Citation: Cheng Wang, Chi Zhang, Ruifeng Li, Qi Chen, Lei Qian, Liwei Chen. Charge Accumulation Behavior in Quantum Dot Light-Emitting Diodes[J]. Acta Physico-Chimica Sinica, ;2022, 38(8): 210403. doi: 10.3866/PKU.WHXB202104030 shu

Charge Accumulation Behavior in Quantum Dot Light-Emitting Diodes

  • Corresponding author: Qi Chen, qchen2011@sinano.ac.cn
  • Received Date: 14 April 2021
    Revised Date: 6 May 2021
    Accepted Date: 7 May 2021
    Available Online: 10 May 2021

    Fund Project: the Ministry of Science and Technology of China 2016YFA0200700the National Natural Science Foundation of China 21625304the National Natural Science Foundation of China 21875280the National Natural Science Foundation of China 22022205the National Natural Science Foundation of China 21991150the National Natural Science Foundation of China 21991153

  • Quantum dot light-emitting diodes (QLEDs) constitute the next-generation display technology because of their wide color gamut, narrow emission spectrum, adjustable emission wavelength, and ease of solution processability. With the development of novel material and device preparation techniques, the QLEDs not only show an external quantum efficiency (EQE) of more than 20% in red, green, and blue (primary color) devices, but also achieve 100% Rec.2020 (recommendation standard for ultrahigh-resolution display) color gamut coverage. However, the future commercialization of QLEDs is still a challenge. The T95 lifetime (defined as 95% time for the luminance to decay to the initial value L0 = 1000 cd·m-2) of red, green, and blue QLED devices is significantly lower than that of commercially available organic light-emitting diodes (OLEDs). This is ascribed to the lacking of understanding and argument to hypothesis of degradation mechanisms. A QLED is a sandwich structure composed of a quantum dot (QD) emitter layer, carrier transport layer, and electrode layer. The QLED works on the principle of electroluminescence: electrons and holes injected from the electrodes on both sides of the device cross multiple interfaces and reach the QD emitter layer to undergo radiation recombination. Generally, the QD emitter layer adopts the structure of a wide-band gap shell wrapped around a narrow band-gap core. Because of the deep valence band maximum, the hole injection barrier is higher, and the hole injection efficiency is reduced. This not only disturbs the injection balance but also leads to the accumulation of interfacial holes, which is one of the important factors affecting the efficiency and life of the device. Past studies have attempted to understand charge accumulation behavior in QLEDs by predicting the interfacial energy band structure, and there are very few reports on the direct measurement of charge accumulation. In this work, we built a charge extraction circuit to investigate the charge accumulation behavior before and after aging in a prototype red QLED. In the fresh red QLEDs, the number of accumulated charges gradually increased with the driving current density and tended to saturate above turn-on current density. In the aged red QLEDs, the accumulated charges increased with a decrease in luminance. Our method to investigate the charge accumulation behavior developed can be extended to various kinds of LEDs, such as OLEDs and perovskite LEDs, thus providing insight into their working mechanism.
  • 加载中
    1. [1]

      Nakamura, S.; Mukai, T.; Senoh, M. Appl. Phys. Lett. 1994, 64, 1687. doi: 10.1063/1.111832  doi: 10.1063/1.111832

    2. [2]

      Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234. doi: 10.1038/nature11687  doi: 10.1038/nature11687

    3. [3]

      Chen, Z. L.; Gao, P.; Liu, Z. F. Acta Phys. -Chim. Sin. 2020, 36, 1907004.  doi: 10.3866/PKU.WHXB201907004

    4. [4]

      Tan, K. M.; Yan, M. N.; Wang, Y. N.; Xie, L. H.; Qian, Y.; Zhang, H. M.; Huang, W. Acta Phys. -Chim. Sin. 2017, 33, 1057.  doi: 10.3866/PKU.WHXB201702161

    5. [5]

      Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59. doi: 10.1038/35003535  doi: 10.1038/35003535

    6. [6]

