Citation: Heng Chen, Jincan Zhang, Xiaoting Liu, Zhongfan Liu. Effect of Gas-Phase Reaction on the CVD Growth of Graphene[J]. Acta Physico-Chimica Sinica, ;2022, 38(1): 210105. doi: 10.3866/PKU.WHXB202101053 shu

Effect of Gas-Phase Reaction on the CVD Growth of Graphene

  • Corresponding author: Zhongfan Liu, zfliu@pku.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 27 January 2021
    Revised Date: 21 February 2021
    Accepted Date: 22 February 2021
    Available Online: 1 March 2021

    Fund Project: the National Key Basic Research Program of China 2016YFA0200103the National Key Basic Research Program of China 2018YFA0703502the National Natural Science Foundation of China 51520105003the National Natural Science Foundation of China 52072042Beijing National Laboratory for Molecular Sciences BNLMS-CXTD-202001the Beijing Municipal Science and Technology Planning Project Z18110300480001the Beijing Municipal Science and Technology Planning Project Z18110300480002

  • Chemical vapor deposition (CVD) is considered as the most promising method for the mass production of high-quality graphene films owing to its fine controllability, uniformity, and scalability. In the past decade, significant efforts have been devoted to exploring new strategies for growing graphene with improved quality. During the high-temperature CVD growth process of graphene, besides the surface reactions, gas-phase reactions play an important role in the growth of graphene, especially for the decomposition of hydrocarbons. However, the effect of gas-phase reactions on the CVD growth of graphene has not been analyzed previously. To fill this gap, it is essential to systematically analyze the relationship between gas-phase reactions and the growth of graphene films. In this review article, we aim to provide comprehensive knowledge of the gas-phase reactions occurring in the CVD system during graphene growth and to summarize the typical strategies for improving the quality of graphene by modulating gas-phase reactions. After briefly introducing the elementary steps and basic concept of graphene growth, we focus on the gas-phase dynamics and reactions in the CVD system, which influence the decomposition of hydrocarbons, nucleation of graphene, and lateral growth of graphene nuclei, as well as the merging of adjacent graphene domains. Then, a systematic description of the mass transport process in gas phase is provided, including confirmation of the states of gas flow under different CVD conditions and introduction to the boundary layer, which is crucial for graphene growth. Furthermore, we discuss the possible reaction paths of carbon sources in the gas phase and the corresponding active carbon species existing in the boundary layer, based on which the main impact factors of gas-phase reactions are discussed. Representative strategies for obtaining graphene films with improved quality by modulating gas-phase reactions are summarized. Gas-phase reactions affect the crystallinity, cleanness, domain size, layer number, and growth rate of graphene grown on both metal and non-metal substrates. Therefore, we will separately review the detailed strategies, corresponding mechanisms, key parameters, and latest status regarding the quality improvement of graphene. Finally, a brief summary and proposals for future research are provided. This review can be divided into two parts: (1) gas-phase reactions occurring in the high-temperature CVD system, including the mass transport process and the reaction paths of hydrocarbons; and (2) the synthesis of high-quality graphene film via modulation of the gas-phase reaction, in order to improve the crystallinity, cleanness, domain size, layer number, and growth rate of graphene.
  • 加载中
    1. [1]

      Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Nat. Nanotechnol. 2008, 3, 491. doi: 10.1038/nnano.2008.199  doi: 10.1038/nnano.2008.199

    2. [2]

      Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902. doi: 10.1021/nl0731872  doi: 10.1021/nl0731872

    3. [3]

      Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308. doi: 10.1126/science.1156965  doi: 10.1126/science.1156965

    4. [4]

      Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. doi: 10.1126/science.1157996  doi: 10.1126/science.1157996

    5. [5]

      Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Lett. 2008, 8, 3498. doi: 10.1021/nl802558y  doi: 10.1021/nl802558y

    6. [6]

      Lozada-Hidalgo, M.; Zhang, S.; Hu, S.; Esfandiar, A.; Grigorieva, I. V.; Geim, A. K. Nat. Commun. 2017, 8, 15215. doi: 10.1038/ncomms15215  doi: 10.1038/ncomms15215

