Citation: Siying Zhu, Huiyang Li, Zhongli Hu, Qiaobao Zhang, Jinbao Zhao, Li Zhang. Research Progresses on Structural Optimization and Interfacial Modification of Silicon Monoxide Anode for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinica, ;2022, 38(6): 210305. doi: 10.3866/PKU.WHXB202103052 shu

Research Progresses on Structural Optimization and Interfacial Modification of Silicon Monoxide Anode for Lithium-Ion Battery

  • Corresponding author: Qiaobao Zhang, zhangqiaobao@xmu.edu.cn Li Zhang, zhangli81@xmu.edu.cn
  • Received Date: 24 March 2021
    Revised Date: 19 April 2021
    Accepted Date: 25 April 2021
    Available Online: 29 April 2021

    Fund Project: the National Natural Science Foundation of China 21875155the National Natural Science Foundation of China 52072323

  • Owing to the rapid development of scientific technology, the demand for energy storage equipment is increasing in modern society. Among the current energy storage devices, lithium-ion batteries (LIBs) have been widely used in portable electronics, handy electric tools, medical electronics, and other fields owing to their high energy density, high power density, long lifespan, low self-discharge rate, wide operating temperature range, and environmental friendliness. However, in recent years, with rapid development in various technological fields, such as mobile electronics and electric vehicles, the demand for batteries with much higher energy densities than the current ones has been increasing. Hence, the development of LIBs with a high energy density, prolonged cycle life, and high safety has become a focal interest in this field. To achieve the above objectives, it is important to strategically use novel anode materials with relatively high specific capacities. At present, artificial graphite is commonly used as an anode material for commercialized traditional LIBs, which can only deliver a practical capacity of 360–365 mAh·g-1. Therefore, LIBs using graphite anodes have limited room for improvement in energy density. In the past two decades, considerable efforts have been devoted to silicon-based anode materials, which belong to the same family as carbon. To date, common silicon anode materials primarily include nano-silicon (nano-Si), silicon monoxide (SiO), suboxidized SiO (SiOx), and amorphous silicon metal alloy (amorphous SiM). Among them, SiO has attracted the most attention for use as a negative electrode material for LIBs. As an anode for lithium-ion batteries (LIBs), silicon monoxide (SiO) has a high specific capacity (~2043 mAh·g-1) and suitable charge (delithiation) potential (< 0.5 V). In addition, with the abundance of its raw material resource, low manufacturing cost, and environmental friendliness, SiO is considered a promising candidate for next-generation high-energy-density LIBs. Based on the testing of existing commercialized SiO materials, the reversible specific capacity of pure SiO can reach 1300–1700 mAh·g-1. However, when acting as the anode for LIBs, SiO undergoes a severe volume change (~200%) during the lithiation/delithiation process, which can result in severe pulverization and detachment of the anode material. Meanwhile, lithium silicate and lithium oxide are irreversibly formed during the initial discharge–charge cycle. Moreover, the electrical conductivity of SiO is relatively low (6.7 × 10-4 S·cm-1). These shortcomings seriously impact the interfacial stability and electrochemical performance of SiO-based LIBs, leading to a low initial Coulombic efficiency and poor long-term cycling stability, which has significantly restricted its commercial application. In recent years, substantial efforts have been made on structural optimization and interfacial modification of SiO anodes. However, there is still a lack of a more comprehensive summary of these important developments. Therefore, this review aims to introduce the research work in this area for readers interested in this emerging field and to summarize in detail the research work on the performance optimization of SiO in recent years. Based on the structural characteristics of the SiO anode material, this review expounds the main challenges facing the material, and then summarizes the structural and interfacial modification strategies from the perspectives of SiO structure optimization, SiO/carbon composites, and SiO/metal composites. The methods and their features in all the studies are concisely introduced, the electrochemical performances are demonstrated, and their correlations are compared and discussed. Finally, we propose the development of the structural and interfacial optimization of the SiO anode in the future.
  • 加载中
    1. [1]

      Kim, M. G.; Cho, J. Adv. Funct. Mater. 2009, 19 (10), 1497. doi: 10.1002/adfm.200801095  doi: 10.1002/adfm.200801095

    2. [2]

      Li, H.; Lv, Y. C. J. Electrochem. 2015, 21 (5), 412.  doi: 10.13208/j.electrochem.150750