      Meng, L.; Zhang, M.; Deng, H.; Xu, B.; Wang, H.; Wang, Y.; Jiang, L.; Liu, H. CCS Chem. 2020, 2, 2194. doi: 10.31635/ccschem.020.202000402  doi: 10.31635/ccschem.020.202000402

    7. [7]

      Zou, G. R. X.; Chen, Z. M.; Li, Z. C.; Yip, H. L. Acta Phys. -Chim. Sin. 2021, 37 (4), 2009002.  doi: 10.3866/PKU.WHXB202009002

    8. [8]

      Dai, X.; Deng, Y.; Peng, X.; Jin, Y. Adv. Mater. 2017, 29, 1607022. doi: 10.1002/adma.201607022  doi: 10.1002/adma.201607022

    9. [9]

      Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Nat. Photonics 2013, 7, 13. doi: 10.1038/nphoton.2012.328  doi: 10.1038/nphoton.2012.328

    10. [10]

      Supran, G. J.; Shirasaki, Y.; Song, K. W.; Caruge, J. M.; Kazlas, P. T.; Coe-Sullivan, S.; Andrew, T. L.; Bawendi, M. G.; Bulović, V. MRS Bull. 2013, 38, 703. doi: 10.1557/mrs.2013.181  doi: 10.1557/mrs.2013.181

    11. [11]

      Shen, H.; Gao, Q.; Zhang, Y.; Lin, Y.; Lin, Q.; Li, Z.; Chen, L.; Zeng, Z.; Li, X.; Jia, Y.; et al. Nat. Photonics 2019, 13, 192. doi: 10.1038/s41566-019-0364-z  doi: 10.1038/s41566-019-0364-z

    12. [12]

      Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Nature 2020, 586, 385. doi: 10.1038/s41586-020-2791-x  doi: 10.1038/s41586-020-2791-x

    13. [13]

      Levermore, P.; Schenk, T.; Tseng, H. R.; Wang, H. J.; Heil, H.; Jatsch, A.; Buchholz, H.; Böhm, E. SID Symp. Dig. Tech. Pap. 2016, 47, 484. doi: 10.1002/sdtp.10714  doi: 10.1002/sdtp.10714

    14. [14]

      Yamada, T.; Akino, N.; Tsubata, Y.; Fukushima, D.; Amamiya, S.; Sekihachi, J. I. SID Symp. Dig. Tech. Pap. 2017, 48, 845. doi: 10.1002/sdtp.11786  doi: 10.1002/sdtp.11786

    15. [15]

      Chen, D.; Chen, D.; Dai, X.; Zhang, Z.; Lin, J.; Deng, Y.; Hao, Y.; Zhang, C.; Zhu, H.; Gao, F.; Jin, Y. Adv. Mater. 2020, 32, e2006178. doi: 10.1002/adma.202006178  doi: 10.1002/adma.202006178

    16. [16]

      Li, X.; Lin, Q.; Song, J.; Shen, H.; Zhang, H.; Li, L. S.; Li, X.; Du, Z. Adv. Opt. Mater. 2019, 8, 1901145. doi: 10.1002/adom.201901145  doi: 10.1002/adom.201901145

    17. [17]

      Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S.; et al. Nat. Photonics 2013, 7, 407. doi: 10.1038/nphoton.2013.70  doi: 10.1038/nphoton.2013.70

    18. [18]

      Cho, K. S.; Lee, E. K.; Joo, W. J.; Jang, E.; Kim, T. H.; Lee, S. J.; Kwon, S. J.; Han, J. Y.; Kim, B. K.; Choi, B. L.; et al. Nat. Photonics 2009, 3, 341. doi: 10.1038/nphoton.2009.92  doi: 10.1038/nphoton.2009.92

    19. [19]

      Chen, S.; Cao, W.; Liu, T.; Tsang, S. W.; Yang, Y.; Yan, X.; Qian, L. Nat. Commun. 2019, 10, 765. doi: 10.1038/s41467-019-08749-2  doi: 10.1038/s41467-019-08749-2

