zhuangzhuang Wei, Tao Feng, Feng Wu, Teng Zhao, Renjie Chen. Voltage-Sensitive Polytriphenylamine-Modified Separator for Over-Charge Protection in Li-S Batteries[J]. Acta Physico-Chimica Sinica, ;2022, 38(6): 210700. doi: 10.3866/PKU.WHXB202107009 shu

Voltage-Sensitive Polytriphenylamine-Modified Separator for Over-Charge Protection in Li-S Batteries

  • Corresponding author: Teng Zhao, tz270@bit.edu.cn Renjie Chen, chenrj@bit.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 5 July 2021
    Revised Date: 3 August 2021
    Accepted Date: 20 August 2021
    Available Online: 30 August 2021

    Fund Project: the National Natural Science Foundation of China 51772030the Beijing Outstanding Young Scientists Program, China BJJWZYJH01201910007023

  • In the past decade, lithium-sulfur batteries have attracted increasing attention owing to their high energy density and are considered to be one of the key options for the next generation of commercial high energy density batteries. However, for a practical battery system, both high energy density and good safety are important. The safety shortcomings of lithium-sulfur batteries have hindered their development and commercial application. Overcharging is a common battery safety problem. In the case of lithium-sulfur batteries, overcharging triggers the rapid growth of lithium dendrites, which can break through the separator and cause internal short-circuiting, leading to dangerous accidents such as thermal runaway and explosions. In practice, an electronic control device is typically installed in a battery to monitor its charging voltage and avoid overcharging avoid overcharging. However, this method increases the cost, weight, and size of the battery system, and reduces the energy density. For the self-protection of lithium-sulfur batteries in the case of overcharging, many polymerizable aromatic compounds are used as additives to improve the overcharge tolerance of lithium batteries. When the electrode surface is covered by a polymer film formed by employing electropolymerization, the cell dies permanently; thus the overcharge protection works only once. In contrast, electroactive polymers having reversible electrochemical doping/dedoping properties can be used to inhibit the overcharging of lithium-sulfur batteries is a more attractive approach. In this study, voltage-sensitive polytriphenylamine (PTPAn) was prepared by the chemical oxidation of triphenylamine as a raw material and successfully applied to lithium-sulfur battery separator. The conductivity test results showed that the PTPAn/polypropylene (PP) separator has an ionic conductivity of 1.56 mS·cm-1. The cyclic voltammogram (CV) test results showed that the PTPAn/PP separator has a redox peak in the range of 3.5?.2 V. At a charge/discharge rate of 0.1C, the lithium-sulfur batteries with the PTPAn/PP separator and blank PP separator had a discharge specific capacity of 424.8 and 407.2 mAh·g-1, respectively after 200 cycles, with Coulombic efficiencies of 99.38% and 98.59%, respectively. Further, the rate (0.1C, 0.2C, 0.5C, 1C) tests showed that the lithium-sulfur batteries with PTPAn/PP separator had higher discharge specific capacities at different rates than the lithium-sulfur batteries with the blank PP separator. Moreover, when the lithium-sulfur battery with the PTPAn/PP separator was overcharged at the 4th cycle, the charge specific capacity was 843.1 mAh·g-1 and the discharge specific capacity was 839.8 mAh·g-1. The charging specific capacity was 690.2 mAh·g-1 and the discharging specific capacity was 669.2 mAh·g-1 at the 10th cycle of overcharging. At the 16th cycle of overcharging, the battery had a charge specific capacity of 538.7 mAh·g-1 and a discharge specific capacity of 512.9 mAh·g-1. The overcharge test showed that lithium-sulfur batteries with the PTPAn/PP separator continued to work well after different overcharge rates. At an overcharging rate of 1C, the battery voltage remained stable at 3.9 V, with a charge specific capacity of 349.8 mAh·g-1 and a discharge specific capacity of 328.7 mAh·g-1.
  • 加载中
    1. [1]

      Deng, N.; Kang, W.; Liu, Y.; Ju, J.; Cheng, B. J. Power Sources 2016, 331, 132. doi: 10.1016/j.jpowsour.2016.09.044  doi: 10.1016/j.jpowsour.2016.09.044

    2. [2]

      Liu, C.; Feng, L.; Ma, L. P.; Cheng, H. M. Adv. Mater. 2010, 22, E28. doi: 10.1002/adma.200903328  doi: 10.1002/adma.200903328

    3. [3]

      Yan, B.; Li, X.; Bai, Z.; Song, X.; Xiong, D.; Zhao, M.; Li, D.; Lu, S. J. Power Sources 2017, 338, 34. doi: 10.1016/j.jpowsour.2016.10.097  doi: 10.1016/j.jpowsour.2016.10.097