    7. [7]

      Kou, L.; Huang, T. Q.; Zheng, B. N.; Han, Y.; Zhao, X. L.; Gopalsamy, K.; Sun, H. Y.; Gao, C. Nat. Commun. 2014, 5, 3754. doi: 10.1038/ncomms4754  doi: 10.1038/ncomms4754

    8. [8]

      Liu, C. -H.; Chang, Y. -C.; Norris, T. B.; Zhong, Z. H. Nat. Nanotechnol. 2014, 9, 273. doi: 10.1038/nnano.2014.31  doi: 10.1038/nnano.2014.31

    9. [9]

      Tran Thanh, T.; Nine, M. J.; Krebsz, M.; Pasinszki, T.; Coghlan, C. J.; Tran, D. N. H.; Losic, D. Adv. Funct. Mater. 2017, 27, 1702891. doi: 10.1002/adfm.201702891  doi: 10.1002/adfm.201702891

    10. [10]

      Han, N.; Cuong, T. V.; Han, M.; Ryu, B. D.; Chandramohan, S.; Park, J. B.; Kang, J. H.; Park, Y. J.; Ko, K. B.; Kim, H. Y.; et al. Nat. Commun. 2013, 4, 1452. doi: 10.1038/ncomms2448  doi: 10.1038/ncomms2448

    11. [11]

      Yan, Z.; Liu, G. X.; Khan, J. M.; Balandin, A. A. Nat. Commun. 2012, 3, 827. doi: 10.1038/ncomms1828  doi: 10.1038/ncomms1828

    12. [12]

      Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Science 2015, 347, 1246501. doi: 10.1126/science.1246501  doi: 10.1126/science.1246501

    13. [13]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    14. [14]

      Lu, X. K.; Yu, M. F.; Huang, H.; Ruoff, R. S. Nanotechnology 1999, 10, 269. doi: 10.1088/0957-4484/10/3/308  doi: 10.1088/0957-4484/10/3/308

    15. [15]

      Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W.; et al. Nano Lett. 2008, 8, 1704. doi: 10.1021/nl080649i  doi: 10.1021/nl080649i

    16. [16]

      Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; et al. Science 2006, 312, 1191. doi: 10.1126/science.1125925  doi: 10.1126/science.1125925

    17. [17]

      Park, S.; Ruoff, R. S. Nat. Nanotechnol. 2009, 4, 217. doi: 10.1038/nnano.2009.58  doi: 10.1038/nnano.2009.58

    18. [18]

      Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Science 2009, 324, 1312. doi: 10.1126/science.1171245  doi: 10.1126/science.1171245

    19. [19]

      Luong, D. X.; Bets, K. V.; Algozeeb, W. A.; Stanford, M. G.; Kittrell, C.; Chen, W. Y.; Salvatierra, R. V.; Ren, M. Q.; McHugh, E. A.; Advincula, P. A.; et al. Nature 2020, 577, 647. doi: 10.1038/s41586-020-1938-0  doi: 10.1038/s41586-020-1938-0

    20. [20]

      Lin, L.; Deng, B.; Sun, J. Y.; Peng, H. L.; Liu, Z. F. Chem. Rev. 2018, 118, 9281. doi: 10.1021/acs.chemrev.8b00325  doi: 10.1021/acs.chemrev.8b00325

    21. [21]

      Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Nat. Nanotechnol. 2014, 9, 768. doi: 10.1038/nnano.2014.207  doi: 10.1038/nnano.2014.207

    22. [22]

      Hamilton, J. C.; Blakely, J. M. Surf. Sci. 1980, 91, 199. doi: 10.1016/0039-6028(80)90080-1  doi: 10.1016/0039-6028(80)90080-1

    23. [23]

      Coraux, J.; N'Diaye, A. T.; Busse, C.; Michely, T. Nano Lett. 2008, 8, 565. doi: 10.1021/nl0728874  doi: 10.1021/nl0728874

    24. [24]

      Sutter, P. W.; Flege, J. -I.; Sutter, E. A. Nat. Mater. 2008, 7, 406. doi: 10.1038/nmat2166  doi: 10.1038/nmat2166

