Citation: Nanxiang Zhang, Zhuangzhuang Wei, Tao Feng, Feng Wu, Teng Zhao, Renjie Chen. Voltage-Sensitive Polytriphenylamine-Modified Separator for Over-Charge Protection in Li-S Batteries[J]. Acta Physico-Chimica Sinica, ;2022, 38(6): 210700. doi: 10.3866/PKU.WHXB202107009 shu

Voltage-Sensitive Polytriphenylamine-Modified Separator for Over-Charge Protection in Li-S Batteries

  • Corresponding author: Teng Zhao, tz270@bit.edu.cn Renjie Chen, chenrj@bit.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 5 July 2021
    Revised Date: 3 August 2021
    Accepted Date: 20 August 2021
    Available Online: 30 August 2021

    Fund Project: the National Natural Science Foundation of China 51772030the Beijing Outstanding Young Scientists Program, China BJJWZYJH01201910007023

  • In the past decade, lithium-sulfur batteries have attracted increasing attention owing to their high energy density and are considered to be one of the key options for the next generation of commercial high energy density batteries. However, for a practical battery system, both high energy density and good safety are important. The safety shortcomings of lithium-sulfur batteries have hindered their development and commercial application. Overcharging is a common battery safety problem. In the case of lithium-sulfur batteries, overcharging triggers the rapid growth of lithium dendrites, which can break through the separator and cause internal short-circuiting, leading to dangerous accidents such as thermal runaway and explosions. In practice, an electronic control device is typically installed in a battery to monitor its charging voltage and avoid overcharging avoid overcharging. However, this method increases the cost, weight, and size of the battery system, and reduces the energy density. For the self-protection of lithium-sulfur batteries in the case of overcharging, many polymerizable aromatic compounds are used as additives to improve the overcharge tolerance of lithium batteries. When the electrode surface is covered by a polymer film formed by employing electropolymerization, the cell dies permanently; thus the overcharge protection works only once. In contrast, electroactive polymers having reversible electrochemical doping/dedoping properties can be used to inhibit the overcharging of lithium-sulfur batteries is a more attractive approach. In this study, voltage-sensitive polytriphenylamine (PTPAn) was prepared by the chemical oxidation of triphenylamine as a raw material and successfully applied to lithium-sulfur battery separator. The conductivity test results showed that the PTPAn/polypropylene (PP) separator has an ionic conductivity of 1.56 mS·cm-1. The cyclic voltammogram (CV) test results showed that the PTPAn/PP separator has a redox peak in the range of 3.5?.2 V. At a charge/discharge rate of 0.1C, the lithium-sulfur batteries with the PTPAn/PP separator and blank PP separator had a discharge specific capacity of 424.8 and 407.2 mAh·g-1, respectively after 200 cycles, with Coulombic efficiencies of 99.38% and 98.59%, respectively. Further, the rate (0.1C, 0.2C, 0.5C, 1C) tests showed that the lithium-sulfur batteries with PTPAn/PP separator had higher discharge specific capacities at different rates than the lithium-sulfur batteries with the blank PP separator. Moreover, when the lithium-sulfur battery with the PTPAn/PP separator was overcharged at the 4th cycle, the charge specific capacity was 843.1 mAh·g-1 and the discharge specific capacity was 839.8 mAh·g-1. The charging specific capacity was 690.2 mAh·g-1 and the discharging specific capacity was 669.2 mAh·g-1 at the 10th cycle of overcharging. At the 16th cycle of overcharging, the battery had a charge specific capacity of 538.7 mAh·g-1 and a discharge specific capacity of 512.9 mAh·g-1. The overcharge test showed that lithium-sulfur batteries with the PTPAn/PP separator continued to work well after different overcharge rates. At an overcharging rate of 1C, the battery voltage remained stable at 3.9 V, with a charge specific capacity of 349.8 mAh·g-1 and a discharge specific capacity of 328.7 mAh·g-1.
  • 加载中
    1. [1]

      Deng, N.; Kang, W.; Liu, Y.; Ju, J.; Cheng, B. J. Power Sources 2016, 331, 132. doi: 10.1016/j.jpowsour.2016.09.044  doi: 10.1016/j.jpowsour.2016.09.044

    2. [2]

      Liu, C.; Feng, L.; Ma, L. P.; Cheng, H. M. Adv. Mater. 2010, 22, E28. doi: 10.1002/adma.200903328  doi: 10.1002/adma.200903328

    3. [3]

