Challenges and Opportunities for Seawater Electrolysis: A Mini-Review on Advanced Materials in Chlorine-Involved Electrochemistry
- Corresponding author: Yanan Chen, yananchen@tju.edu.cn Yida Deng, yida.deng@tju.edu.cn Wenbin Hu, wbhu@tju.edu.cn
Citation:
Baihua Cui, Yi Shi, Gen Li, Yanan Chen, Wei Chen, Yida Deng, Wenbin Hu. Challenges and Opportunities for Seawater Electrolysis: A Mini-Review on Advanced Materials in Chlorine-Involved Electrochemistry[J]. Acta Physico-Chimica Sinica,
;2022, 38(6): 210601.
doi:
10.3866/PKU.WHXB202106010
Kumaravel, V.; Abdel-Wahab, A. Energy Fuels 2018, 32, 6423. doi: 10.1021/acs.energyfuels.8b00995
doi: 10.1021/acs.energyfuels.8b00995
Jin, H. Y.; Wang, X. S.; Tang, C.; Vasileff, A.; Li, L. Q.; Slattery, A.; Qiao, S. Z. Adv. Mater. 2021, 33, 2007508. doi: 10.1002/adma.202007508
doi: 10.1002/adma.202007508
Liu, S. L.; Hu, Z.; Wu, Y. Z.; Zhang, J. F.; Zhang, Y.; Cui, B. H.; Liu, C.; Hu, S.; Zhao, N. Q.; Han, X. P.; et al. Adv. Mater. 2020, 32, 2006034. doi: 10.1002/adma.202006034
doi: 10.1002/adma.202006034
Shan, J. Q.; Guo, C. X.; Zhu, Y. H.; Chen, S. M.; Song, L.; Jaroniec, M.; Zheng, Y.; Qiao, S. Z. Chem 2019, 5, 445. doi: 10.1016/j.chempr.2018.11.010
doi: 10.1016/j.chempr.2018.11.010
Luo, P.; Sun, F.; Deng, J.; Xu, H. T.; Zhang, H. J.; Wang, Y. Acta Phys. -Chim. Sin. 2018, 34 (12), 1397.
doi: 10.3866/PKU.WHXB201804022
Hao, C. Y.; Wu, Y.; An, Y. J.; Cui, B. H.; Lin, J. N.; Li, X. N.; Wang, D. H.; Jiang, M. H.; Cheng, Z. X.; Hu, S. Mater. Today Energy 2019, 12, 453. doi: 10.1016/j.mtener.2019.04.009
doi: 10.1016/j.mtener.2019.04.009
Zhou, G.; Guo, Z. J.; Shan, Y.; Wu, S. Y.; Zhang, J. L.; Yan, K.; Liu, L. Z.; Chuc, P. K.; Wu, X. L. Nano Energy 2019, 55, 42. doi: 10.1016/j.nanoen.2018.10.047
doi: 10.1016/j.nanoen.2018.10.047
Cheng, F. F.; Feng, X. L.; Chen, X.; Lin, W. G.; Rong, J. F.; Yang, W. S. Electrochim. Acta 2017, 251, 336. doi: 10.1016/j.electacta.2017.08.098
doi: 10.1016/j.electacta.2017.08.098
Yu, J.; Li, B. Q.; Zhao, C. X.; Zhang, Q. Energy Environ. Sci. 2020, 13, 3253. doi: 10.1039/D0EE01617A
doi: 10.1039/D0EE01617A
Senthilkumar, S. T.; Go, W.; Han, J.; Thuy, L. P. T.; Kishor, K.; Kima, Y.; Kim, Y. J. Mater. Chem. A 2019, 7, 22803. doi: 10.1039/C9TA08321A
doi: 10.1039/C9TA08321A
Abe, H.; Murakami, A.; Tsunekawa, S.; Okada, T.; Wakabayashi, T.; Yoshida, M.; Nakayama, M. ACS Catal. 2021, 11, 6390. doi: 10.1021/acscatal.0c05496
doi: 10.1021/acscatal.0c05496
