Citation: Guangtao Cong, Yi-Chun Lu. Strategies to Improve the Energy Density of Non-Aqueous Organic Redox Flow Batteries[J]. Acta Physico-Chimica Sinica, ;2022, 38(6): 210600. doi: 10.3866/PKU.WHXB202106008 shu

Strategies to Improve the Energy Density of Non-Aqueous Organic Redox Flow Batteries



  • Author Bio: Guangtao Cong received his Ph.D.degree in Mechanical and Automation Engineering from The Chinese University of Hong Kong (CUHK) in 2018. Dr.Cong worked as a research associate under the supervision of Prof.Yi-Chun Lu at CUHK before he joined the College of Chemistry and Environmental Engineering at Shenzhen University as an Assistant Professor.Dr.Cong's research interests focus on organic electrodes.
    Prof. Yi-Chun Lu received her B.S. degree in Materials Science & Engineering from National Tsing Hua University, Taiwan in 2007 and earned her Ph.D. degree in Materials Science & Engineering from Massachusetts Institute of Technology in 2012. Prof. Lu worked as a Postdoctoral Fellow in the Department of Chemistry at the Technische Universität München, Germany in 2013. She is currently an Associate Professor of Mechanical and Automation Engineering at The Chinese University of Hong Kong. Prof. Lu’s research interest centers on fundamental redox chemistry and developing functional materials for clean energy storage and conversion
  • Corresponding author: Guangtao Cong, gtcong@szu.edu.cn Yi-Chun Lu, yichunlu@mae.cuhk.edu.hk
  • Received Date: 2 June 2021
    Revised Date: 30 June 2021
    Accepted Date: 1 July 2021
    Available Online: 7 July 2021

    Fund Project: the Science and Technology Innovation Commission of Shenzhen, China JCYJ20190808114803804the Science and Technology Innovation Commission of Shenzhen, China 20200812104042001the Research Grant Council (RGC) of the Hong Kong Special Administrative Region, China T23-601/17-R

  • Redox flow batteries (RFBs) have been widely recognized as the primary choice for large-scale energy storage due to their high energy efficiency, low cost, and versatile design of decoupled energy storage and power output. However, the broad deployment of RFBs in the power grid has long been plagued by the high cost and low energy density of existing inorganic metal-based electrodes. Redox-active organic molecules (ROMs), on the other hand, have recently been extensively explored as the potentials electrodes in RFBs for their potential low cost, abundant resources, and highly tunable structure. The energy density of RFBs is proportional to the number of electrons transferred per unit reaction, the concentration of active materials, and the cell voltage. Therefore, strategies to improve the energy density of RFBs could be categorized into three classes: (1) expanding the cell voltage; (2) maximizing the practical concentration of active materials; (3) realizing multi-redox process. Benefited by the highly tunable structure and properties of ROMs, the cell voltage of RFBs could be realized by lowering the redox potentials of anolytes or/and increasing the redox potentials of catholytes. To fully exploit the low-potential anolytes and high-potential catholytes, non-aqueous electrolytes with wider electrochemical potential windows (EPWs) are preferred over the aqueous systems. However, the solubility of most ROMs in commonly used non-aqueous electrolytes is very limited. Several effective strategies to improve the practical concentrations of ROMs have been proposed: (1) the solubility of ROMs could be easily tailored by adjusting the intermolecular interactions between ROMs and the interactions between ROMs and electrolytes via molecular engineering; (2) the redox-active eutectic systems remain liquid at or near room temperature, allowing us to reduce or completely remove the inactive solvent used in the conventional electrolyte of RFBs, which leads to an enhanced practical concentration of the redox-active components; (3) the semi-solid suspension achieves a high practical concentration of ROMs by combining the advantages of solid ROMs with high energy density and liquid electrolytes with flowability; (4) the redox-targeting approach breaks the solubility limitation by realizing remote charge exchange between the solid active materials deposited in the tanks and the current collectors of the electrochemical stacks via ROMs dissolved in electrolytes. The first three strategies employ a homogeneous flowing redox-active fluid which suffers from deteriorated physical and electrochemical properties as the practical concentration of ROMs increase, e.g., high viscosity, phase separation, and salt precipitation. The redox-targeting approach uses a hybrid flowing liquid/static solid system, which avoids the aforementioned unfavorable changes in electrolyte properties, however, this design introduces additional chemical reactions between the ROMs and the solid active materials, which may reduce the power output. Another efficient method to improve the energy density of RFBs without affecting the properties of the electrolyte is achieved by realizing the multi-redox process of ROMs, however, the generated high valence state ROMs are highly reactive. Further optimization of the structure of these ROMs is required to improve their lifetime at high valence states. In this perspective, we summarize the general working principle of the RFBs, highlight the recent developments of the ROMs in non-aqueous redox flow batteries (NRFBs), with an emphasis on the strategies to improve the energy density of NRFBs, and discuss the remaining challenges and future directions of the non-aqueous organic redox flow batteries (NORFBs).
  • 加载中
    1. [1]