    3. [3]

      Cui, Q.; Zhong, Y.; Pan, L.; Zhang, H.; Yang, Y.; Liu, D.; Teng, F.; Bando, Y.; Yao, J.; Wang, X. Adv. Sci. 2018, 5 (7), 2198. doi: 10.1002/advs.201700902  doi: 10.1002/advs.201700902

    4. [4]

      Chen, D. Q.; Li, Q. L.; Yang, Y.; Zhao, J. B. J. Electrochem. 2016, 22 (5), 489.  doi: 10.13208/j.electrochem.160543

    5. [5]

      Lu, H.; Li, J. Y.; Liu, B. N.; Chu, G.; Xu, Q.; Li, G.; Luo, F.; Zheng, J. Y.; Yin, Y. X.; Guo, Y. G. Energy Storage Sci. Technol. 2017, 5, 864.  doi: 10.12028/j.issn.2095-4239.2017.0096

    6. [6]

      Li, J. Y.; Xu, Q.; Li, G.; Yin, Y. X.; Wan, L. -J.; Guo, Y. G. Mater. Chem. Front. 2017, 1 (9), 1691. doi: 10.1039/c6qm00302h  doi: 10.1039/c6qm00302h

    7. [7]

      Liu, D.; Liu, Z.; Li, X.; Xie, W.; Wang, Q.; Liu, Q.; Fu, Y.; He, D. Small 2017, 13 (45), 1702000. doi: 10.1002/smll.201702000  doi: 10.1002/smll.201702000

    8. [8]

      An, H. F.; Jiang, L.; Li, F.; Wu, P.; Zhu, X. S.; Wei, S. H.; Zhou, Y. M. Acta Phys. -Chim. Sin. 2020, 36 (7), 1905034.  doi: 10.3866/PKU.WHXB201905034

    9. [9]

      Ma, D.; Cao, Z.; Hu, A. Nano-Micro Lett. 2014, 6 (4), 347. doi: 10.1007/s40820-014-0008-2  doi: 10.1007/s40820-014-0008-2

    10. [10]

      Ren, W. F.; Zhou, Y.; Li, J. T.; Huang, L.; Sun, S. G. Curr. Opin. Electrochem. 2019, 18, 46. doi: 10.1016/j.coelec.2019.09.006  doi: 10.1016/j.coelec.2019.09.006

    11. [11]

      Liang, B.; Liu, Y.; Xu, Y. J. Power Sources 2014, 267, 469. doi: 10.1016/j.jpowsour.2014.05.096  doi: 10.1016/j.jpowsour.2014.05.096

    12. [12]

      Ko, M.; Chae, S.; Cho, J. Chemelectrochem 2015, 2 (11), 1645. doi: 10.1002/celc.201500254  doi: 10.1002/celc.201500254

    13. [13]

      Beaulieu, L.; Hatchard, T.; Bonakdarpour, A.; Fleischauer, M.; Dahn, J. J. Electrochem. Soc. 2003, 150 (11), A1457. doi: 10.1149/1.1613668  doi: 10.1149/1.1613668

    14. [14]

      Huang, S.; Ren, J.; Liu, R.; Yue, M.; Huang, Y.; Yuan, G. Int. J. Energy Res. 2018, 42 (3), 919. doi: 10.1002/er.3826  doi: 10.1002/er.3826

    15. [15]

      Shin, J.; Kim, T. H.; Lee, Y.; Cho, E. Energy Storage Mater. 2020, 25, 764. doi: 10.1016/j.ensm.2019.09.009  doi: 10.1016/j.ensm.2019.09.009

    16. [16]

      Hu, Z.; Zhao, L.; Jiang, T.; Liu, J.; Rashid, A.; Sun, P.; Wang, G.; Yan, C.; Zhang, L. Adv. Funct. Mater. 2019, 29 (45), 1906548. doi: 10.1002/adfm.201906548  doi: 10.1002/adfm.201906548

    17. [17]

      Luo, F.; Chu, G.; Xia, X.; Liu, B.; Zheng, J.; Li, J.; Li, H.; Gu, C.; Chen, L. Nanoscale 2015, 7 (17), 7651. doi: 10.1039/C5NR00045A  doi: 10.1039/C5NR00045A

    18. [18]

      Wu, H.; Cui, Y. Nano Today 2012, 7 (5), 414. doi: 10.1016/j.nantod.2012.08.004  doi: 10.1016/j.nantod.2012.08.004

    19. [19]

      Zhu, X.; Yang, D.; Li, J.; Su, F. J. Nanosci. Nanotechnol. 2015, 15 (1), 15. doi: 10.1166/jnn.2015.9712  doi: 10.1166/jnn.2015.9712

    20. [20]

      Mabery, C. F. Am. Chem. J. 1887, 9, 11.