Yu, L.; Zhu, Q.; Song, S. W.; McElhenny, B.; Wang, D. Z.; Wu, C. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S.; et al. Nat. Commun. 2019, 10, 5106. doi: 10.1038/s41467-019-13092-7
doi: 10.1038/s41467-019-13092-7
Dresp, S.; Dionigi, F.; Loos, S.; de Araujo, J. F.; Spöri, C.; Gliech, M.; Dau, H.; Strasser, P. Adv. Energy Mater. 2018, 8, 1800338. doi: 10.1002/aenm.201800338
doi: 10.1002/aenm.201800338
d'Amore-Domenech, R.; Leo, T. J. ACS Sustain. Chem. Eng. 2019, 7, 8006. doi: 10.1021/acssuschemeng.8b06779
doi: 10.1021/acssuschemeng.8b06779
Dionigi, F.; Reier, T.; Pawolek, Z.; Gliech, M.; Strasser, P. ChemSusChem 2016, 9, 962. doi: 10.1002/cssc.201501581
doi: 10.1002/cssc.201501581
Ko, J. S.; Johnson, J. K.; Johnson, P. I.; Xia, Z. Y. ChemCatChem 2020, 12, 4526. doi: 10.1002/cctc.202000
doi: 10.1002/cctc.202000
Gayen, P.; Saha, S.; Ramani, V. ACS Appl. Energy Mater. 2020, 3, 4, 3978. doi: 10.1021/acsaem.0c00383
doi: 10.1021/acsaem.0c00383
Xiu, L. Y.; Pei, W.; Zhou, S.; Wang, Z. Y.; Yang, P. J.; Zhao, J. J.; Qiu, J. S. Adv. Funct. Mater. 2020, 1910028. doi: 10.1002/adfm.201910028
doi: 10.1002/adfm.201910028
Tong, W. M.; Forster, M.; Dionigi, F.; Dresp, S.; Erami, R. S.; Strasser, P.; Cowan, A. J.; Farràs, P. Nat. Energy 2020, 5, 367. doi: 10.1038/s41560-020-0550-8
doi: 10.1038/s41560-020-0550-8
Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. C. J. Chem. Soc. Rev. 2020, 49, 2196. doi: 10.1039/C9CS00607A
doi: 10.1039/C9CS00607A
Exner, K. S.; Anton, J.; Jacob, T.; Over, H. Angew. Chem. 2016, 128, 7627. doi: 10.1002/anie.201511804
doi: 10.1002/anie.201511804
Karlsson, R. K. B.; Cornell, A. Chem. Rev. 2016, 116, 2982. doi: 10.1021/acs.chemrev.5b00389
doi: 10.1021/acs.chemrev.5b00389
Exner, K. S.; Anton, J.; Jacob, T.; Over, H. Angew. Chem. 2014, 126, 11212. doi: 10.1002/ange.201406112
doi: 10.1002/ange.201406112
Sumaria, V.; Krishnamurthy, D.; Viswanathan, V. ACS Catal. 2018, 8, 9034. doi: 10.1021/acscatal.8b01432
doi: 10.1021/acscatal.8b01432
Cheng, C. Y.; Kelsall, G. H. J. Appl. Electrochem. 2007, 37, 1203. doi: 10.1007/s10800-007-9364-7
doi: 10.1007/s10800-007-9364-7
Amikam, G.; Natiu, P.; Gendel, Y. Int. J. Hydrog. Energy 2018, 43, 6504. doi: 10.1016/j.ijhydene.2018.02.082
doi: 10.1016/j.ijhydene.2018.02.082
Exner, K. S. ChemElectroChem 2019, 6, 3401. doi: 10.1002/celc.201900834
doi: 10.1002/celc.201900834
Lim, T.; Jung, G. Y.; Kim, J. H.; Park, S. O.; Park, J.; Kim, Y. T.; Kang, S. J.; Jeong, H. Y.; Kwak, S. K.; Joo, S. H. Nat. Commun. 2020, 11, 412. doi: 10.1038/s41467-019-14272-1
