Citation: Qing Chen, Jian Zhao, Huhu Cheng, Liangti Qu. Progress in 3D-Graphene Assemblies Preparation for Solar-Thermal Steam Generation and Water Treatment[J]. Acta Physico-Chimica Sinica, ;2022, 38(1): 210102. doi: 10.3866/PKU.WHXB202101020 shu

Progress in 3D-Graphene Assemblies Preparation for Solar-Thermal Steam Generation and Water Treatment

  • Corresponding author: Huhu Cheng, huhucheng@tsinghua.edu.cn Liangti Qu, lqu@mail.tsingua.edu.cn
  • Received Date: 11 January 2021
    Revised Date: 7 March 2021
    Accepted Date: 9 March 2021
    Available Online: 12 March 2021

    Fund Project: the National Key R & D Program of China 2016YFA0200200the National Natural Science Foundation of China 22035005the National Natural Science Foundation of China 52073159the National Natural Science Foundation of China 52022051the National Natural Science Foundation of China 22075165the National Natural Science Foundation of China 52090034the Tsinghua University Initiative Scientific Research Program 2019Z08QCX08the NSFC-STINT 21911530143the State Key Laboratory of Tribology SKLT2021B03the Tsinghua-Foshan Innovation Special Fund 2018THFS0412the Institute for Guo Qiang, Tsinghua University 2019GQG1025

  • Currently, water shortage is a globally prevalent issue, with approximately 1.5 billion people in over 80 countries in the world are facing a shortage of fresh water. Among them, 300 million people in 26 countries face daily water shortages. It is estimated that by 2025, billions of people will suffer due water shortage. The desalination of seawater and other water treatment technologies have been widely investigated to solve this problem. Recently, a lot of study have been carried out on the production of clean water via solar evaporation with new materials and technologies. Under the condition of illumination, the light-absorbing material converts solar energy directly into heat energy to realize rapid and large amount of water evaporation, after condensation, clean water was obtained. It is important that this technology can effectively remove salt, bacteria, and other pollutants from raw water, and the quality of the obtained water fully meets the drinking water quality standard set by the World Health Organization. This is an efficient, green, and low-cost method for solving the shortage of water resources. Three-dimensional (3D) graphene materials have excellent physical and chemical properties, high photothermal conversion efficiency, high solar absorption rate, rich internal micro- and nano-channels, good water transmission channels, and large surface water evaporation area; in addition, they can achieve an ultra-high water evaporation rate under solar irradiation. These properties are highly significant in the research and practical applications of photothermal water treatment. In this study, the research progress of 3D-graphene is discussed with regard to the following three aspects. 1) The main preparation method of 3D-graphene was investigated. The advantages and disadvantages of different preparation methods, such as self-assembly, template, and chemical vapor deposition methods were summarized and compared. It can provide reference for readers to choose the preparation method of 3D-graphene; 2) The basic principle of photothermal water evaporation is introduced in detail. The research progress of photothermal water evaporation was summarized based on pure graphene, graphene/polymer composites, and graphene/metal oxide composites. The evaporation properties of different materials were compared. The development, fabrication, and performance of small photothermal conversion devices are briefly introduced; 3) The water treatment of graphene photothermal water evaporation was investigated, and its limitations were analyzed and summarized. Consequently, the challenges faced by photothermal evaporation in theoretical research and the problems to be solved in practical production applications are finally prospected. This review is a valuable reference for the development of 3D-graphene materials and solar-thermal steam generation and water treatment.
  • 加载中
    1. [1]

      Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Nature 2008, 452, 301. doi: 10.1038/nature06599  doi: 10.1038/nature06599

    2. [2]

      Vörösmarty, C. J.; Green, P.; Salisbury, J.; Lammers, R. B. Science 2000, 289, 284. doi: 10.1126/science.289.5477.284  doi: 10.1126/science.289.5477.284

    3. [3]

      Vorosmarty, C. J.; McIntyre, P. B.; Gessner, M. O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S. E.; Sullivan, C. A.; Liermann, C. R.; et al. Nature 2010, 467, 555. doi: 10.1038/nature09440  doi: 10.1038/nature09440

    4. [4]

      WHO. Progress on Drinking Water and Sanitation. World Health Organization, Geneva, Switzerland, 2014.