    21. [21]

      Lu, H. Research of Silicon-based Anode Materials for High-Energy-Density Lithium Ion Battery. Ph. D., Chinese Academy of Science, Beijing, 2019.

    22. [22]

      Ko, M.; Oh, P.; Chae, S.; Cho, W.; Cho, J. Small 2015, 11 (33), 4058. doi: 10.1002/smll.201500474  doi: 10.1002/smll.201500474

    23. [23]

      Ryu, J.; Hong, D.; Lee, H. W.; Park, S. Nano Res. 2017, 10 (12), 3970. doi: 10.1007/s12274-017-1692-2  doi: 10.1007/s12274-017-1692-2

    24. [24]

      Zhang, L.; Zhang, L.; Chai, L.; Xue, P.; Hao, W.; Zheng, H. J. Mater. Chem. A 2014, 2 (44), 19036. doi: 10.1039/C4TA04320K  doi: 10.1039/C4TA04320K

    25. [25]

      Zhu, X.; Zhang, F.; Zhang, L.; Zhang, L.; Song, Y.; Jiang, T.; Sayed, S.; Lu, C.; Wang, X.; Sun, J.; et al. Adv. Funct. Mater. 2018, 28 (11), 1705015. doi: 10.1002/adfm.201705015  doi: 10.1002/adfm.201705015

    26. [26]

      Zhang, L.; Zhang, L.; Zhang, J.; Hao, W.; Zheng, H. J. Mater. Chem. A 2015, 3 (30), 15432. doi: 10.1039/C5TA03750F  doi: 10.1039/C5TA03750F

    27. [27]

      Philipp, H. R. J. Phys. Chem. Solids 1971, 32 (8), 1935. doi: 10.1016/S0022-3697(71)80159-2  doi: 10.1016/S0022-3697(71)80159-2

    28. [28]

      Brady, G. W. J. Phys. Chem. 1959, 63 (7), 1119. doi: 10.1021/j150577a020  doi: 10.1021/j150577a020

    29. [29]

      Temkin, R. J. J. Non-Cryst. Solids 1975, 17 (2), 215. doi: 10.1016/0022-3093(75)90052-6  doi: 10.1016/0022-3093(75)90052-6

    30. [30]

      Hohl, A.; Wieder, T.; van Aken, P. A.; Weirich, T. E.; Denninger, G.; Vidal, M.; Oswald, S.; Deneke, C.; Mayer, J.; Fuess, H. J. Non-Cryst. Solids 2003, 320 (1), 255. doi: 10.1016/S0022-3093(03)00031-0  doi: 10.1016/S0022-3093(03)00031-0

    31. [31]

      Schulmeister, K.; Mader, W. J. Non-Cryst. Solids 2003, 320 (1), 143. doi: 10.1016/S0022-3093(03)00029-2  doi: 10.1016/S0022-3093(03)00029-2

    32. [32]

      Hirata, A.; Kohara, S.; Asada, T.; Arao, M.; Yogi, C.; Imai, H.; Tan, Y.; Fujita, T.; Chen, M. Nat. Commun. 2016, 7 (1), 11591. doi: 10.1038/ncomms11591  doi: 10.1038/ncomms11591

    33. [33]

      Liu, Z.; Yu, Q.; Zhao, Y.; He, R.; Xu, M.; Feng, S.; Li, S.; Zhou, L.; Mai, L. Chem. Soc. Rev. 2019, 48 (1), 285. doi: 10.1039/C8CS00441B  doi: 10.1039/C8CS00441B

    34. [34]

      Miyachi, M.; Yamamoto, H.; Kawai, H.; Ohta, T.; Shirakata, M. J. Electrochem. Soc. 2005, 152 (10), A2089. doi: 10.1149/1.2013210  doi: 10.1149/1.2013210

    35. [35]