doi: 10.1038/s41467-019-14272-1
Goryachev, A.; Pascuzzi, M. E. C.; Carla, F.; Weber, T.; Over, H.; Hensen, E. J. M.; Hofmann, J. P. Electrochim. Acta 2020, 336, 135713. doi: 10.1016/j.electacta.2020.135713
doi: 10.1016/j.electacta.2020.135713
Zeradjanin, A. R.; Menzel, N.; Schuhmann, W.; Strasser, P. Phys. Chem. Chem. Phys. 2014, 16, 13741. doi: 10.1039/C4CP00896K
doi: 10.1039/C4CP00896K
Chen, S.; Huang, H.; Jiang, P.; Yang, K.; Diao, J. F.; Gong, S. P.; Liu, S.; Huang, M. X.; Wang, H.; Chen, Q. W. ACS Catal. 2020, 10, 1152. doi: 10.1021/acscatal.9b04922
doi: 10.1021/acscatal.9b04922
Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Yang, S. H. J. Phys. Chem. Lett. 2012, 3, 399. doi: 10.1021/jz2016507
doi: 10.1021/jz2016507
Ge, R. X.; Li, L.; Su, J. W.; Lin, Y. C.; Tian, Z. Q.; Chen, L. Adv. Energy Mater. 2019, 9, 1901313. doi: 10.1002/aenm.201901313
doi: 10.1002/aenm.201901313
Abbott, D. F.; Lebedev, D.; Waltar, K.; Povia, M.; Nachtegaal, M.; Fabbri, E.; Coperet, C.; Schmidt, T. J. Chem. Mater. 2016, 28, 6591. doi: 10.1021/acs.chemmater.6b02625
doi: 10.1021/acs.chemmater.6b02625
Rossmeisl, J.; Hansen, H. A.; Man, I. C.; Studt, F.; Abild-Pedersen, F.; Bligaard, T. Phys. Chem. Chem. Phys. 2010, 12, 283. doi: 10.1039/B917459A
doi: 10.1039/B917459A
Vos, J. G.; Liu, Z. C.; Speck, F. D.; Perini, N.; Fu, W. T.; Cherevko, S.; Koper, M. T. M. ACS Catal. 2019, 9, 8561. doi: 10.1021/acscatal.9b01159
doi: 10.1021/acscatal.9b01159
Petrykin, V.; Macounova, K.; Shlyakhtin, O. A.; Krtil, P. Angew. Chem. Int. Ed. 2010, 49, 4813. doi: 10.1002/ange.200907128
doi: 10.1002/ange.200907128
Song, L. J.; Meng, H. M. Acta Phys. -Chim. Sin. 2010, 26 (9), 2375.
doi: 10.3866/PKU.WHXB20100847
Yu, L.; Wu, L. B.; McElhenny, B.; Song, S. W.; Luo, D.; Zhang, F. H.; Yu, Y.; Chen, S.; Ren, Z. F. Energy Environ. Sci. 2020, 13, 3439. doi: 10.1039/D0EE00921K
doi: 10.1039/D0EE00921K
Huang, W. H.; Lin, C. Y. Faraday Discuss. 2019, 215, 205. doi: 10.1039/C8FD00172C
doi: 10.1039/C8FD00172C
Zhao, Y. Q.; Jin, B.; Vasileff, A.; Jiao, Y.; Qiao, S. Z. J. Mater. Chem. A 2019, 7, 8117. doi: 10.1039/C9TA01903K
doi: 10.1039/C9TA01903K
Dresp, S.; Thanh, T. N.; Klingenhof, M.; Brückner, S.; Hauke, P.; Strasser, P. Energy Environ. Sci. 2020, 13, 1725. doi: 10.1039/D0EE01125H
doi: 10.1039/D0EE01125H