    25. [25]

      Kwon, S. -Y.; Ciobanu, C. V.; Petrova, V.; Shenoy, V. B.; Bareno, J.; Gambin, V.; Petrov, I.; Kodambaka, S. Nano Lett. 2009, 9, 3985. doi: 10.1021/nl902140j  doi: 10.1021/nl902140j

    26. [26]

      Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Nano Lett. 2009, 9, 30. doi: 10.1021/nl801827v  doi: 10.1021/nl801827v

    27. [27]

      Wei, D. C.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Nano Lett. 2009, 9, 1752. doi: 10.1021/nl803279t  doi: 10.1021/nl803279t

    28. [28]

      Gao, T.; Xie, S. B.; Gao, Y. B.; Liu, M. X.; Chen, Y. B.; Zhang, Y. F.; Liu, Z. F. ACS Nano 2011, 5, 9194. doi: 10.1021/nn203440r  doi: 10.1021/nn203440r

    29. [29]

      Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. -P.; Zhang, Z. Y.; Fu, Q.; Peng, L. -M.; et al. Nat. Commun. 2012, 3, 699. doi: 10.1038/ncomms1702  doi: 10.1038/ncomms1702

    30. [30]

      Edwards, R. S.; Coleman, K. S. Acc. Chem. Res. 2013, 46, 23. doi: 10.1021/ar3001266  doi: 10.1021/ar3001266

    31. [31]

      Teng, P. -Y.; Lu, C. -C.; Akiyama-Hasegawa, K.; Lin, Y. -C.; Yeh, C. -H.; Suenaga, K.; Chiu, P. -W. Nano Lett. 2012, 12, 1379. doi: 10.1021/nl204024k  doi: 10.1021/nl204024k

    32. [32]

      Lin, L.; Zhang, J. C.; Su, H. S.; Li, J. Y.; Sun, L. Z.; Wang, Z. H.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y. H.; et al. Nat. Commun. 2019, 10, 1912. doi: 10.1038/s41467-019-09565-4  doi: 10.1038/s41467-019-09565-4

    33. [33]

      Yan, K.; Peng, H. L.; Zhou, Y.; Li, H.; Liu, Z. F. Nano Lett. 2011, 11, 1106. doi: 10.1021/nl104000b  doi: 10.1021/nl104000b

    34. [34]

      Wu, T. R.; Zhang, X. F.; Yuan, Q. H.; Xue, J. C.; Lu, G. Y.; Liu, Z. H.; Wang, H. S.; Wang, H. M.; Ding, F.; Yu, Q. K.; et al. Nat. Mater. 2016, 15, 43. doi: 10.1038/nmat4477  doi: 10.1038/nmat4477

    35. [35]

      Tang, S. J.; Wang, H. M.; Wang, H. S.; Sun, Q. J.; Zhang, X. Y.; Cong, C. X.; Xie, H.; Liu, X. Y.; Zhou, X. H.; Huang, F. Q.; et al. Nat. Commun. 2015, 6, 6499. doi: 10.1038/ncomms7499  doi: 10.1038/ncomms7499

    36. [36]

      Bhaviripudi, S.; Jia, X. T.; Dresselhaus, M. S.; Kong, J. Nano Lett. 2010, 10, 4128. doi: 10.1021/nl102355e  doi: 10.1021/nl102355e

    37. [37]

      Qing, F. Z.; Jia, R. T.; Li, B. -W.; Liu, C. L.; Li, C. Z.; Peng, B.; Deng, L. J.; Zhang, W. L.; Li, Y. R.; Ruoff, R. S.; et al. 2D Mater. 2017, 4, 025089. doi: 10.1088/2053-1583/aa6da5  doi: 10.1088/2053-1583/aa6da5

    38. [38]

      Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Nano Lett. 2009, 9, 4268. doi: 10.1021/nl902515k  doi: 10.1021/nl902515k

    39. [39]