      Soloveichik, G. L. Chem. Rev. 2015, 115, 11533. doi: 10.1021/cr500720t  doi: 10.1021/cr500720t

    2. [2]

      Winsberg, J.; Hagemann, T.; Janoschka, T.; Hager, M. D.; Schubert, U. S. Angew. Chem. Int. Ed. 2017, 56, 686. doi: 10.1002/anie.201604925  doi: 10.1002/anie.201604925

    3. [3]

      Wei, X.; Pan, W.; Duan, W.; Hollas, A.; Yang, Z.; Li, B.; Nie, Z.; Liu, J.; Reed, D.; Wang, W.; et al. ACS Energy Lett. 2017, 2, 2187. doi: 10.1021/acsenergylett.7b00650  doi: 10.1021/acsenergylett.7b00650

    4. [4]

      Muench, S.; Wild, A.; Friebe, C.; Häupler, B.; Janoschka, T.; Schubert, U. S. Chem. Rev. 2016, 116, 9438. doi: 10.1021/acs.chemrev.6b00070  doi: 10.1021/acs.chemrev.6b00070

    5. [5]

      Chen, H.; Cong, G.; Lu, Y. C. J. Energy Chem. 2018, 27, 1304. doi: 10.1016/j.jechem.2018.02.009  doi: 10.1016/j.jechem.2018.02.009

    6. [6]

      Yao, Y.; Lei, J.; Shi, Y.; Ai, F.; Lu, Y. C. Nat. Energy 2021, 6, 582. doi: 10.1038/s41560-020-00772-8  doi: 10.1038/s41560-020-00772-8

    7. [7]

      Li, Z.; Lu, Y. C. Nat. Energy 2021, 6, 517. doi: 10.1038/s41560-021-00804-x  doi: 10.1038/s41560-021-00804-x

    8. [8]

      Wang, C.; Li, X.; Yu, B.; Wang, Y.; Yang, Z.; Wang, H.; Lin, H.; Ma, J.; Li, G.; Jin, Z. ACS Energy Lett. 2020, 5, 411. doi: 10.1021/acsenergylett.9b02676  doi: 10.1021/acsenergylett.9b02676

    9. [9]

      Wang, C.; Yang, Z.; Wang, Y.; Zhao, P.; Yan, W.; Zhu, G.; Ma, L.; Yu, B.; Wang, L.; Li, G.; et al. ACS Energy Lett. 2018, 3, 2404. doi: 10.1021/acsenergylett.8b01296  doi: 10.1021/acsenergylett.8b01296

    10. [10]

      Wang, C.; Yu, B.; Liu, Y.; Wang, H.; Zhang, Z.; Xie, C.; Li, X.; Zhang, H.; Jin, Z. Energy Stor. Mater. 2021, 36, 417. doi: 10.1016/j.ensm.2021.01.019  doi: 10.1016/j.ensm.2021.01.019

    11. [11]

      Kwabi, D. G.; Ji, Y.; Aziz, M. J. Chem. Rev. 2020, 120, 6467. doi: 10.1021/acs.chemrev.9b00599  doi: 10.1021/acs.chemrev.9b00599

    12. [12]

      Singh, V.; Kim, S.; Kang, J.; Byon, H. R. Nano Res. 2019, 12, 1988. doi: 10.1007/s12274-019-2355-2  doi: 10.1007/s12274-019-2355-2

    13. [13]

      Gentil, S.; Reynard, D.; Girault, H. H. Curr. Opin. Electrochem. 2020, 21, 7. doi: 10.1016/j.coelec.2019.12.006  doi: 10.1016/j.coelec.2019.12.006

    14. [14]

      Polcari, D.; Dauphin-Ducharme, P.; Mauzeroll, J. Chem. Rev. 2016, 116, 13234. doi: 10.1021/acs.chemrev.6b00067  doi: 10.1021/acs.chemrev.6b00067

    15. [15]

      Remya, G. S.; Suresh, C. H. Phys. Chem. Chem. Phys. 2016, 18, 20615. doi: 10.1039/C6CP02936A  doi: 10.1039/C6CP02936A

    16. [16]

      McMurry, J. E. Organic Chemistry, 8th ed.; Cengage Learning: Boston, 2012.