Cui, B. H.; Hu, H.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F.; Zhou, W.; Deng, Y. D.; Qin, Z. B.; et al. Nano Res. 2021, 14, 1149. doi: 10.1007/s12274-020-3164-3
doi: 10.1007/s12274-020-3164-3
Hsu, S. H.; Miao, J. W.; Zhang, L. P.; Gao, J. J.; Wang, H. M.; Tao, H. B.; Hung, S. F.; Vasileff, A.; Qiao, S. Z.; Liu, B. Adv. Mater. 2018, 30, 1707261. doi: 10.1002/adma.201707261
doi: 10.1002/adma.201707261
Gupta, S.; Forster, M.; Yadav, A.; Cowan, A. J.; Patel, N.; Patel, M. ACS Appl. Energy Mater. 2020, 3, 7619. doi: 10.1021/acsaem.0c01040
doi: 10.1021/acsaem.0c01040
Keane, T. P.; Nocera, D. G. ACS Omega 2019, 4, 12860. doi: 10.1021/acsomega.9b01751
doi: 10.1021/acsomega.9b01751
Bennett, J. E. Int. J. Hydrog. Energy 1980, 5, 401. doi: 10.1016/0360-3199(80)90021-X
doi: 10.1016/0360-3199(80)90021-X
Vos, J. G.; Wezendonk, T. A.; Jeremiasse, A. W.; Koper, M. T. M. J. Am. Chem. Soc. 2018, 140, 10270. doi: 10.1021/jacs.8b05382
doi: 10.1021/jacs.8b05382
Okada, T.; Abe, H.; Murakami, A.; Shimizu, T.; Fujii, K.; Wakabayashi, T.; Nakayama, M. Langmuir 2020, 36, 5227. doi: 10.1021/acs.langmuir.0c00547
doi: 10.1021/acs.langmuir.0c00547
Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. ACS Energy Lett. 2019, 4, 933. doi: 10.1021/acsenergylett.9b00220
doi: 10.1021/acsenergylett.9b00220
Zhang, B.; Wang, J.; Wu, B.; Guo, X. W.; Wang, Y. J.; Chen, D.; Zhang, Y. C.; Du, K.; Oguzie, E. E.; Ma, X. L. Nat. Commun. 2018, 9, 2559. doi: 10.1038/s41467-018-04942-x
doi: 10.1038/s41467-018-04942-x
Liu, X. P.; Gong, M. X.; Xiao, D. D.; Deng, S. F.; Liang, J. N.; Zhao, T. H.; Lu, Y.; Shen, T.; Zhang, J.; Wang, D. L. Small 2020, 16, 2000663. doi: 10.1002/smll.202000663
doi: 10.1002/smll.202000663
Kuang, Y.; Kenney, M. J.; Meng, Y. T.; Hung, W. H.; Liu, Y. J.; Huang, J. E.; Prasanna, R.; Li, P. S.; Li, Y. P.; Wang, L.; et al. Proc. Natl. Acad. Sci. USA 2019, 116, 6624. doi: 10.1073/pnas.1900556116
doi: 10.1073/pnas.1900556116
Wu, H.; Lu, Q.; Zhang, J. F.; Wang, J. J.; Han, X. P.; Zhao, N. Q.; Hu, W. B.; Li, J. J.; Chen, Y. N.; Deng, Y. D. Nano-Micro Lett. 2020, 12, 162. doi: 10.1007/s40820-020-00505-2
doi: 10.1007/s40820-020-00505-2
Zhang, J.; Chen, Z. L.; Liu, C.; Zhao, J.; Liu, S. L.; Rao, D. W.; Nie, A. M.; Chen, Y. N.; Deng, Y. D.; Hu, W. B. Sci. China Mater. 2020, 63, 249. doi: 10.1007/s40843-019-1176-6
doi: 10.1007/s40843-019-1176-6
Chen, Y. N.; Xu, S. M.; Zhu, S. Z.; Jacob, R. J.; Pastel, G.; Wang, Y. B.; Li, Y. J.; Dai, J. Q.; Chen, F. J.; Xie, H.; et al. Nano Res. 2019, 12 (9), 2259. doi: 10.1007/s12274-019-2304-0