      Ago, H.; Ito, Y.; Mizuta, N.; Yoshida, K.; Hu, B. S.; Orofeo, C. M.; Tsuji, M.; Ikeda, K. -I.; Mizuno, S. ACS Nano 2010, 4, 7407. doi: 10.1021/nn102519b  doi: 10.1021/nn102519b

    40. [40]

      Ismach, A.; Druzgalski, C.; Penwell, S.; Schwartzberg, A.; Zheng, M.; Javey, A.; Bokor, J.; Zhang, Y. G. Nano Lett. 2010, 10, 1542. doi: 10.1021/nl9037714  doi: 10.1021/nl9037714

    41. [41]

      Seah, C. -M.; Chai, S. -P.; Mohamed, A. R. Carbon 2014, 70, 1. doi: 10.1016/j.carbon.2013.12.073  doi: 10.1016/j.carbon.2013.12.073

    42. [42]

      Chen, J. Y.; Wen, Y. G.; Guo, Y. L.; Wu, B.; Huang, L. P; Xue, Y. Z.; Geng, D. C.; Wang, D.; Yu, G.; Liu, Y. Q. J. Am. Chem. Soc. 2011, 133, 17548. doi: 10.1021/ja2063633  doi: 10.1021/ja2063633

    43. [43]

      Li, P.; Li, Z. Y.; Yang, J. L. J. Phys. Chem. C 2017, 121, 25949. doi: 10.1021/acs.jpcc.7b09622  doi: 10.1021/acs.jpcc.7b09622

    44. [44]

      Tan, H.; Wang, D. G.; Guo, Y. B. Coatings 2018, 8, 40. doi: 10.3390/coatings8010040  doi: 10.3390/coatings8010040

    45. [45]

      Shu, H.; Tao, X. -M.; Ding, F. Nanoscale 2015, 7, 1627. doi: 10.1039/c4nr05590j  doi: 10.1039/c4nr05590j

    46. [46]

      Wang, X. L.; Yuan, Q. H.; Li, J.; Ding, F. Nanoscale 2017, 9, 11584. doi: 10.1039/c7nr02743e  doi: 10.1039/c7nr02743e

    47. [47]

      Deng, B.; Liu, Z. F.; Peng, H. L. Adv. Mater. 2019, 31, 1800996. doi: 10.1002/adma.201800996  doi: 10.1002/adma.201800996

    48. [48]

      Gao, J. F.; Yip, J.; Zhao, J. J.; Yakobson, B. I.; Ding, F. J. Am. Chem. Soc. 2011, 133, 5009. doi: 10.1021/ja110927p  doi: 10.1021/ja110927p

    49. [49]

      Lin, L.; Sun, L. Z.; Zhang, J. C.; Sun, J. Y.; Koh, A. L.; Peng, H. L.; Liu, Z. F. Adv. Mater. 2016, 28, 4671. doi: 10.1002/adma.201600403  doi: 10.1002/adma.201600403

    50. [50]

      Zhang, X. Y.; Wang, L.; Xin, J.; Yakobson, B. I.; Ding, F. J. Am. Chem. Soc. 2014, 136, 3040. doi: 10.1021/ja405499x  doi: 10.1021/ja405499x

    51. [51]

      Li, X. S.; Magnuson, C. W.; Venugopal, A.; An, J.; Suk, J. W.; Han, B. Y.; Borysiak, M.; Cai, W. W.; Velamakanni, A.; Zhu, Y. W.; et al. Nano Lett. 2010, 10, 4328. doi: 10.1021/nl101629g  doi: 10.1021/nl101629g

    52. [52]

      Sun, L. Z.; Lin, L.; Zhang, J. C.; Wang, H.; Peng, H. L.; Liu, Z. F. Nano Res. 2016, 10, 355. doi: 10.1007/s12274-016-1297-1  doi: 10.1007/s12274-016-1297-1

    53. [53]

      Artyukhov, V. I.; Liu, Y. Y.; Yakobson, B. I. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 15136. doi: 10.1073/pnas.1207519109  doi: 10.1073/pnas.1207519109

    54. [54]