    17. [17]

      Williams, D. L.; Byrne, J. J.; Driscoll, J. S. J. Electrochem. Soc. 1969, 116, 2. doi: 10.1149/1.2411755  doi: 10.1149/1.2411755

    18. [18]

      Wei, X.; Xu, W.; Huang, J.; Zhang, L.; Walter, E.; Lawrence, C.; Vijayakumar, M.; Henderson, W. A.; Liu, T.; Cosimbescu, L.; et al. Angew. Chem. Int. Ed. 2015, 54, 8684. doi: 10.1002/anie.201501443  doi: 10.1002/anie.201501443

    19. [19]

      Xing, X.; Huo, Y.; Wang, X.; Zhao, Y.; Li, Y. Int. J. Hydrogen Energy 2017, 42, 17488. doi: 10.1016/j.ijhydene.2017.03.034  doi: 10.1016/j.ijhydene.2017.03.034

    20. [20]

      Li, Z.; Li, S.; Liu, S.; Huang, K.; Fang, D.; Wang, F.; Peng, S. Electrochem. Solid-State Lett. 2011, 14, A171. doi: 10.1149/2.012112esl  doi: 10.1149/2.012112esl

    21. [21]

      Huang, J.; Yang, Z.; Vijayakumar, M.; Duan, W.; Hollas, A.; Pan, B.; Wang, W.; Wei, X.; Zhang, L. Adv. Sustain. Syst. 2018, 2, 1700131. doi: 10.1002/adsu.201700131  doi: 10.1002/adsu.201700131

    22. [22]

      Sevov, C. S.; Brooner, R. E. M.; Chénard, E.; Assary, R. S.; Moore, J. S.; Rodríguez-López, J.; Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 14465. doi: 10.1021/jacs.5b09572  doi: 10.1021/jacs.5b09572

    23. [23]

      Wei, X.; Duan, W.; Huang, J.; Zhang, L.; Li, B.; Reed, D.; Xu, W.; Sprenkle, V.; Wang, W. ACS Energy Lett. 2016, 1, 705. doi: 10.1021/acsenergylett.6b00255  doi: 10.1021/acsenergylett.6b00255

    24. [24]

      Xing, X.; Liu, Q.; Li, J.; Han, Z.; Wang, B.; Lemmon, J. P. Chem. Commun. 2019, 55, 14214. doi: 10.1039/C9CC07937H  doi: 10.1039/C9CC07937H

    25. [25]

      Duan, W.; Huang, J.; Kowalski, J. A.; Shkrob, I. A.; Vijayakumar, M.; Walter, E.; Pan, B.; Yang, Z.; Milshtein, J. D.; Li, B.; et al. ACS Energy Lett. 2017, 2, 1156. doi: 10.1021/acsenergylett.7b00261  doi: 10.1021/acsenergylett.7b00261

    26. [26]

      McClelland, B. J. Chem. Rev. 1964, 64, 301. doi: 10.1021/cr60229a005  doi: 10.1021/cr60229a005

    27. [27]

      Holy, N. L. Chem. Rev. 1974, 74, 243. doi: 10.1021/cr60288a005  doi: 10.1021/cr60288a005

    28. [28]

      Gong, K.; Fang, Q.; Gu, S.; Li, S. F. Y.; Yan, Y. Energy Environ. Sci. 2015, 8, 3515. doi: 10.1039/C5EE02341F  doi: 10.1039/C5EE02341F

    29. [29]

      Yu, J.; Hu, Y. S.; Pan, F.; Zhang, Z.; Wang, Q.; Li, H.; Huang, X.; Chen, L. Nat. Commun. 2017, 8, 14629. doi: 10.1038/ncomms14629  doi: 10.1038/ncomms14629

    30. [30]

      Wang, G.; Huang, B.; Liu, D.; Zheng, D.; Harris, J.; Xue, J.; Qu, D. J. Mater. Chem. A 2018, 6, 13286. doi: 10.1039/C8TA03221A  doi: 10.1039/C8TA03221A

    31. [31]