      Yan, B.; Li, X.; Bai, Z.; Song, X.; Xiong, D.; Zhao, M.; Li, D.; Lu, S. J. Power Sources 2017, 338, 34. doi: 10.1016/j.jpowsour.2016.10.097  doi: 10.1016/j.jpowsour.2016.10.097

    4. [4]

      Chung, S. H.; Chang, C. H.; Manthiram, A. Adv. Funct. Mater. 2018, 28, 1801188. doi: 10.1002/ADFM.201801188  doi: 10.1002/ADFM.201801188

    5. [5]

      Huang, X, Hitt, J. J. Membr. Sci. 2013, 425, 163. doi: 10.1016/j.memsci.2012.09.027  doi: 10.1016/j.memsci.2012.09.027

    6. [6]

      Baginska, M.; Blaiszik, B. J.; Merriman, R. J. Adv. Energy Mater. 2012, 2, 583. doi: 10.1002/aenm.201100683  doi: 10.1002/aenm.201100683

    7. [7]

      Dan, L.; Shi, D.; Yuan, Z.; Kai, F.; Li, X. J. Membr. Sci. 2017, 542, 1. doi: 10.1016/j.memsci.2017.07.051  doi: 10.1016/j.memsci.2017.07.051

    8. [8]

      Lin, D.; Liu, Y.; Yi, C. Nat. Nanotechnol. 2017, 12, 194. doi: 10.1038/nnano.2017.16  doi: 10.1038/nnano.2017.16

    9. [9]

      Liu, Y.; Qi, L.; Le, X.; Liu, Y.; Fan, Y.; Stach, E. A.; Jian, X. Nat. Energy 2017, 2, 17083. doi: 10.1038/nenergy.2017.83  doi: 10.1038/nenergy.2017.83

    10. [10]

      Wen, Q.; Lu, C.; Ping, C.; Ling, H.; Qi, Y.; Xu, R. Mater. Lett. 2012, 66, 239. doi: 10.1016/j.matlet.2011.08.042  doi: 10.1016/j.matlet.2011.08.042

    11. [11]

      Manthiram, A. J. Phys. Chem. Lett. 2011, 2, 176. doi: 10.1021/jz1015422  doi: 10.1021/jz1015422

    12. [12]

      Chen, Y. Q.; Yang, X. F.; Yu, Y.; Li, X.F.; Zhang, H. Z.; Zhang, H. M. Energy Stor. Sci. Technol. 2017, 6, 169.  doi: 10.12028/j.issn.2095-4239.2016.0091

    13. [13]

      Zhang, M. D.; Chen, B.; Wu, M. B. Acta Phys. -Chim. Sin. 2022, 38, 2101001.  doi: 10.3866/PKU.WHXB202101001

    14. [14]

      Rosenman, A.; Markevich, E.; Salitra, G.; Aurbach, D.; Chesneau, F. F. Adv. Energy Mater. 2015, 5, 1500212. doi: 10.1002/aenm.201500212  doi: 10.1002/aenm.201500212

    15. [15]

      Sheng, H. A.; Rg, B.; Sw, A.; Min, X. A.; Dh, C.; Ls, D.; Ym, A. Prog. Polym. Sci. 2019, 89, 19. doi: 10.1016/j.progpolymsci.2018.09.005  doi: 10.1016/j.progpolymsci.2018.09.005

    16. [16]

      Li, G. R; Li, H. Y.; Zeng, H. B. J Inorg. Mater.

    17. [17]

      Chen, M.; Su, Z.; Jiang, K.; Pan, Y.; Zhang, Y.; Long, D. J. Mater. Chem. A 2019, 7, 6250. doi: 10.1039/c2dt12242a  doi: 10.1039/c2dt12242a

    18. [18]

      Chen, W.; Qian, T.; Xiong, J.; Xu, N.; Liu, X.; Liu, J.; Zhou, J.; Shen, X.; Yang, T.; Chen, Y.; et al. Adv. Mater. 2017, 29, 1605160. doi: 10.1002/adma.201605160  doi: 10.1002/adma.201605160

    19. [19]

      Long, L. Y.; Gao, X.; Wahid-Pedro, F.; Quinn, J.; Li, Y. J. Mater. Chem. A 2018, 6, 14315. doi: 10.1039/C8TA04450C  doi: 10.1039/C8TA04450C

    20. [20]

      Xie, H.; Zhou, Z. T. J. Inorg. Mater. 2007, 22, 57.  doi: 10.3724/SP.J.1077.2007.00631

    21. [21]