      Chen, Z. L.; Qi, Y.; Chen, X. D.; Zhang, Y. F.; Liu, Z. F. Adv. Mater. 2019, 31, 1803639. doi: 10.1002/adma.201803639  doi: 10.1002/adma.201803639

    55. [55]

      Jia, K. C.; Zhang, J. C.; Lin, L.; Li, Z. Z.; Gao, J.; Sun, L. Z.; Xue, R. W.; Li, J. Y.; Kang, N.; Luo, Z. T.; et al. J. Am. Chem. Soc. 2019, 141, 7670. doi: 10.1021/jacs.9b02068  doi: 10.1021/jacs.9b02068

    56. [56]

      Köhler, C.; Hajnal, Z.; Deák, P.; Frauenheim, T.; Suhai, S. Phys. Rev. B 2001, 64, 085333. doi: 10.1103/PhysRevB.64.085333  doi: 10.1103/PhysRevB.64.085333

    57. [57]

      Chen, X. D.; Chen, Z. L.; Sun, J. Y.; Zhang, Y. F.; Liu, Z. F. Acta Phys. -Chim. Sin. 2016, 32, 14.  doi: 10.3866/PKU.WHXB201511133

    58. [58]

      Wang, H. Controllable Method of Graphene Growth on Copper Foil by Chemical Vapor Deposition. Ph. D. Dissertation, Peking University, Beijing, 2015.

    59. [59]

      Wang, H. P.; Xue, X. D.; Jiang, Q. Q.; Wang, Y. L.; Geng, D. C.; Cai, L.; Wang, L. P.; Xu, Z. P.; Yu, G. J. Am. Chem. Soc. 2019, 141, 11004. doi: 10.1021/jacs.9b05705  doi: 10.1021/jacs.9b05705

    60. [60]

      Chen, S. S.; Ji, H. X.; Chou, H.; Li, Q. Y.; Li, H. Y.; Suk, J. W.; Piner, R.; Liao, L.; Cai, W. W.; Ruoff, R. S. Adv. Mater. 2013, 25, 2062. doi: 10.1002/adma.201204000  doi: 10.1002/adma.201204000

    61. [61]

      Muñoz, R.; Gómez-Aleixandre, C. Chem. Vapor Depos. 2013, 19, 297. doi: 10.1002/cvde.201300051  doi: 10.1002/cvde.201300051

    62. [62]

      Hu, C. X.; Li, H. J.; Zhang, S. Y.; Li, W. J. Mater. Sci. 2016, 51, 3897. doi: 10.1007/s10853-015-9709-2  doi: 10.1007/s10853-015-9709-2

    63. [63]

      Li, Z. C.; Zhang, W. H.; Fan, X. D.; Wu, P.; Zeng, C. G.; Li, Z. Y.; Zhai, X. F.; Yang, J. L.; Hou, J. G. J. Phys. Chem. C 2012, 116, 10557. doi: 10.1021/jp210814j  doi: 10.1021/jp210814j

    64. [64]

      Lewis, A. M.; Derby, B.; Kinloch, I. A. ACS Nano 2013, 7, 3104. doi: 10.1021/nn305223y  doi: 10.1021/nn305223y

    65. [65]

      Li, G.; Huang, S. H.; Li, Z. Y. Phys. Chem. Chem. Phys. 2015, 17, 22832. doi: 10.1039/c5cp02301g  doi: 10.1039/c5cp02301g

    66. [66]

      Shivayogimath, A.; Mackenzie, D.; Luo, B. R.; Hansen, O.; Boggild, P.; Booth, T. J. Sci. Rep. 2017, 7, 6183. doi: 10.1038/s41598-017-06276-y  doi: 10.1038/s41598-017-06276-y

    67. [67]

      Öberg, H.; Nestsiarenka, Y.; Matsuda, A.; Gladh, J.; Hansson, T.; Pettersson, L. G. M.; Öström, H. J. Phys. Chem. C 2012, 116, 9550. doi: 10.1021/jp300514f  doi: 10.1021/jp300514f

    68. [68]