      Yu, B. C.; Hwa, Y.; Park, C. M.; Sohn, H. J. J. Mater. Chem. A 2013, 1 (15), 4820. doi: 10.1039/C3TA00045A  doi: 10.1039/C3TA00045A

    36. [36]

      Jung, S. C.; Kim, H. J.; Kim, J. H.; Han, Y. K. J. Phys. Chem. C 2016, 120 (2), 886. doi: 10.1021/acs.jpcc.5b10589  doi: 10.1021/acs.jpcc.5b10589

    37. [37]

      Kim, J. H.; Park, C. M.; Kim, H.; Kim, Y. J.; Sohn, H. J. J. Electroanal. Chem. 2011, 661 (1), 245. doi: 10.1016/j.jelechem.2011.08.010  doi: 10.1016/j.jelechem.2011.08.010

    38. [38]

      Yang, X.; Wen, Z.; Xu, X.; Lin, B.; Huang, S. J. Power Sources 2007, 164 (2), 880. doi: 10.1016/j.jpowsour.2006.11.010  doi: 10.1016/j.jpowsour.2006.11.010

    39. [39]

      Hwa, Y.; Park, C. M.; Sohn, H. J. J. Power Sources 2013, 222, 129. doi: 10.1016/j.jpowsour.2012.08.060  doi: 10.1016/j.jpowsour.2012.08.060

    40. [40]

      Kim, J. H.; Sohn, H. J.; Kim, H.; Jeong, G.; Choi, W. J. Power Sources 2007, 170 (2), 456. doi: 10.1016/j.jpowsour.2007.03.081  doi: 10.1016/j.jpowsour.2007.03.081

    41. [41]

      Doh, C. H.; Park, C. W.; Shin, H. M.; Kim, D. H.; Chung, Y. D.; Moon, S. I.; Jin, B. S.; Kim, H. S.; Veluchamy, A. J. Power Sources 2008, 179 (1), 367. doi: 10.1016/j.jpowsour.2007.12.074  doi: 10.1016/j.jpowsour.2007.12.074

    42. [42]

      Si, Q.; Hanai, K.; Ichikawa, T.; Phillipps, M. B.; Hirano, A.; Imanishi, N.; Yamamoto, O.; Takeda, Y. J. Power Sources 2011, 196 (22), 9774. doi: 10.1016/j.jpowsour.2011.08.005  doi: 10.1016/j.jpowsour.2011.08.005

    43. [43]

      Hou, X.; Wang, J.; Zhang, M.; Liu, X.; Shao, Z.; Li, W.; Hu, S. RSC Adv. 2014, 4, 34615. doi: 10.1039/C4RA03475A  doi: 10.1039/C4RA03475A

    44. [44]

      Guo, L.; He, H.; Ren, Y.; Wang, C.; Li, M. Chem. Eng. J. 2018, 335, 32. doi: 10.1016/j.cej.2017.10.145  doi: 10.1016/j.cej.2017.10.145

    45. [45]

      An, W.; Gao, B.; Mei, S.; Xiang, B.; Fu, J.; Wang, L.; Zhang, Q.; Chu, P. K.; Huo, K. Nat. Commun. 2019, 10 (1), 1447. doi: 10.1038/s41467-019-09510-5  doi: 10.1038/s41467-019-09510-5

    46. [46]

      Lee, J. I.; Lee, K. T.; Cho, J.; Kim, J.; Choi, N. S.; Park, S. Angew. Chem. Int. Ed. 2012, 51 (11), 2767. doi: 10.1002/anie.201108915  doi: 10.1002/anie.201108915

    47. [47]

      Lee, J. I.; Park, S. Nano Energy 2013, 2 (1), 146. doi: 10.1016/j.nanoen.2012.08.009  doi: 10.1016/j.nanoen.2012.08.009

    48. [48]

      Yu, B. C.; Hwa, Y.; Kim, J. H.; Sohn, H. J. Electrochim. Acta 2014, 117, 426. doi: 10.1016/j.electacta.2013.11.158  doi: 10.1016/j.electacta.2013.11.158

    49. [49]

      Huang, X.; Li, M. Appl. Surf. Sci. 2018, 439, 336. doi: 10.1016/j.apsusc.2017.12.184  doi: 10.1016/j.apsusc.2017.12.184

    50. [50]