      Cong, G.; Wang, W.; Lai, N. C.; Liang, Z.; Lu, Y. C. Nat. Mater. 2019, 18, 390. doi: 10.1038/s41563-019-0286-7  doi: 10.1038/s41563-019-0286-7

    32. [32]

      Zhang, L.; Zhang, Z.; Redfern, P. C.; Curtiss, L. A.; Amine, K. Energy Environ. Sci. 2012, 5, 8204. doi: 10.1039/C2EE21977H  doi: 10.1039/C2EE21977H

    33. [33]

      Huang, J.; Cheng, L.; Assary, R. S.; Wang, P.; Xue, Z.; Burrell, A. K.; Curtiss, L. A.; Zhang, L. Adv. Energy Mater. 2015, 5, 1401782. doi: 10.1002/aenm.201401782  doi: 10.1002/aenm.201401782

    34. [34]

      Sevov, C. S.; Samaroo, S. K.; Sanford, M. S. Adv. Energy Mater. 2017, 7, 1602027. doi: 10.1002/aenm.201602027  doi: 10.1002/aenm.201602027

    35. [35]

      Yan, Y.; Robinson, S. G.; Sigman, M. S.; Sanford, M. S. J. Am. Chem. Soc. 2019, 141, 15301. doi: 10.1021/jacs.9b07345  doi: 10.1021/jacs.9b07345

    36. [36]

      Robinson, S. G.; Yan, Y.; Hendriks, K. H.; Sanford, M. S.; Sigman, M. S. J. Am. Chem. Soc. 2019, 141, 10171. doi: 10.1021/jacs.9b04270  doi: 10.1021/jacs.9b04270

    37. [37]

      Shrestha, A.; Hendriks, K. H.; Sigman, M. S.; Minteer, S. D.; Sanford, M. S. Chem. - A Eur. J. 2020, 26, 5369. doi: 10.1002/chem.202000749  doi: 10.1002/chem.202000749

    38. [38]

      Cong, G.; Zhou, Y.; Li, Z.; Lu, Y. C. ACS Energy Lett. 2017, 2, 869. doi: 10.1021/acsenergylett.7b00115  doi: 10.1021/acsenergylett.7b00115

    39. [39]

      Wang, Y.; Zhou, H. Energy Environ. Sci. 2016, 9, 2267. doi: 10.1039/C6EE00902F  doi: 10.1039/C6EE00902F

    40. [40]

      Zhang, C.; Zhang, L.; Ding, Y.; Guo, X.; Yu, G. ACS Energy Lett. 2018, 3, 2875. doi: 10.1021/acsenergylett.8b01899  doi: 10.1021/acsenergylett.8b01899

    41. [41]

      Zhang, C.; Qian, Y.; Ding, Y.; Zhang, L.; Guo, X.; Zhao, Y.; Yu, G. Angew. Chem. Int. Ed. 2019, 58, 7045. doi: 10.1002/anie.201902433  doi: 10.1002/anie.201902433

    42. [42]

      Goeltz, J. C.; Matsushima, L. N. Chem. Commun. 2017, 53, 9983. doi: 10.1039/C7CC04837H  doi: 10.1039/C7CC04837H

    43. [43]

      Sinclair, N. S.; Poe, D.; Savinell, R. F.; Maginn, E. J.; Wainright, J. S. J. Electrochem. Soc. 2021, 168, 020527. doi: 10.1149/1945-7111/abe28a  doi: 10.1149/1945-7111/abe28a

    44. [44]

      Zhang, C.; Chen, H.; Qian, Y.; Dai, G.; Zhao, Y.; Yu, G. Adv. Mater. 2021, 33, 2008560. doi: 10.1002/adma.202008560  doi: 10.1002/adma.202008560

    45. [45]

      Zhang, C.; Niu, Z.; Ding, Y.; Zhang, L.; Zhou, Y.; Guo, X.; Zhang, X.; Zhao, Y.; Yu, G. Chem 2018, 4, 2814. doi: 10.1016/j.chempr.2018.08.024  doi: 10.1016/j.chempr.2018.08.024

    46. [46]

      Takechi, K.; Kato, Y.; Hase, Y. Adv. Mater. 2015, 27, 2501. doi: 10.1002/adma.201405840  doi: 10.1002/adma.201405840

    47. [47]

      Cong, G.; Lu, Y. C. Chem 2018, 4, 2732. doi: 10.1016/j.chempr.2018.11.018  doi: 10.1016/j.chempr.2018.11.018