      Hao, Y. F.; Bharathi, M. S.; Wang, L.; Liu, Y. Y.; Chen, H.; Nie, S.; Wang, X. H.; Chou, H.; Tan, C.; Fallahazad, B.; et al. Science 2013, 342, 720. doi: 10.1126/science.1243879  doi: 10.1126/science.1243879

    69. [69]

      Safron, N. S.; Arnold, M. S. J. Mater. Chem. C 2014, 2, 744. doi: 10.1039/c3tc31738b  doi: 10.1039/c3tc31738b

    70. [70]

      Xu, X. Z.; Zhang, Z. H.; Qiu, L.; Zhuang, J. N.; Zhang, L.; Wang, H.; Liao, C. N.; Song, H. D.; Qiao, R. X.; Gao, P.; et al. Nat. Nanotechnol. 2016, 11, 930. doi: 10.1038/nnano.2016.132  doi: 10.1038/nnano.2016.132

    71. [71]

      Liu, C.; Xu, X. Z.; Qiu, L.; Wu, M. H.; Qiao, R. X.; Wang, L.; Wang, J. H.; Niu, J. J.; Liang, J.; Zhou, X.; et al. Nat. Chem. 2019, 11, 730. doi: 10.1038/s41557-019-0290-1  doi: 10.1038/s41557-019-0290-1

    72. [72]

      Li, Q. C.; Zhao, Z. F.; Yan, B. M.; Song, X. J.; Zhang, Z. P.; Li, J.; Wu, X. S.; Bian, Z. Q.; Zou, X. L.; Zhang, Y. F.; et al. Adv. Mater. 2017, 29, 1701325. doi: 10.1002/adma.201701325  doi: 10.1002/adma.201701325

    73. [73]

      Yazyev, O. V.; Louie, S. G. Nat. Mater. 2010, 9, 806. doi: 10.1038/nmat2830  doi: 10.1038/nmat2830

    74. [74]

      Pop, E.; Varshney, V.; Roy, A. K. MRS Bull. 2012, 37, 1273. doi: 10.1557/mrs.2012.203  doi: 10.1557/mrs.2012.203

    75. [75]

      Karoui, S.; Amara, H.; Bichara, C.; Ducastelle, F. ACS Nano 2010, 4, 6114. doi: 10.1021/nn101822s  doi: 10.1021/nn101822s

    76. [76]

      Zan, R.; Ramasse, Q. M.; Bangert, U.; Novoselov, K. S. Nano Lett. 2012, 12, 3936. doi: 10.1021/nl300985q  doi: 10.1021/nl300985q

    77. [77]

      Rümmeli, M. H.; Gorantla, S.; Bachmatiuk, A.; Phieler, J.; Geiẞler, N.; Ibrahim, I.; Pang, J.; Eckert, J. Chem. Mater. 2013, 25, 4861. doi: 10.1021/cm401669k  doi: 10.1021/cm401669k

    78. [78]

      Sun, J. Y.; Chen, Y. B.; Priydarshi, M. K.; Chen, Z.; Bachmatiuk, A.; Zou, Z. Y.; Chen, Z. L.; Song, X. J.; Gao, Y. F.; Rummeli, M. H.; et al. Nano Lett. 2015, 15, 5846. doi: 10.1021/acs.nanolett.5b01936  doi: 10.1021/acs.nanolett.5b01936

    79. [79]

      Chen, Z. L.; Qi, Y.; Chen, X. D.; Zhang, Y. F.; Liu, Z. F. Adv. Mater. 2019, 31, 1803639. doi: 10.1002/adma.201803639  doi: 10.1002/adma.201803639

    80. [80]

      Zhang, J. C.; Sun, L. Z.; Jia, K. C.; Liu, X. T.; Cheng, T.; Peng, H. L.; Lin, L.; Liu, Z. F. ACS Nano 2020, 14, 10796. doi: 10.1021/acsnano.0c06141  doi: 10.1021/acsnano.0c06141

    81. [81]

      Zhang, J. C.; Jia, K. C.; Lin, L.; Zhao, W.; Quang, H. T.; Sun, L. Z.; Li, T. R.; Li, Z. Z.; Liu, X. T.; Zheng, L. M.; et al. Angew. Chem. Int. Ed. Engl. 2019, 58, 14446. doi: 10.1002/anie.201905672  doi: 10.1002/anie.201905672