      Ge, J.; Tang, Q.; Shen, H.; Zhou, F.; Zhou, H.; Yang, W.; Xu, B.; Cong, X. Ceram. Int. 2020, 46 (8), 12507. doi: 10.1016/j.ceramint.2020.02.013  doi: 10.1016/j.ceramint.2020.02.013

    51. [51]

      Park, D.; Kim, H. S.; Seo, H.; Kim, K.; Kim, J. H. Electrochim. Acta 2020, 357, 136862. doi: 10.1016/j.electacta.2020.136862  doi: 10.1016/j.electacta.2020.136862

    52. [52]

      Zhang, J.; Zhang, L.; Xue, P.; Zhang, L.; Zhang, X.; Hao, W.; Tian, J.; Shen, M.; Zheng, H. J. Mater. Chem. A 2015, 3 (15), 7810. doi: 10.1039/C5TA00457H  doi: 10.1039/C5TA00457H

    53. [53]

      Zhang, L.; Hao, W.; Wang, H.; Zhang, L.; Feng, X.; Zhang, Y.; Chen, W.; Pang, H.; Zheng, H. J. Mater. Chem. A 2013, 1 (26), 7601. doi: 10.1039/C3TA11034F  doi: 10.1039/C3TA11034F

    54. [54]

      Zhang, Y.; Li, K.; Ji, P.; Chen, D.; Zeng, J.; Sun, Y.; Zhang, P.; Zhao, J. J. Mater. Sci. 2017, 52 (7), 3630. doi: 10.1007/s10853-016-0503-6  doi: 10.1007/s10853-016-0503-6

    55. [55]

      Hirose, T.; Takahashi, K.; Matsuno, T.; Osawa, Y.; Furuya, M.; Sakai, R.; Matsui, C.; Koide, H. J. Electrochem. Soc. 2020, 167 (12), 120523. doi: 10.1149/1945-7111/abaf77  doi: 10.1149/1945-7111/abaf77

    56. [56]

      Lin, Z.; Li, J.; Huang, Q.; Xu, K.; Fan, W.; Yu, L.; Xia, Q.; Li, W. J. Phys. Chem. C 2019, 123 (20), 12902. doi: 10.1021/acs.jpcc.9b02509  doi: 10.1021/acs.jpcc.9b02509

    57. [57]

      Lu, H.; Wang, J. Y.; Liu, B. N.; Chu, G.; Zhou, G.; Luo, F.; Zheng, J. Y.; Yu, X. Q.; Li, H. Chin. Phys. B 2019, 28 (6), 8. doi: 10.1088/1674-1056/28/6/068201  doi: 10.1088/1674-1056/28/6/068201

    58. [58]

      Jiang, B.; Zeng, S.; Wang, H.; Liu, D.; Qian, J.; Cao, Y.; Yang, H.; Ai, X. ACS Appl. Mater. Interfaces 2016, 8 (46), 31611. doi: 10.1021/acsami.6b09775  doi: 10.1021/acsami.6b09775

    59. [59]

      Cao, Z.; Xia, B.; Xie, X.; Zhao, J. Electrochim. Acta 2019, 313, 311. doi: 10.1016/j.electacta.2019.05.045  doi: 10.1016/j.electacta.2019.05.045

    60. [60]

      Ke, C. Z.; Liu, F.; Zheng, Z. M.; Zhang, H. H.; Cai, M. T.; Li, M.; Yan, Q. Z.; Chen, H. X.; Zhang, Q. B. Rare Met. 2021, 40, 1347. doi: 10.1007/s12598-021-01716-1  doi: 10.1007/s12598-021-01716-1

    61. [61]

      Li, Q.; Chen, D.; Li, K.; Wang, J.; Zhao, J. Electrochim. Acta 2016, 202, 140. doi: 10.1016/j.electacta.2016.04.019  doi: 10.1016/j.electacta.2016.04.019

    62. [62]

      Yang, Y.; Li, J.; Chen, D.; Fu, T.; Sun, D.; Zhao, J. ChemElectroChem 2016, 3 (5), 757. doi: 10.1002/celc.201600012  doi: 10.1002/celc.201600012

    63. [63]

      Sun, Y. Z.; Chen, D. Q.; Peng, Y. Y.; Zhang, Y. Y.; Zhao, J. B. J. Xiamen Univ. Nat. Sci. 2018, 57 (4), 463.  doi: 10.6043/j.issn.0438-0479.201711015

