Citation: Wei Zhang, Haichen Liang, Kerun Zhu, Yong Tian, Yao Liu, Jiayin Chen, Wei Li. Three-Dimensional Macro-/Mesoporous C-TiC Nanocomposites for Dendrite-Free Lithium Metal Anode[J]. Acta Physico-Chimica Sinica, ;2022, 38(6): 210502. doi: 10.3866/PKU.WHXB202105024 shu

Three-Dimensional Macro-/Mesoporous C-TiC Nanocomposites for Dendrite-Free Lithium Metal Anode

  • Corresponding author: Wei Li, weilichem@fudan.edu.cn
  • Received Date: 13 May 2021
    Revised Date: 6 June 2021
    Accepted Date: 22 June 2021
    Available Online: 1 July 2021

    Fund Project: the National Key R & D Program of China 2018YFE0201701the National Key R & D Program of China 2018YFA0209401the National Natural Science Foundation of China 21733003the National Natural Science Foundation of China 22088101the National Natural Science Foundation of China 21975050the China Postdoctoral Science Foundation 2020TQ0064the China Postdoctoral Science Foundation 2020M680051the Science and Technology Commission of Shanghai Municipality 19JC1410700the Guangdong Basic and Applied Basic Research Foundation 2021A1515010108

  • In previous decades, lithium-ion batteries (LIBs) were the most commonly used energy storage systems for powering portable electronic devices because LIBs exhibit reliable cyclability. However, owing to the low specific capacity of graphite used in the anode, further increase in the energy density of LIBs was limited. The Li metal anode is promising for the construction of next-generation high-energy-density batteries because of its ultrahigh theoretical capacity (3860 mAh·g-1) and low redox potential (-3.04 V vs. standard hydrogen electrode). However, the high activity of Li causes dendritic growth during cycling, which leads to cracking of the solid-electrolyte interphase (SEI), increase in side reactions, and formation of dead Li. Several strategies have been proposed to address these issues, including use of electrolyte additives, high-concentration electrolytes, protection of the Li metal surface with various coatings, use of solid-state electrolytes, and design of a three-dimensional (3D) "Li host" for regulating the nucleation and deposition of Li metal. Among them, the design of a 3D "Li host" has proven to be a simple and effective strategy. However, the commonly used 3D "Li hosts" include nanostructured carbons, which are lithiophobic and, thus, provide limited interaction sites with Li+ ions, leading to the deposition of Li metal on the "Li host" surface. Therefore, it is necessary to design a 3D "Li host" with enhanced interaction with Li+ ions to achieve uniform deposition. Herein, we develop a soft-hard templating route to synthesize 3D macro-/mesoporous C-TiC (denoted as 3DMM C-TiC) nanocomposites, which has been used in Li metal batteries. The as-synthesized materials possess high surface areas (~510 m2·g-1), ordered structures, large pore volumes, and excellent conductivity. The continuous plating and stripping of Li metal and the formation of the hierarchically porous structure with sufficient volume to allow uniform Li deposition result in the alleviation of the volume change. The high specific surface area significantly decreases the local current density and suppresses dendrite growth. Consequently, ultrasmall TiC nanoparticles are uniformly distributed in the 3D macro-/mesoporous framework, which improves conductivity, enhances their interaction with Li+ ions, and promotes the uniform deposition of Li metal. Therefore, the fabricated 3DMM C-TiC||Li battery displays stable cycling performance with improved Coulombic efficiency (98%) over 300 cycles. Moreover, when the 3DMM C-TiC based Li metal anode is assembled with a LiFePO4 (LFP) cathode, the resultant full cells exhibit high specific capacity and excellent cycling stability. This study provides insight for the effective design of a 3D "Li host" for dendrite-free Li metal anodes.
  • 加载中
    1. [1]

      Manthiram, A. ACS Cent. Sci. 2011, 3, 1063. doi: 10.1021/acscentsci.7b00288  doi: 10.1021/acscentsci.7b00288

    2. [2]

      Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. Renew. Sustain. Energy Rev. 2018, 89, 292. doi: 10.1016/j.rser.2018.03.002  doi: 10.1016/j.rser.2018.03.002

    3. [3]

      Wang, Q.; Jiang, L.; Yu, Y.; Sun, J. Nano Energy 2019, 55, 93. doi: 10.1016/j.nanoen.2018.10.035  doi: 10.1016/j.nanoen.2018.10.035

    4. [4]

      Blomgren, G. E. J. Electrochem. Soc. 2016, 164, A5019. doi: 10.1149/2.0251701jes  doi: 10.1149/2.0251701jes

    5. [5]

      Goodenough, J. B. Energy Storage Mater. 2015, 1, 158. doi: 10.1016/j.ensm.2015.07.001  doi: 10.1016/j.ensm.2015.07.001