    82. [82]

      Sun, L. Z.; Lin, L.; Wang, Z. H.; Rui, D. R.; Yu, Z. W.; Zhang, J. C.; Li, Y. L. Z.; Liu, X. T.; Jia, K. C.; Wang, K. X.; et al. Adv. Mater. 2019, 31, 1902978. doi: 10.1002/adma.201902978  doi: 10.1002/adma.201902978

    83. [83]

      Jia, K. C.; Ci, H. N.; Zhang, J. C.; Sun, Z. T.; Ma, Z. T.; Zhu, Y. S.; Liu, S. N.; Liu, J. L.; Sun, L. Z.; Liu, X. T.; et al. Angew. Chem. Int. Ed. Engl. 2020, 59, 17214. doi: 10.1002/anie.202005406  doi: 10.1002/anie.202005406

    84. [84]

      Liu, X. T.; Zhang, J. C.; Chen, H.; Liu, Z. F. Acta Phys. -Chim. Sin. 2021, 37, 2012047.  doi: 10.3866/PKU.WHXB202012047

    85. [85]

      Xie, H. H.; Cui, K. J.; Cui, L. Z.; Liu, B. Z.; Yu, Y.; Tan, C. W.; Zhang, Y. Y.; Zhang, Y. F.; Liu, Z. F. Small 2020, 16, 1905485. doi: 10.1002/smll.201905485  doi: 10.1002/smll.201905485

    86. [86]

      Chen, X. D.; Chen, Z. L.; Jiang, W. S.; Zhang, C.; Sun, J. Y.; Wang, H. H.; Xin, W.; Lin, L.; Priydarshi, M. K.; Yang, H.; et al. Adv. Mater. 2017, 29, 1603428. doi: 10.1002/adma.201603428  doi: 10.1002/adma.201603428

    87. [87]

      Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. Rev. Mod. Phys. 2009, 81, 109. doi: 10.1103/RevModPhys.81.109  doi: 10.1103/RevModPhys.81.109

    88. [88]

      Ta, H. Q.; Perello, D. J.; Duong, D. L.; Han, G. H.; Gorantla, S.; Nguyen, V. L.; Bachmatiuk, A.; Rotkin, S. V.; Lee, Y. H.; Rummeli, M. H. Nano Lett. 2016, 16, 6403. doi: 10.1021/acs.nanolett.6b02826  doi: 10.1021/acs.nanolett.6b02826

    89. [89]

      Deng, B.; Xin, Z. W.; Xue, R. W.; Zhang, S. S.; Xu, X. Z.; Gao, J.; Tang, J. L.; Qi, Y.; Wang, Y. N.; Zhao, Y.; et al. Sci. Bull. 2019, 64, 659. doi: 10.1016/j.scib.2019.04.030  doi: 10.1016/j.scib.2019.04.030

    90. [90]

      Huet, B.; Zhang, X.; Redwing, J. M.; Snyder, D. W.; Raskin, J. -P. 2D Mater. 2019, 6, 045032. doi: 10.1088/2053-1583/ab33ae  doi: 10.1088/2053-1583/ab33ae

    91. [91]

      Jiang, B.; Zhao, Q. Y.; Zhang, Z. P.; Liu, B. Z.; Shan, J. Y.; Zhao, L.; Rümmeli, M. H.; Gao, X.; Zhang, Y. F.; Yu, T. J.; et al. Nano Res. 2020, 13, 1564. doi: 10.1007/s12274-020-2771-3  doi: 10.1007/s12274-020-2771-3

    92. [92]

      Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y.; et al. Nature 2011, 469, 389. doi: 10.1038/nature09718  doi: 10.1038/nature09718

    93. [93]

      Cui, T.; Mukherjee, S.; Sudeep, P. M.; Colas, G.; Najafi, F.; Tam, J.; Ajayan, P. M.; Singh, C. V.; Sun, Y.; Filleter, T. Nat. Mater. 2020, 19, 405. doi: 10.1038/s41563-019-0586-y  doi: 10.1038/s41563-019-0586-y