    48. [48]

      Duduta, M.; Ho, B.; Wood, V. C.; Limthongkul, P.; Brunini, V. E.; Carter, W. C.; Chiang, Y. M. Adv. Energy Mater. 2011, 1, 511. doi: 10.1002/aenm.201100152  doi: 10.1002/aenm.201100152

    49. [49]

      Chen, H.; Zou, Q.; Liang, Z.; Liu, H.; Li, Q.; Lu, Y. C. Nat. Commun. 2015, 6, 5877. doi: 10.1038/ncomms6877  doi: 10.1038/ncomms6877

    50. [50]

      Chen, H.; Lu, Y. C. Adv. Energy Mater. 2016, 6, 1502183. doi: 10.1002/aenm.201502183  doi: 10.1002/aenm.201502183

    51. [51]

      Chen, H.; Zhou, Y.; Lu, Y. C. ACS Energy Lett. 2018, 3, 1991. doi: 10.1021/acsenergylett.8b01257  doi: 10.1021/acsenergylett.8b01257

    52. [52]

      Zhang, X.; Zhang, P.; Chen, H. ChemSusChem 2021, 14, 1913. doi: 10.1002/cssc.202100094  doi: 10.1002/cssc.202100094

    53. [53]

      Wang, Q.; Zakeeruddin, S. M.; Wang, D.; Exnar, I.; Grätzel, M. Angew. Chem. Int. Ed. 2006, 45, 8197. doi: 10.1002/anie.200602891  doi: 10.1002/anie.200602891

    54. [54]

      Jia, C.; Pan, F.; Zhu, Y. G.; Huang, Q.; Lu, L.; Wang, Q. Sci. Adv. 2015, 1, e1500886. doi: 10.1126/sciadv.1500886  doi: 10.1126/sciadv.1500886

    55. [55]

      Huang, Q.; Yang, J.; Ng, C. B.; Jia, C.; Wang, Q. Energy Environ. Sci. 2016, 9, 917. doi: 10.1039/C5EE03764F  doi: 10.1039/C5EE03764F

    56. [56]

      Yan, R.; Wang, Q. Adv. Mater. 2018, 30, 1802406. doi: 10.1002/adma.201802406  doi: 10.1002/adma.201802406

    57. [57]

      Yu, J.; Fan, L.; Yan, R.; Zhou, M.; Wang, Q. ACS Energy Lett. 2018, 3, 2314. doi: 10.1021/acsenergylett.8b01420  doi: 10.1021/acsenergylett.8b01420

    58. [58]

      Chen, Y.; Zhou, M.; Xia, Y.; Wang, X.; Liu, Y.; Yao, Y.; Zhang, H.; Li, Y.; Lu, S.; Qin, W.; et al. Joule 2019, 3, 2255. doi: 10.1016/j.joule.2019.06.007  doi: 10.1016/j.joule.2019.06.007

    59. [59]

      Cheng, Y.; Wang, X.; Huang, S.; Samarakoon, W.; Xi, S.; Ji, Y.; Zhang, H.; Zhang, F.; Du, Y.; Feng, Z.; et al. ACS Energy Lett. 2019, 4, 3028. doi: 10.1021/acsenergylett.9b01939  doi: 10.1021/acsenergylett.9b01939

    60. [60]

      Zhou, M.; Chen, Y.; Salla, M.; Zhang, H.; Wang, X.; Mothe, S. R.; Wang, Q. Angew. Chem. Int. Ed. 2020, 59, 14286. doi: 10.1002/anie.202004603  doi: 10.1002/anie.202004603

    61. [61]

      Huang, Q.; Li, H.; Grätzel, M.; Wang, Q. Phys. Chem. Chem. Phys. 2013, 15, 1793. doi: 10.1039/C2CP44466F  doi: 10.1039/C2CP44466F

    62. [62]

      Zhou, M.; Huang, Q.; Pham Truong, T. N.; Ghilane, J.; Zhu, Y. G.; Jia, C.; Yan, R.; Fan, L.; Randriamahazaka, H.; Wang, Q. Chem 2017, 3, 1036. doi: 10.1016/j.chempr.2017.10.003  doi: 10.1016/j.chempr.2017.10.003

    63. [63]