    6. [6]

      Scrosati, B.; Hassoun, J.; Sun, Y. K. Energy Environ. Sci. 2011, 4, 3287. doi: 10.1039/c1ee01388b  doi: 10.1039/c1ee01388b

    7. [7]

      Liu, T.; Ren, Y.; Shen, Y.; Zhao, S. X.; Lin, Y.; Nan, C. W. J. Power Sources 2016, 324, 349. doi: 10.1016/j.jpowsour.2016.05.111  doi: 10.1016/j.jpowsour.2016.05.111

    8. [8]

      Liu, K.; Liu, Y.; Lin, D.; Pei, A.; Cui, Y. Sci. Adv. 2018, 4, eaas9820. doi: 10.1126/sciadv.aas9820  doi: 10.1126/sciadv.aas9820

    9. [9]

      An, W.; Gao, B.; Mei, S.; Xiang, B.; Fu, J.; Wang, L.; Zhang, Q.; Chu, P.; Huo, K. Nat. Commun. 2019, 10, 1447. doi: 10.1038/s41467-019-09510-5  doi: 10.1038/s41467-019-09510-5

    10. [10]

      Wang, M. Q.; Peng, Z.; Lin, H.; Li, Z. D.; Liu, J.; Ren, Z. M.; He, H. Y.; Wang, D. Y. Acta Phys. -Chim. Sin. 2021, 37, 2007016.  doi: 10.3866/PKU.WHXB202007016

    11. [11]

      Liu, F. F.; Zhang, Z. W.; Ye, S. F.; Yao, Y.; Yu, Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021.  doi: 10.3866/PKU.WHXB202006021

    12. [12]

      Lin, D.; Liu, Y.; Cui, Y. Nat. Nanotechnol. 2017, 12, 194. doi: 10.1038/nnano.2017.16  doi: 10.1038/nnano.2017.16

    13. [13]

      Liu, Y.; Zhai, Y.; Xia, Y.; Li, W; Zhao, D. Small Struct. 2021, 2000118. doi: 10.1002/sstr.202000118  doi: 10.1002/sstr.202000118

    14. [14]

      Li, C.; Wei, J.; Li, P.; Tang, W.; Feng, W.; Liu, J.; Wang, Y; Xia, Y. Sci. Bull. 2019, 64, 478. doi: 10.1016/j.scib.2019.03.004  doi: 10.1016/j.scib.2019.03.004

    15. [15]

      Guo, Y; Li, H; Zhai, T. Adv. Mater. 2017, 29, 1700007. doi: 10.1002/adma.201700007  doi: 10.1002/adma.201700007

    16. [16]

      Yue, X. Y.; Ma, C.; Bao, J.; Yang, S. Y.; Chen, D.; Wu, X. J.; Zhou, Y. N. Acta Phys. -Chim. Sin. 2021, 37, 2005012.  doi: 10.3866/PKU.WHXB202005012

    17. [17]

      Liu, S.; Xia, X.; Zhong, Y.; Deng, S.; Yao, Z.; Zhang, L.; Chen, X; Wang, X; Zhang, Q.; Tu, J. Adv. Energy Mater. 2018, 8, 1702322. doi: 10.1002/aenm.201702322  doi: 10.1002/aenm.201702322

    18. [18]

      Yuan, S.; Bao, L. J.; Wei, J.; Xia, Y.; Truhlar, D. G.; Wang, Y. Energy Environ. Sci. 2019, 12 2047. doi: 10.1039/c9ee01473j  doi: 10.1039/c9ee01473j

    19. [19]

      Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. Nat. Commun. 2015, 6, 6362. doi: 10.1038/ncomms7362  doi: 10.1038/ncomms7362

    20. [20]

      Qin, J. L.; Ren, L. T.; Cao, X.; Zhao, Y. J.; Xu, H. J.; Liu, W.; Sun, X. M. Acta Phys. -Chim. Sin. 2021, 37, 2009020.  doi: 10.3866/PKU.WHXB202009020

    21. [21]

      Xia, S.; Lopez, J.; Liang, C.; Zhang, Z.; Bao, Z.; Cui, Y.; Liu, W. Adv. Sci. 2019, 6, 1802353. doi: 10.1002/advs.201802353  doi: 10.1002/advs.201802353

    22. [22]

      Fan, L.; Wei, S.; Li, S.; Li, Q.; Lu, Y. Adv. Energy Mater. 2018, 8, 1702657. doi: 10.1002/aenm.201702657  doi: 10.1002/aenm.201702657

    23. [23]

      Han, X.; Gong, Y.; Fu, K.; He, X.; Hitz, G. T.; Dai, J.; Pearse, A.; Liu, B.; Wang, H.; Rubloff, G.; et al. Nat. Mater. 2016, 16, 572. doi: 10.1038/nmat4821  doi: 10.1038/nmat4821