    94. [94]

      Ma, T.; Liu, Z. B.; Wen, J. X.; Gao, Y.; Ren, X. B.; Chen, H. J.; Jin, C. H.; Ma, X. L.; Xu, N. S.; Cheng, H. M.; et al. Nat. Commun. 2017, 8, 14486. doi: 10.1038/ncomms14486  doi: 10.1038/ncomms14486

    95. [95]

      Lin, L.; Li, J. Y.; Ren, H. Y.; Koh, A. L.; Kang, N.; Peng, H. L.; Xu, H. Q.; Liu, Z. F. ACS Nano 2016, 10, 2922. doi: 10.1021/acsnano.6b00041  doi: 10.1021/acsnano.6b00041

    96. [96]

      Vlassiouk, I. V.; Stehle, Y.; Pudasaini, P. R.; Unocic, R. R.; Rack, P. D.; Baddorf, A. P.; Ivanov, I. N.; Lavrik, N. V.; List, F.; Gupta, N.; et al. Nat. Mater. 2018, 17, 318. doi: 10.1038/s41563-018-0019-3  doi: 10.1038/s41563-018-0019-3

    97. [97]

      Wang, H.; Xu, X. Z.; Li, J. Y.; Lin, L.; Sun, L. Z.; Sun, X.; Zhao, S. L.; Tan, C. W.; Chen, C.; Dang, W. H.; et al. Adv. Mater. 2016, 28, 8968. doi: 10.1002/adma.201603579  doi: 10.1002/adma.201603579

    98. [98]

      Sun, X.; Lin, L.; Sun, L. Z.; Zhang, J. C.; Rui, D. R.; Li, J. Y.; Wang, M. Z.; Tan, C. W.; Kang, N.; Wei, D. ; et al. Small 2018, 14, 1702916. doi: 10.1002/smll.201702916  doi: 10.1002/smll.201702916

    99. [99]

      Xie, Y. D.; Cheng, T.; Liu, C.; Chen, K.; Cheng, Y.; Chen, Z. L.; Qiu, L.; Cui, G.; Yu, Y.; Cui, L. Z.; et al. ACS Nano 2019, 13, 10272. doi: 10.1021/acsnano.9b03596  doi: 10.1021/acsnano.9b03596

    100. [100]

      Xu, J. B.; Hu, J. X.; Li, Q.; Wang, R. B.; Li, W. W.; Guo, Y. F.; Zhu, Y. B.; Liu, F. K.; Ullah, Z.; Dong, G. C. ; et al. Small 2017, 13, 1700651. doi: 10.1002/smll.201700651  doi: 10.1002/smll.201700651

    101. [101]

      Zhang, Y. N.; Huang, D. P.; Duan, Y. W.; Chen, H.; Tang, L. L.; Shi, M. Q.; Li, Z. C.; Shi, H. F. Nanotechnology 2020, 32, 105603. doi: 10.1088/1361-6528/abcceb  doi: 10.1088/1361-6528/abcceb

    102. [102]

      Chen, Z. L.; Guan, B. L.; Chen, X. -D.; Zeng, Q.; Lin, L.; Wang, R. Y.; Priydarshi, M. K.; Sun, J. Y.; Zhang, Z. P.; Wei, T. B.; et al. Nano Res. 2016, 9, 3048. doi: 10.1007/s12274-016-1187-6  doi: 10.1007/s12274-016-1187-6

    103. [103]

      Liu, B. Z.; Sun, J. Y.; Liu, Z. F. ChemNanoMat 2020, 6, 483. doi: 10.1002/cnma.202000045  doi: 10.1002/cnma.202000045

  • 加载中
    1. [1]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    2. [2]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    3. [3]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    7. [7]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    8. [8]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    9. [9]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    12. [12]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    13. [13]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    14. [14]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    15. [15]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    16. [16]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    17. [17]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    20. [20]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

Metrics
  • PDF Downloads(28)
  • Abstract views(1122)
  • HTML views(254)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return