doi: 10.1007/s12274-019-2304-0
Cui, B. H.; Zhang, M.; Zhao, Y. X.; Hu, S. Mater. Today Energy 2019, 13, 85. doi: 10.1016/j.mtener.2019.05.001
doi: 10.1016/j.mtener.2019.05.001
Finke, C. E.; Omelchenko, S. T.; Jasper, J. T.; Lichterman, M. F.; Read, C. G.; Lewis, N. S.; Hoffmann, M. R. Energy Environ. Sci. 2019, 12, 358. doi:a 10.1039/C8EE02351D
Sohrabnejad-Eskan, I.; Goryachev, A.; Exner, K. S.; Kibler, L. A.; Hensen, E. J. M.; Hofmann, J. P.; Over, H. ACS Catal. 2017, 7, 2403. doi: 10.1021/acscatal.7b03142
doi: 10.1021/acscatal.7b03142
Li, H. Y.; Tang, Q. W.; He, B. L.; Yang, P. Z. J. Mater. Chem. A 2016, 4, 6513. doi: 10.1039/C6TA00785F
doi: 10.1039/C6TA00785F
Niu, X. M.; Tang, Q. W.; He, B. L.; Yang, P. Z. Electrochim. Acta 2016, 208, 180. doi: 10.1016/j.electacta.2016.04.184
doi: 10.1016/j.electacta.2016.04.184
Song, H. J.; Yoon, H.; Ju, B.; Lee, D. Y.; Kim, D. W. ACS Catal. 2020, 10, 702. doi: 10.1021/acscatal.9b04231
doi: 10.1021/acscatal.9b04231
Wu, X. H.; Zhou, S.; Wang, Z. Y.; Liu, J. S.; Pei, W.; Yang, P. J.; Zhao, J. J.; Qiu, J. S. Adv. Energy Mater. 2019, 9, 1901333. doi: 10.1002/aenm.201901333
doi: 10.1002/aenm.201901333
Hou, Z. Y.; Gao, L. L.; Cui, Z. D.; Yin, J. H. IOP Conf. Series: Earth Environ. Sci. 2018, 108, 022037. doi: 10.1088/1755-1315/108/2/022037
doi: 10.1088/1755-1315/108/2/022037
Gao, J. J.; Huang, X.; Cai, W. Z.; Wang, Q. L.; Jia, C. M.; Liu, B. ACS Appl. Mater. Interfaces 2020, 12, 25991. doi: 10.1021/acsami.0c05906
doi: 10.1021/acsami.0c05906
Ooka, H.; Yamaguchi, A.; Takashima, T.; Hashimoto, K.; Nakamura, R. J. Phys. Chem. C 2017, 121, 17873. doi: 10.1021/acs.jpcc.7b03749
doi: 10.1021/acs.jpcc.7b03749
Gao, J. J.; Xu, C. Q.; Hung, S. F.; Liu, W.; Cai, W. Z.; Zeng, Z. P.; Jia, C. M.; Chen, H. M.; Xiao, H.; Li, J.; et al. J. Am. Chem. Soc. 2019, 141, 3014. doi: 10.1021/jacs.8b11456
doi: 10.1021/jacs.8b11456
Menzel, N.; Ortel, E.; Mette, K.; Kraehnert, R.; Strasser, S. ACS Catal. 2013, 3, 1324. doi: 10.1021/cs4000238
doi: 10.1021/cs4000238
Yan, G. B.; Lian, Y. B.; Gu, Y. D.; Yang, C.; Sun, H.; Mu, Q. Q.; Li, Q.; Zhu, W.; Zheng, X. S.; Chen, M. Z.; et al. ACS Catal. 2018, 8, 10137. doi: 10.1021/acscatal.8b02203
doi: 10.1021/acscatal.8b02203
Endrödi, B.; Stojanovic, A.; Cuartero, M.; Simic, N.; Wildlock, M.; Marco, R. D.; Crespo, G. A.; Cornell, A. ACS Sustain. Chem. Eng. 2019, 7, 12170. doi: 10.1021/acssuschemeng.9b01279
doi: 10.1021/acssuschemeng.9b01279