    20. [20]

      Bozyigit, D.; Yarema, O.; Wood, V. Adv. Funct. Mater. 2013, 23, 3024. doi: 10.1002/adfm.201203191  doi: 10.1002/adfm.201203191

    21. [21]

      Caruge, J. M.; Halpert, J. E.; Wood, V.; Bulović, V.; Bawendi, M. G. Nat. Photonics 2008, 2, 247. doi: 10.1038/nphoton.2008.34  doi: 10.1038/nphoton.2008.34

    22. [22]

      Kwak, J.; Bae, W. K.; Lee, D.; Park, I.; Lim, J.; Park, M.; Cho, H.; Woo, H.; Yoon, D. Y.; Char, K.; et al. Nano Lett. 2012, 12, 2362. doi: 10.1021/nl3003254  doi: 10.1021/nl3003254

    23. [23]

      Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X. Nature 2014, 515, 96. doi: 10.1038/nature13829  doi: 10.1038/nature13829

    24. [24]

      So, F.; Kondakov, D. Adv. Mater. 2010, 22, 3762. doi: 10.1002/adma.200902624  doi: 10.1002/adma.200902624

    25. [25]

      Chen, S.; Jiang, X.; So, F. Org. Electron. 2013, 14, 2518. doi: 10.1016/j.orgel.2013.06.023  doi: 10.1016/j.orgel.2013.06.023

    26. [26]

      Coburn, C.; Forrest, S. R. Phys. Rev. Appl. 2017, 7, 041002. doi: 10.1103/PhysRevApplied.7.041002  doi: 10.1103/PhysRevApplied.7.041002

    27. [27]

      Cao, W.; Xiang, C.; Yang, Y.; Chen, Q.; Chen, L.; Yan, X.; Qian, L. Nat. Commun. 2018, 9, 2608. doi: 10.1038/s41467-018-04986-z  doi: 10.1038/s41467-018-04986-z

    28. [28]

      Yang, Y.; Zheng, Y.; Cao, W.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J.; Holloway, P. H.; Qian, L. Nat. Photonics 2015, 9, 259. doi: 10.1038/nphoton.2015.36  doi: 10.1038/nphoton.2015.36

    29. [29]

      Li, Y. F.; Gao, J.; Yu, G.; Cao, Y.; Heeger, A. J. Chem. Phys. Lett. 1998, 287, 83. doi: 10.1016/S0009-2614(98)00162-6  doi: 10.1016/S0009-2614(98)00162-6

    30. [30]

      Shrotriya, V.; Yang, Y. J. Appl. Phys. 2005, 97, 054504. doi: 10.1063/1.1857053  doi: 10.1063/1.1857053

    31. [31]

      Anikeeva, P. O.; Madigan, C. F.; Halpert, J. E.; Bawendi, M. G.; Bulović, V. Phys. Rev. B 2008, 78, 085434. doi: 10.1103/PhysRevB.78.085434  doi: 10.1103/PhysRevB.78.085434

    32. [32]

      Yao, Z.; Bi, C.; Tian, J. J. Phys. Chem. C 2021, 125, 2299. doi: 10.1021/acs.jpcc.0c10181  doi: 10.1021/acs.jpcc.0c10181

  • 加载中
    1. [1]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    4. [4]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    5. [5]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    6. [6]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    7. [7]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    8. [8]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

    9. [9]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    10. [10]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    11. [11]

      Ling Li Guocheng Wang . 知识图谱与AI助教在无机化学混合式教学中的初步探索——以“沉淀溶解平衡”的教学为例. University Chemistry, 2025, 40(6): 1-8. doi: 10.12461/PKU.DXHX202407063

    12. [12]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    13. [13]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    14. [14]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    15. [15]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    16. [16]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    17. [17]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    18. [18]

      Xuexia He Zhibin Lei Pei Chen Qi Li Weiyu Deng Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099

    19. [19]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    20. [20]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

Metrics
  • PDF Downloads(58)
  • Abstract views(1756)
  • HTML views(268)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return