      Li, N. W.; Shi, Y.; Yin, Y. X.; Zeng, X. X.; Guo, Y. G. Angew. Chem. Int. Ed. 2018, 130, 1521. doi: 10.1002/anie.201713193  doi: 10.1002/anie.201713193

    22. [22]

      Wang, S.; Li, X.; Zhang, Y.; Zheng, W.; Dai, Y.; He, G. ACS Appl. Energy Mater. 2020, 3, 5050. doi: 10.1021/acsaem.0c00629  doi: 10.1021/acsaem.0c00629

    23. [23]

      Zhang, S. C.; Shen, Z. Y.; Lu, Y. Y. Acta Phys. -Chim. Sin. 2021, 37, 2008065.  doi: 10.3866/PKU.WHXB202008065

    24. [24]

      Van Ree, T. Curr. Opin. Electrochem. 2020, 21, 22. doi: 10.1016/j.coelec.2020.01.001  doi: 10.1016/j.coelec.2020.01.001

    25. [25]

      Zhang, Q.; Qiu, C.; Fu, Y.; Ma, X. Chin. J. Chem. 2009, 27, 1459. doi: 10.1002/cjoc.200990245  doi: 10.1002/cjoc.200990245

    26. [26]

      Li, S. L.; Ai, X. P.; Feng, J. K.; Cao, Y. L.; Yang, H. X. J. Power Sources 2008, 184, 553. doi: 10.1016/j.jpowsour.2008.02.041  doi: 10.1016/j.jpowsour.2008.02.041

    27. [27]

      Kise, M.; Yoshioka, S.; Hamano, K. J. Power Sources 2005, 146, 775. doi: 10.1016/j.jpowsour.2005.03.158  doi: 10.1016/j.jpowsour.2005.03.158

    28. [28]

      Ricks-Laskoski, H. L.; Buckley, L. J. Synth. Met. 2006, 156, 417. doi: 10.1016/j.synthmet.2006.01.004  doi: 10.1016/j.synthmet.2006.01.004

    29. [29]

      Jie, L.; Chen, J.; Hai, L.; Ming, J.; Zhang, Z. Int. J. Electrochem. Sci. 2013, 8, 5223. doi: 10.1166/sl.2013.2512  doi: 10.1166/sl.2013.2512

    30. [30]

      Zheng, C.; Hsu, P. C.; Lopez, J.; Li, Y.; To, J.; Liu, N.; Wang, C.; Andrews, S.; Liu, J.; Cui, Y.; et al. Nat. Energy 2016, 1, 15009. doi: 10.1038/nenergy.2015.9  doi: 10.1038/nenergy.2015.9

    31. [31]

      Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Angew. Chem. Int. Ed. 2011, 50, 5904. doi: 10.1002/anie.201100637  doi: 10.1002/anie.201100637

    32. [32]

      Hai, Z.; Chan, K.; Hui, Z.; Zhan, C.; Zhou, Y. J. Power Sources 2012, 216, 273. doi: 10.1016/j.jpowsour.2012.05.015  doi: 10.1016/j.jpowsour.2012.05.015

    33. [33]

      Feng, J. K.; Cao, Y. L.; Ai, X. P.; Yang, H. X. J. Power Sources 2008, 177, 199. doi: 10.1016/j.jpowsour.2007.10.086  doi: 10.1016/j.jpowsour.2007.10.086

    34. [34]

      Kvarnström, C.; Petr, A.; Damlin, P.; Lindfors, T.; Ivaska, A.; Dunsch, L. J. Solid State Electrochem. 2002, 6, 505. doi: 10.1007/s10008-002-0275-6  doi: 10.1007/s10008-002-0275-6

    35. [35]

      Ni, W.; Cheng, J.; Li, X.; Gu, G.; Huang, L.; Guan, Q.; Yuan D.; Wang, B. RSC Adv. 2015, 5, 9221. doi: 10.1039/c4ra14401e  doi: 10.1039/c4ra14401e

    36. [36]

      Chen, G.; Richardson, T. J. Electrochem. Solid State Lett. 2003, 7, A23. doi: 10.1149/1.1633162  doi: 10.1149/1.1633162

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN modified PP separator for high-stability and high-efficiency lithium-sulfur batteries. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    3. [3]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    4. [4]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    5. [5]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    6. [6]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    7. [7]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    8. [8]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    9. [9]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    10. [10]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    13. [13]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    14. [14]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    15. [15]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    16. [16]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    17. [17]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    18. [18]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    19. [19]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    20. [20]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

Metrics
  • PDF Downloads(27)
  • Abstract views(1752)
  • HTML views(436)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return