Gao, S.; Li, G. D.; Liu, Y. P.; Chen, H.; Feng, L. L.; Wang, Y.; Yang, M.; Wang, D. J.; Wang, S.; Zou, X. X. Nanoscale 2015, 7, 2306. doi: 10.1039/C4NR04924A
doi: 10.1039/C4NR04924A
Miao, J.; Lang, Z. L.; Zhang, X. Y.; Kong, W. G.; Peng, O. W.; Yang, Y.; Wang, S. P.; Cheng, J. J.; He, T. C.; Amini, A.; et al. Adv. Funct. Mater. 2019, 29, 1805893. doi: 10.1002/adfm.201805893
doi: 10.1002/adfm.201805893
Liu, J. W.; Ma, Q. L.; Huang, Z. Q.; Liu, G. G.; Zhang, H. Adv. Mater. 2019, 31, 1800696. doi: 10.1002/adma.201800696
doi: 10.1002/adma.201800696
Ma, Y. Y.; Wu, C. J.; Feng, X. J.; Tan, H. Q.; Yan, L. K.; Liu, Y.; Kang, Z. H.; Wang, E. B.; Li, Y. G. Energy Environ. Sci. 2017, 10, 788. doi: 10.1039/C6EE03768B
doi: 10.1039/C6EE03768B
Chauhana, D. S.; Quraishia, M.A.; Ansaria, K.R. Prog. Organ. Coat. 2020, 147, 105741. doi: 10.1016/j.porgcoat.2020.105741
doi: 10.1016/j.porgcoat.2020.105741
Hussain, S.; Akbar, K.; Vikraman, D.; Song, R. A. A. W.; An, K. S.; Farooq, A.; Park, J. Y.; Chun, S. H.; Jung, J. Nanomaterials 2018, 8, 929. doi: 10.3390/nano8110929
doi: 10.3390/nano8110929
Hussain, S.; Vikraman, D.; Truong, L.; Akbar, K.; Rabani, I.; Kim, H. S.; Chun, S. H.; Jung, J. J. Alloy. Compd. 2019, 788, 267. doi: 10.1016/j.jallcom.2019.02.192
doi: 10.1016/j.jallcom.2019.02.192
Sarawutanukul, S.; Phattharasupakun, N.; Sawangphruk, M. Carbon 2019, 151, 109. doi: 10.1016/j.carbon.2019.05.058
doi: 10.1016/j.carbon.2019.05.058
Lv, Q. L.; Han, J. X.; Tan, X. L.; Wang, W.; Cao, L. X.; Dong, B. H. ACS Appl. Energy Mater. 2019, 2, 3910. doi: 10.1021/acsaem.9b00599
doi: 10.1021/acsaem.9b00599
Shang, X.; Dong, B.; Chai, Y. M.; Liu, C. G. Sci. Bull. 2018, 63, 853. doi: 10.1016/j.scib.2018.05.014
doi: 10.1016/j.scib.2018.05.014
Kou, Z. K.; Yu, Y.; Liu, X. M.; Gao, X. R.; Zheng, L. R.; Zou, H. Y.; Pang, Y. J.; Wang, Z. Y.; Pan, Z. H.; He, J. Q.; et al. ACS Catal. 2020, 10, 4411. doi: 10.1021/acscatal.0c00340
doi: 10.1021/acscatal.0c00340
Wu, T. Z.; Sun, S. N.; Song, J. J.; Xi, S. B.; Du, Y. H.; Chen, B.; Sasangka, W. A.; Liao, H. B.; Gan, C. L.; Scherer, G. G.; et al. Nat. Catal. 2019, 2, 763. doi: 10.1038/s41929-019-0325-4
doi: 10.1038/s41929-019-0325-4
Jin, H. Y.; Liu, X.; Vasileff, A.; Jiao, Y.; Zhao, Y. Q.; Zheng, Y.; Qiao, S. Z. ACS Nano 2018, 12, 12761. doi: 10.1021/acsnano.8b07841
doi: 10.1021/acsnano.8b07841
Qin, R.; Wang, P. Y.; Lin, C.; Cao, F.; Zhang, J. Y.; Chen, L.; Mu, S. C. Acta Phys. -Chim. Sin. 2021, 37 (7), 2009099.