    4. [4]

      Chung, S. H.; Chang, C. H.; Manthiram, A. Adv. Funct. Mater. 2018, 28, 1801188. doi: 10.1002/ADFM.201801188  doi: 10.1002/ADFM.201801188

    5. [5]

      Huang, X, Hitt, J. J. Membr. Sci. 2013, 425, 163. doi: 10.1016/j.memsci.2012.09.027  doi: 10.1016/j.memsci.2012.09.027

    6. [6]

      Baginska, M.; Blaiszik, B. J.; Merriman, R. J. Adv. Energy Mater. 2012, 2, 583. doi: 10.1002/aenm.201100683  doi: 10.1002/aenm.201100683

    7. [7]

      Dan, L.; Shi, D.; Yuan, Z.; Kai, F.; Li, X. J. Membr. Sci. 2017, 542, 1. doi: 10.1016/j.memsci.2017.07.051  doi: 10.1016/j.memsci.2017.07.051

    8. [8]

      Lin, D.; Liu, Y.; Yi, C. Nat. Nanotechnol. 2017, 12, 194. doi: 10.1038/nnano.2017.16  doi: 10.1038/nnano.2017.16

    9. [9]

      Liu, Y.; Qi, L.; Le, X.; Liu, Y.; Fan, Y.; Stach, E. A.; Jian, X. Nat. Energy 2017, 2, 17083. doi: 10.1038/nenergy.2017.83  doi: 10.1038/nenergy.2017.83

    10. [10]

      Wen, Q.; Lu, C.; Ping, C.; Ling, H.; Qi, Y.; Xu, R. Mater. Lett. 2012, 66, 239. doi: 10.1016/j.matlet.2011.08.042  doi: 10.1016/j.matlet.2011.08.042

    11. [11]

      Manthiram, A. J. Phys. Chem. Lett. 2011, 2, 176. doi: 10.1021/jz1015422  doi: 10.1021/jz1015422

    12. [12]

      Chen, Y. Q.; Yang, X. F.; Yu, Y.; Li, X.F.; Zhang, H. Z.; Zhang, H. M. Energy Stor. Sci. Technol. 2017, 6, 169.  doi: 10.12028/j.issn.2095-4239.2016.0091

    13. [13]

      Zhang, M. D.; Chen, B.; Wu, M. B. Acta Phys. -Chim. Sin. 2022, 38, 2101001.  doi: 10.3866/PKU.WHXB202101001

    14. [14]

      Rosenman, A.; Markevich, E.; Salitra, G.; Aurbach, D.; Chesneau, F. F. Adv. Energy Mater. 2015, 5, 1500212. doi: 10.1002/aenm.201500212  doi: 10.1002/aenm.201500212

    15. [15]

      Sheng, H. A.; Rg, B.; Sw, A.; Min, X. A.; Dh, C.; Ls, D.; Ym, A. Prog. Polym. Sci. 2019, 89, 19. doi: 10.1016/j.progpolymsci.2018.09.005  doi: 10.1016/j.progpolymsci.2018.09.005

    16. [16]

      Li, G. R; Li, H. Y.; Zeng, H. B. J Inorg. Mater.

    17. [17]

      Chen, M.; Su, Z.; Jiang, K.; Pan, Y.; Zhang, Y.; Long, D. J. Mater. Chem. A 2019, 7, 6250. doi: 10.1039/c2dt12242a  doi: 10.1039/c2dt12242a

    18. [18]

      Chen, W.; Qian, T.; Xiong, J.; Xu, N.; Liu, X.; Liu, J.; Zhou, J.; Shen, X.; Yang, T.; Chen, Y.; et al. Adv. Mater. 2017, 29, 1605160. doi: 10.1002/adma.201605160  doi: 10.1002/adma.201605160

    19. [19]

      Long, L. Y.; Gao, X.; Wahid-Pedro, F.; Quinn, J.; Li, Y. J. Mater. Chem. A 2018, 6, 14315. doi: 10.1039/C8TA04450C  doi: 10.1039/C8TA04450C

    20. [20]

      Xie, H.; Zhou, Z. T. J. Inorg. Mater. 2007, 22, 57.  doi: 10.3724/SP.J.1077.2007.00631

    21. [21]

      Li, N. W.; Shi, Y.; Yin, Y. X.; Zeng, X. X.; Guo, Y. G. Angew. Chem. Int. Ed. 2018, 130, 1521. doi: 10.1002/anie.201713193  doi: 10.1002/anie.201713193