    64. [64]

      Zhang, Q.; Lin, N.; Xu, T.; Shen, K.; Li, T.; Han, Y.; Zhou, J.; Qian, Y. RSC Adv. 2017, 7 (63), 39762. doi: 10.1039/c7ra05829b  doi: 10.1039/c7ra05829b

    65. [65]

      Dou, F.; Shi, L.; Song, P.; Chen, G.; An, J.; Liu, H.; Zhang, D. Chem. Eng. J. 2018, 338, 488. doi: 10.1016/j.cej.2018.01.048  doi: 10.1016/j.cej.2018.01.048

    66. [66]

      Han, J.; Chen, G.; Yan, T.; Liu, H.; Shi, L.; An, Z.; Zhang, J.; Zhang, D. Chem. Eng. J. 2018, 347, 273. doi: 10.1016/j.cej.2018.04.100  doi: 10.1016/j.cej.2018.04.100

    67. [67]

      Wang, H.; Maiyalagan, T.; Wang, X. ACS Catal. 2012, 2 (5), 781. doi: 10.1021/cs200652y  doi: 10.1021/cs200652y

    68. [68]

      Liao, X.; Peng, M.; Liang, K. J. Electroanal. Chem. 2019, 841, 79. doi: 10.1016/j.jelechem.2019.04.040  doi: 10.1016/j.jelechem.2019.04.040

    69. [69]

      Zeng, Y.; Huang, Y.; Liu, N.; Wang, X.; Zhang, Y.; Guo, Y.; Wu, H. H.; Chen, H.; Tang, X.; Zhang, Q. J. Energy Chem. 2021, 54, 727. doi: 10.1016/j.jechem.2020.06.022  doi: 10.1016/j.jechem.2020.06.022

    70. [70]

      Lee, D. J.; Ryou, M. H.; Lee, J. N.; Kim, B. G.; Lee, Y. M.; Kim, H. W.; Kong, B. S.; Park, J. K.; Choi, J. W. Electrochem. Commun. 2013, 34, 98. doi: 10.1016/j.elecom.2013.05.029  doi: 10.1016/j.elecom.2013.05.029

    71. [71]

      Peng, M.; Qiu, Y.; Zhang, M.; Xu, Y.; Yi, L.; Liang, K. Appl. Surf. Sci. 2020, 507, 145060. doi: 10.1016/j.apsusc.2019.145060  doi: 10.1016/j.apsusc.2019.145060

    72. [72]

      Wu, Z. L.; Ji, S. B.; Liu, L. K.; Xie, T.; Tan, L.; Tang, H.; Sun, R. G. Rare Met. 2020, 40, 1110. doi: 10.1007/s12598-020-01445-x  doi: 10.1007/s12598-020-01445-x

    73. [73]

      Hu, L.; Xia, W.; Tang, R.; Hu, R.; Ouyang, L.; Sun, T.; Wang, H. Front. Chem. 2020, 8, 388. doi: 10.3389/fchem.2020.00388  doi: 10.3389/fchem.2020.00388

    74. [74]

      Kuang, S.; Xu, D.; Chen, W.; Huang, X.; Sun, L.; Cai, X.; Yu, X. Appl. Surf. Sci. 2020, 521, 146497. doi: 10.1016/j.apsusc.2020.146497  doi: 10.1016/j.apsusc.2020.146497

    75. [75]

      Shi, L.; Pang, C.; Chen, S.; Wang, M.; Wang, K.; Tan, Z.; Gao, P.; Ren, J.; Huang, Y.; Peng, H.; et al. Nano Lett. 2017, 17 (6), 3681. doi: 10.1021/acs.nanolett.7b00906  doi: 10.1021/acs.nanolett.7b00906

    76. [76]

      Li, J.; Wang, L.; Liu, F.; Liu, W.; Luo, C.; Liao, Y.; Li, X.; Qu, M.; Wan, Q.; Peng, G. ChemistrySelect 2019, 4 (10), 2918. doi: 10.1002/slct.201900337  doi: 10.1002/slct.201900337

    77. [77]

      Xia, M.; Zhou, Z.; Su, Y.; Li, Y.; Wu, Y.; Zhou, N.; Zhang, H.; Xiong, X. Appl. Surf. Sci. 2019, 467–468, 298. doi: 10.1016/j.apsusc.2018.10.156  doi: 10.1016/j.apsusc.2018.10.156