doi: 10.3866/PKU.WHXB202009099
Huang, Y. C.; Hu, L.; Liu, R.; Hu, Y. W.; Xiong, T. Z.; Qiu, W. T.; Balogun, M. S. Pan, A. L.; Tong, Y. X. Appl. Catal. B: Environ. 2019, 251, 181. doi: 10.1016/j.apcatb.2019.03.037
doi: 10.1016/j.apcatb.2019.03.037
Liu, Y. C.; Hu, X.; Huang, B. B.; Xie, Z. L. ACS Sustain. Chem. Eng. 2019, 7, 18835. doi: 10.1021/acssuschemeng.9b03720
doi: 10.1021/acssuschemeng.9b03720
Li, P. S.; Wang, S. Y.; Samo, I. A.; Zhang, X. H.; Wang, Z. L.; Wang, C.; Li, Y.; Du, Y. Y.; Zhong, Y.; Cheng, C. T.; et al. Research 2020, 9, 2872141. doi: 10.34133/2020/2872141
doi: 10.34133/2020/2872141
Wenhao Yan , Shuaiya Xue , Xuerui Zhao , Wei Zhang , Jian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224
Wenjing Dai , Lan Luo , Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Zimo Peng , Quan Zhang , Gaocan Qi , Hao Zhang , Qian Liu , Guangzhi Hu , Jun Luo , Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191
Jinshuai Zheng , Junfeng Niu , Crispin Halsall , Yadi Guo , Peng Zhang , Linke Ge . New insights into transformation mechanisms for sulfate and chlorine radical-mediated degradation of sulfonamide and fluoroquinolone antibiotics. Chinese Chemical Letters, 2025, 36(5): 110202-. doi: 10.1016/j.cclet.2024.110202
Peiwen Liu , Fang Zhao , Jing Zhang , Yunpeng Bai , Jinxing Ye , Bo Bao , Xinggui Zhou , Li Zhang , Changlu Zhou , Xinhai Yu , Peng Zuo , Jianye Xia , Lian Cen , Yangyang Yang , Guoyue Shi , Lin Xu , Weiping Zhu , Yufang Xu , Xuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Qiang Sun , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Li Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100
Yaoyin Lou , Xiaoyang Jerry Huang , Kuang-Min Zhao , Mark J. Douthwaite , Tingting Fan , Fa Lu , Ouardia Akdim , Na Tian , Shigang Sun , Graham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300
Yixin Lu , Minghan Qin , Shixian Zhang , Zhen Liu , Wang Sun , Zhenhua Wang , Jinshuo Qiao , Kening Sun . Triple-conducting heterostructure anodes for electrochemical ethane nonoxidative dehydrogenation by protonic ceramic electrolysis cells. Chinese Chemical Letters, 2025, 36(4): 110567-. doi: 10.1016/j.cclet.2024.110567
Jiawei Ge , Xian Wang , Heyuan Tian , Hao Wan , Wei Ma , Jiangying Qu , Junjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906
Hong-Tao Ji , Yu-Han Lu , Yan-Ting Liu , Yu-Lin Huang , Jiang-Feng Tian , Feng Liu , Yan-Yan Zeng , Hai-Yan Yang , Yong-Hong Zhang , Wei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Juhong Zhou , Hui Zhao , Ping Han , Ziyue Wang , Yan Zhang , Xiaoxia Mao , Konglin Wu , Shengjue Deng , Wenxiang He , Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
Guo-Hong Gao , Run-Ze Zhao , Ya-Jun Wang , Xiao Ma , Yan Li , Jian Zhang , Ji-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181
Yingxiao Zong , Yangfei Wei , Xiaoqing Liu , Junke Wang , Huanfang Guo , Junli Wang , Zhuangzhi Shi , Tao Tu , Cheng Yang , Chongyang Wang , Leyong Wang . The 4th CCL Organic Chemistry Forum held in Zhangye. Chinese Chemical Letters, 2024, 35(8): 109743-. doi: 10.1016/j.cclet.2024.109743
Haiying Lu , Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334
Xiumei LI , Yanju HUANG , Bo LIU , Yaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109
Bingwei Wang , Yihong Ding , Xiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721