    22. [22]

      Wang, S.; Li, X.; Zhang, Y.; Zheng, W.; Dai, Y.; He, G. ACS Appl. Energy Mater. 2020, 3, 5050. doi: 10.1021/acsaem.0c00629  doi: 10.1021/acsaem.0c00629

    23. [23]

      Zhang, S. C.; Shen, Z. Y.; Lu, Y. Y. Acta Phys. -Chim. Sin. 2021, 37, 2008065.  doi: 10.3866/PKU.WHXB202008065

    24. [24]

      Van Ree, T. Curr. Opin. Electrochem. 2020, 21, 22. doi: 10.1016/j.coelec.2020.01.001  doi: 10.1016/j.coelec.2020.01.001

    25. [25]

      Zhang, Q.; Qiu, C.; Fu, Y.; Ma, X. Chin. J. Chem. 2009, 27, 1459. doi: 10.1002/cjoc.200990245  doi: 10.1002/cjoc.200990245

    26. [26]

      Li, S. L.; Ai, X. P.; Feng, J. K.; Cao, Y. L.; Yang, H. X. J. Power Sources 2008, 184, 553. doi: 10.1016/j.jpowsour.2008.02.041  doi: 10.1016/j.jpowsour.2008.02.041

    27. [27]

      Kise, M.; Yoshioka, S.; Hamano, K. J. Power Sources 2005, 146, 775. doi: 10.1016/j.jpowsour.2005.03.158  doi: 10.1016/j.jpowsour.2005.03.158

    28. [28]

      Ricks-Laskoski, H. L.; Buckley, L. J. Synth. Met. 2006, 156, 417. doi: 10.1016/j.synthmet.2006.01.004  doi: 10.1016/j.synthmet.2006.01.004

    29. [29]

      Jie, L.; Chen, J.; Hai, L.; Ming, J.; Zhang, Z. Int. J. Electrochem. Sci. 2013, 8, 5223. doi: 10.1166/sl.2013.2512  doi: 10.1166/sl.2013.2512

    30. [30]

      Zheng, C.; Hsu, P. C.; Lopez, J.; Li, Y.; To, J.; Liu, N.; Wang, C.; Andrews, S.; Liu, J.; Cui, Y.; et al. Nat. Energy 2016, 1, 15009. doi: 10.1038/nenergy.2015.9  doi: 10.1038/nenergy.2015.9

    31. [31]

      Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Angew. Chem. Int. Ed. 2011, 50, 5904. doi: 10.1002/anie.201100637  doi: 10.1002/anie.201100637

    32. [32]

      Hai, Z.; Chan, K.; Hui, Z.; Zhan, C.; Zhou, Y. J. Power Sources 2012, 216, 273. doi: 10.1016/j.jpowsour.2012.05.015  doi: 10.1016/j.jpowsour.2012.05.015

    33. [33]

      Feng, J. K.; Cao, Y. L.; Ai, X. P.; Yang, H. X. J. Power Sources 2008, 177, 199. doi: 10.1016/j.jpowsour.2007.10.086  doi: 10.1016/j.jpowsour.2007.10.086

    34. [34]

      Kvarnström, C.; Petr, A.; Damlin, P.; Lindfors, T.; Ivaska, A.; Dunsch, L. J. Solid State Electrochem. 2002, 6, 505. doi: 10.1007/s10008-002-0275-6  doi: 10.1007/s10008-002-0275-6

    35. [35]

      Ni, W.; Cheng, J.; Li, X.; Gu, G.; Huang, L.; Guan, Q.; Yuan D.; Wang, B. RSC Adv. 2015, 5, 9221. doi: 10.1039/c4ra14401e  doi: 10.1039/c4ra14401e

    36. [36]

      Chen, G.; Richardson, T. J. Electrochem. Solid State Lett. 2003, 7, A23. doi: 10.1149/1.1633162  doi: 10.1149/1.1633162

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    3. [3]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    4. [4]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    5. [5]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    6. [6]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    7. [7]

      Xiaoli CHENZhihong LUOYuzhu XIONGAihua WANGXue CHENJiaojing SHAO . Inhibitory effect of the interlayer of two-dimensional vermiculite on the polysulfide shuttle in lithium-sulfur batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1661-1671. doi: 10.11862/CJIC.20250075

    8. [8]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    9. [9]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    10. [10]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    11. [11]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    12. [12]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    13. [13]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    14. [14]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    15. [15]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    16. [16]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    17. [17]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    18. [18]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

Metrics
  • PDF Downloads(27)
  • Abstract views(1842)
  • HTML views(448)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return