    78. [78]

      Xia, M.; Li, Y.; Zhou, Z.; Wu, Y.; Zhou, N.; Zhang, H.; Xiong, X. Ceram. Int. 2019, 45 (2), 1950. doi: 10.1016/j.ceramint.2018.10.088  doi: 10.1016/j.ceramint.2018.10.088

    79. [79]

      Shi, H.; Zhang, H.; Li, X.; Du, Y.; Hou, G.; Xiang, M.; Lv, P.; Zhu, Q. Carbon 2020, 168, 113. doi: 10.1016/j.carbon.2020.06.053  doi: 10.1016/j.carbon.2020.06.053

    80. [80]

      Zeng, S. Z.; Niu, Y.; Zou, J.; Zeng, X.; Zhu, H.; Huang, J.; Wang, L.; Kong, L. B.; Han, P. J. Power Sources 2020, 466, 228234. doi: 10.1016/j.jpowsour.2020.228234  doi: 10.1016/j.jpowsour.2020.228234

    81. [81]

      Ren, Y.; Ding, J.; Yuan, N.; Jia, S.; Qu, M.; Yu, Z. J. Solid State Electr. 2011, 16 (4), 1453. doi: 10.1007/s10008-011-1525-2  doi: 10.1007/s10008-011-1525-2

    82. [82]

      Qian, L.; Lan, J. L.; Xue, M.; Yu, Y.; Yang, X. RSC Adv. 2017, 7 (58), 36697. doi: 10.1039/c7ra06671f  doi: 10.1039/c7ra06671f

    83. [83]

      Hu, G.; Zhong, K.; Yu, R.; Liu, Z.; Zhang, Y.; Wu, J.; Zhou, L.; Mai, L. J. Mater. Chem. A 2020, 8 (26), 13285. doi: 10.1039/d0ta00540a  doi: 10.1039/d0ta00540a

    84. [84]

      Zhang, Q.; Chen, H.; Luo, L.; Zhao, B.; Luo, H.; Han, X.; Wang, J.; Wang, C.; Yang, Y.; Zhu, T.; et al. Energy Environ. Sci. 2018, 11 (3), 669. doi: 10.1039/C8EE00239H  doi: 10.1039/C8EE00239H

    85. [85]

      Miyachi, M.; Yamamoto, H.; Kawai, H. J. Electrochem. Soc. 2007, 154 (4), A376. doi: 10.1149/1.2455963  doi: 10.1149/1.2455963

    86. [86]

      Jeong, G.; Kim, Y. U.; Krachkovskiy, S. A.; Lee, C. K. Chem. Mater. 2010, 22 (19), 5570. doi: 10.1021/cm101747w  doi: 10.1021/cm101747w

    87. [87]

      http://www.sony.net/SonyInfo/News/Press/200502/05-006E/ (accessed on February 24 2021)

    88. [88]

      Liu, B.; Abouimrane, A.; Ren, Y.; Balasubramanian, M.; Wang, D.; Fang, Z. Z.; Amine, K. Chem. Mater. 2012, 24 (24), 4653. doi: 10.1021/cm3017853  doi: 10.1021/cm3017853

    89. [89]

      Liu, B.; Abouimrane, A.; Brown, D. E.; Zhang, X.; Ren, Y.; Fang, Z. Z.; Amine, K. J. Mater. Chem. A 2013, 1 (13), 4376. doi: 10.1039/c3ta00101f  doi: 10.1039/c3ta00101f

    90. [90]

      Cheng, F.; Wang, G.; Sun, Z.; Yu, Y.; Huang, F.; Gong, C.; Liu, H.; Zheng, G.; Qin, C.; Wen, S. Ceram. Int. 2017, 43 (5), 4309. doi: 10.1016/j.ceramint.2016.12.074  doi: 10.1016/j.ceramint.2016.12.074

    91. [91]

      Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407 (6803), 496. doi: 10.1038/35035045  doi: 10.1038/35035045

    92. [92]

      Fu, R.; Wu, Y.; Fan, C.; Long, Z.; Shao, G.; Liu, Z. ChemSusChem 2019, 12 (14), 3377. doi: 10.1002/cssc.201900541  doi: 10.1002/cssc.201900541