      Kwon, G.; Lee, S.; Hwang, J.; Shim, H. S.; Lee, B.; Lee, M. H.; Ko, Y.; Jung, S. K.; Ku, K.; Hong, J.; Kang, K. Joule 2018, 2, 1771. doi: 10.1016/j.joule.2018.05.014  doi: 10.1016/j.joule.2018.05.014

    64. [64]

      Li, Z.; Lu, Y. C. Chem 2018, 4, 2020. doi: 10.1016/j.chempr.2018.08.032  doi: 10.1016/j.chempr.2018.08.032

    65. [65]

      Kwon, G.; Lee, K.; Lee, M. H.; Lee, B.; Lee, S.; Jung, S. K.; Ku, K.; Kim, J.; Park, S. Y.; Kwon, J. E.; et al. Chem 2019, 5, 2642. doi: 10.1016/j.chempr.2019.07.006  doi: 10.1016/j.chempr.2019.07.006

    66. [66]

      Ham, Y.; Ri, V.; Kim, J.; Yoon, Y.; Lee, J.; Kang, K.; An, K. S.; Kim, C.; Jeon, S. Nano Res. 2021, 14, 1382. doi: 10.1007/s12274-020-3187-9  doi: 10.1007/s12274-020-3187-9

    67. [67]

      Lee, M.; Hong, J.; Lee, B.; Ku, K.; Lee, S.; Park, C. B.; Kang, K. Green Chem. 2017, 19, 2980. doi: 10.1039/C7GC00849J  doi: 10.1039/C7GC00849J

    68. [68]

      Lee, S.; Lee, K.; Ku, K.; Hong, J.; Park, S. Y.; Kwon, J. E.; Kang, K. Adv. Energy Mater. 2020, 10, 2001635. doi: 10.1002/aenm.202001635  doi: 10.1002/aenm.202001635

    69. [69]

      Attanayake, N. H.; Kowalski, J. A.; Greco, K. V.; Casselman, M. D.; Milshtein, J. D.; Chapman, S. J.; Parkin, S. R.; Brushett, F. R.; Odom, S. A. Chem. Mater. 2019, 31, 4353. doi: 10.1021/acs.chemmater.8b04770  doi: 10.1021/acs.chemmater.8b04770

    70. [70]

      Kowalski, J. A.; Casselman, M. D.; Kaur, A. P.; Milshtein, J. D.; Elliott, C. F.; Modekrutti, S.; Attanayake, N. H.; Zhang, N.; Parkin, S. R.; Risko, C.; et al. J. Mater. Chem. A 2017, 5, 24371. doi: 10.1039/C7TA05883G  doi: 10.1039/C7TA05883G

  • 加载中
    1. [1]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    2. [2]

      Xiaoxing JiXiaojuan LiChenggang WangGang ZhaoHongxia BuXijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388

    3. [3]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    4. [4]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    5. [5]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    6. [6]

      Jinlong LiRuixin LiJiahui LiuJi-Quan LiuJia XuXianglin ZhouYefan ZhangKairui WangLin LeiGang XieFengmei WangYing YangLiping Cao . A TOC- and deposition-free electrochromic window driven by redox flow battery. Chinese Chemical Letters, 2024, 35(12): 110355-. doi: 10.1016/j.cclet.2024.110355

    7. [7]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    8. [8]

      Zhaorui SongQiulian HaoBing LiYuwei YuanShanshan ZhangYongkuan SuoHai-Hao HanZhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834

    9. [9]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    10. [10]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    11. [11]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    12. [12]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    13. [13]

      Zhuangzhuang ZhangYaru QiaoJun ZhaoDai-Huo LiuMengmin JiaHongwei TangLiang WangDongmei DaiBao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907

    14. [14]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    15. [15]

      Hao ZhuoMing ZhangHengyuan ZhangHui LinGang YangSilu TaoCaijun ZhengXiaohong Zhang . Modified triphenylamine donors with shallower HOMO energy levels to construct long-wavelength TADF emitters of efficient organic light-emitting diodes. Chinese Chemical Letters, 2025, 36(5): 110760-. doi: 10.1016/j.cclet.2024.110760

    16. [16]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    17. [17]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    18. [18]

      Jin WangXiaoyan PanJunyu ZhangQingqing ZhangYanchen LiWeiwei GuoJie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187

    19. [19]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    20. [20]

      Huashan HuangJingze ChenLuyun ZhangHong YanSiqi LiFen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992

Metrics
  • PDF Downloads(58)
  • Abstract views(1733)
  • HTML views(441)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return