    24. [24]

      Gu, Y.; Wang, W. W.; Li, Y. J.; Wu, Q. H.; Tang, S.; Yan, J. W.; Zheng, M. S.; Wu, D. Y.; Fan, C. H.; Hu, W. Q.; et al. Nat. Commun. 2018, 9, 1339. doi: 10.1038/s41467-018-03466-8  doi: 10.1038/s41467-018-03466-8

    25. [25]

      Li, Y.; Sun, Y.; Pei, A.; Chen, K.; Vailionis, A.; Li, Y.; Zheng, G.; Sun, J.; Cui, Y. ACS Cent. Sci. 2018, 4, 97. doi: 10.1021/acscentsci.7b00480  doi: 10.1021/acscentsci.7b00480

    26. [26]

      Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X.; Nazar, L. F. Nat. Energy 2017, 2, 17119. doi: 10.1038/nenergy.2017.119  doi: 10.1038/nenergy.2017.119

    27. [27]

      Zhang, Y. B.; Lin, Q. W.; Han, J. W.; Han, Z. Y.; Li, T.; Kang, F. Y.; Yang, Q. H.; Lü, W. Acta Phys. -Chim. Sin. 2021, 37, 2008088.  doi: 10.3866/PKU.WHXB202008088

    28. [28]

      Yun, Q.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B.; Kang, F.; Yang, Q. H. Adv. Mater. 2016, 28, 6932. doi: 10.1002/adma.201601409  doi: 10.1002/adma.201601409

    29. [29]

      Zhai, P. B.; Wang, T. S.; Yang, W. W.; Cui, S. Q.; Zhang, P.; Nie, A.; Zhang, Q.; Gong, Y. J. Adv. Energy Mater. 2019, 9, 1804019. doi: 10.1002/aenm.201804019  doi: 10.1002/aenm.201804019

    30. [30]

      Wang, Q.; Wu, K.; Wang, H. C.; Liu, W.; Zhou, H. H. Acta Phys. -Chim. Sin. 2021, 37, 2007092.  doi: 10.3866/PKU.WHXB202007092

    31. [31]

      Liu, L.; Yin, Y. X.; Li, J. Y.; Wang, S. H.; Guo, Y. G.; Wan, L. J. Adv. Mater. 2018, 30, 1706216. doi: 10.1002/adma.201706216  doi: 10.1002/adma.201706216

    32. [32]

      Zhang, R.; Chen, X.; Shen, X.; Zhang, X. Q.; Chen, X. R.; Cheng, X. B.; Yan, C.; Zhao, C. Z.; Zhang, Q. Joule 2018, 2, 764. doi: 10.1016/j.joule.2018.02.001  doi: 10.1016/j.joule.2018.02.001

    33. [33]

      Adams, B. D.; Zheng, J.; Ren, X.; Xu, W.; Zhang, J. G. Adv. Energy Mater. 2018, 8, 1702097. doi: 10.1002/aenm.201702097  doi: 10.1002/aenm.201702097

    34. [34]

      Zhang, W.; Zu, L.; Kong, B.; Chen, B.; He, H.; Lan, K.; Liu, Y.; Yang, J.; Zhao, D. iScience 2018, 3, 149. doi: 10.1016/j.isci.2018.04.009  doi: 10.1016/j.isci.2018.04.009

    35. [35]

      Peng, H. J.; Zhang, G.; Chen, X.; Zhang, Z. W.; Xu, W. T.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2016, 55, 12990. doi: 10.1002/anie.201605676  doi: 10.1002/anie.201605676

    36. [36]

      Liu, Y.; Lan, K.; Li, S.; Liu, Y.; Kong, B.; Wang, G.; Zhang, P.; Wang, R.; He, H.; Ling, Y.; et al. J. Am. Chem. Soc. 2017, 139, 517. doi: 10.1021/jacs.6b11641  doi: 10.1021/jacs.6b11641

    37. [37]

      Liu, Y.; Lan, K.; Bagabas, A. A.; Zhang, P.; Gao, W.; Wang, J.; Sun, Z.; Fan, J.; Elzatahry, A. A.; Zhao, D. Small 2016, 12, 860. doi: 10.1002/smll.201503420  doi: 10.1002/smll.201503420

  • 加载中
    1. [1]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    2. [2]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    3. [3]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    4. [4]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    5. [5]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN modified PP separator for high-stability and high-efficiency lithium-sulfur batteries. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    13. [13]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    16. [16]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    17. [17]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    18. [18]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    19. [19]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    20. [20]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

Metrics
  • PDF Downloads(13)
  • Abstract views(1264)
  • HTML views(267)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return