    93. [93]

      Zhou, M.; Gordin, M. L.; Chen, S.; Xu, T.; Song, J.; Lv, D.; Wang, D. Electrochem. Commun. 2013, 28, 79. doi: 10.1016/j.elecom.2012.12.013  doi: 10.1016/j.elecom.2012.12.013

    94. [94]

      Sakuda, A.; Hayashi, A.; Tatsumisago, M. J. Power Sources 2010, 195 (2), 599. doi: 10.1016/j.jpowsour.2009.07.037  doi: 10.1016/j.jpowsour.2009.07.037

    95. [95]

      Kannan, A. M.; Rabenberg, L.; Manthiram, A. Electrochem. Solid-State Lett. 2003, 6 (1), A16. doi: 10.1149/1.1526782  doi: 10.1149/1.1526782

    96. [96]

      Zheng, J. M.; Li, J.; Zhang, Z. R.; Guo, X. J.; Yang, Y. Solid State Ionics 2008, 179 (27), 1794. doi: 10.1016/j.ssi.2008.01.091  doi: 10.1016/j.ssi.2008.01.091

    97. [97]

      Jeong, G.; Kim, J. H.; Kim, Y. U.; Kim, Y. J. J. Mater. Chem. 2012, 22 (16), 7999. doi: 10.1039/c2jm15677f  doi: 10.1039/c2jm15677f

    98. [98]

      Zhou, N.; Wu, Y.; Zhou, Q.; Li, Y.; Liu, S.; Zhang, H.; Zhou, Z.; Xia, M. Appl. Surf. Sci. 2019, 486, 292. doi: 10.1016/j.apsusc.2019.05.025  doi: 10.1016/j.apsusc.2019.05.025

    99. [99]

      Xu, D.; Chen, W.; Luo, Y.; Wei, H.; Yang, C.; Cai, X.; Fang, Y.; Yu, X. Appl. Surf. Sci. 2019, 479, 980. doi: 10.1016/j.apsusc.2019.02.156  doi: 10.1016/j.apsusc.2019.02.156

    100. [100]

      Cai, X.; Liu, W.; Yang, S.; Zhang, S.; Gao, Q.; Yu, X.; Li, J.; Wang, H.; Fang, Y. ACS Adv. Mater. Interfaces 2019, 6 (10), 1801800. doi: 10.1002/admi.201801800  doi: 10.1002/admi.201801800

    101. [101]

      Zheng, Z.; Wu, H. H.; Chen, H.; Cheng, Y.; Zhang, Q.; Xie, Q.; Wang, L.; Zhang, K.; Wang, M. S.; Peng, D. L.; et al. Nanoscale 2018, 10 (47), 22203. doi: 10.1039/C8NR07207H  doi: 10.1039/C8NR07207H

    102. [102]

      Zhang, J.; Zhang, J.; Bao, T.; Xie, X.; Xia, B. J. Power Sources 2017, 348, 16. doi: 10.1016/j.jpowsour.2017.02.076  doi: 10.1016/j.jpowsour.2017.02.076

    103. [103]

      Liu, Y.; Huang, J.; Zhang, X.; Wu, J.; Baker, A.; Zhang, H.; Chang, S.; Zhang, X. J. Alloys Compd. 2018, 749, 236. doi: 10.1016/j.jallcom.2018.03.229  doi: 10.1016/j.jallcom.2018.03.229

    104. [104]

      Xia, M.; Li, Y. R.; Xiong, X.; Hu, W.; Tang, Y. W.; Zhou, N.; Zhou, Z.; Zhang, H. B. J. Alloys Compd. 2019, 800, 116. doi: 10.1016/j.jallcom.2019.05.365  doi: 10.1016/j.jallcom.2019.05.365

    105. [105]

      Liu, L.; Li, X.; He, G.; Zhang, G.; Su, G.; Fang, C. J. Alloys Compd. 2020, 836, 155407. doi: 10.1016/j.jallcom.2020.155407  doi: 10.1016/j.jallcom.2020.155407

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    3. [3]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    4. [4]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    5. [5]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    6. [6]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    13. [13]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    14. [14]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    15. [15]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    16. [16]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    17. [17]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    18. [18]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    19. [19]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    20. [20]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

Metrics
  • PDF Downloads(252)
  • Abstract views(3827)
  • HTML views(1416)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return