    5. [5]

      Kumar, A.; Kumar, K.; Kaushik, N.; Sharma, S.; Mishra, S. Renew. Sustain Energy Rev. 2010, 14, 2434. doi: 10.1016/j.rser.2010.04.003  doi: 10.1016/j.rser.2010.04.003

    6. [6]

      Chu, S.; Majumdar, A. Nature 2012, 488, 294. doi: 10.1038/nature11475.  doi: 10.1038/nature11475

    7. [7]

      Kalogirou, S. V.; Tikekar, A. N. Sol. Energy 2009, 83, 6. doi: 10.1016/j.solener.2008.05.017  doi: 10.1016/j.solener.2008.05.017

    8. [8]

      Lewis, N. S. Science 2016, 351, aad1920. doi: 10.1126/science.aad1920  doi: 10.1126/science.aad1920

    9. [9]

      Lewis, N. S. Science 2007, 315, 798. doi: 10.1126/science.1137014.  doi: 10.1126/science.1137014

    10. [10]

      Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S. C.; Seo, J. W.; Seok, S. I. Nature 2015, 517, 476. doi: 10.1038/nature14133.  doi: 10.1038/nature14133

    11. [11]

      Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konsishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al. Nat. Energy 2017, 2, 17032. doi: 10.1038/nenergy.2017.32  doi: 10.1038/nenergy.2017.32

    12. [12]

      Liu, X. Q.; Iocozzia, J.; Wang, Y.; Cui, X.; Chen, Y. H.; Zhao, S. Q.; Li, Z.; Lin, Z. Q. Energy Environ. Sci. 2017, 10, 402. doi: 10.1039/C6EE02265K  doi: 10.1039/C6EE02265K

    13. [13]

      Zhao, M.; Chen, P. Nano Lett. 2020, 20, 2939. doi: 10.1021/acs.nanolett.0c01308  doi: 10.1021/acs.nanolett.0c01308

    14. [14]

      Hu, C. G.; Chen, X. Y.; Dai, Q. B.; Wang, M.; Qu, L. T.; Dai, L. M. Nano Energy 2017, 41, 367. doi: 10.1016/j.nanoen.2017.09.029  doi: 10.1016/j.nanoen.2017.09.029

    15. [15]

      Guo, A. K.; Ming, X.; Fu, Y.; Wang, G.; Wang, X. B. ACS Appl. Mater. Interfaces 2017, 9, 29958. doi: 10.1021/acsami.7b07759  doi: 10.1021/acsami.7b07759

    16. [16]

      Yang, J. L.; Pang, Y. S.; Huang, W. X.; Shaw, S. K.; Schiffbauer, J.; Pillers, M. A.; Mu, X.; Luo, S. R.; Zhang, T.; Luo, T. F.; et al. ACS Nano 2017, 11, 5510. doi: 10.1021/acsnano.7b00367  doi: 10.1021/acsnano.7b00367

    17. [17]

      Hong, Z. X.; Pei, J. X.; Wang, Y. P.; Cao, B.; Mao, M. R.; Liu, H. D.; Jiang, H. F.; An, Q. S.; Liu, X.; Hu, X. J. Energy Convers. Manag. 2019, 199, 112019. doi: 10.1016/j.enconman.2019.112019  doi: 10.1016/j.enconman.2019.112019

    18. [18]

      Meng, Y. N.; Zhao, Y.; Hu, C. G.; Cheng, H. H.; Hu, Y.; Zhang, Z. P.; Shi, G. Q.; Qu, L. T. Adv. Mater. 2013, 25, 2326. doi: 10.1002/adma.201300132.  doi: 10.1002/adma.201300132

    19. [19]

      Wang, Y.; Wang, L.; Yang, T. T.; Li, X.; Zang, X. B.; Zhu, M.; Wang, K. L.; Wu, D. H.; Zhu, H. W. Adv. Funct. Mater. 2014, 24, 4666. doi: 10.1002/adfm.201400379  doi: 10.1002/adfm.201400379

    20. [20]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438, 197. doi: 10.1038/nature04233  doi: 10.1038/nature04233

    21. [21]

      Li, D.; Kaner, R. B. Science 2008, 320, 1170. doi: 10.1126/science.1158180  doi: 10.1126/science.1158180

    22. [22]

      Geim, A. K. Science 2009, 324, 1530. doi: 10.1126/science.1158877  doi: 10.1126/science.1158877

    23. [23]

      Reina, G.; González-Domínguez, J. M.; Criado, A.; Vázquez, E.; Bianco, A.; Prato, M. Chem. Soc. Rev. 2017, 46, 4400. doi: 10.1039/C7CS00363C  doi: 10.1039/C7CS00363C

    24. [24]

      Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Science 2014, 343, 752. doi: 10.1126/science.1245711  doi: 10.1126/science.1245711

    25. [25]

      Han, S. Y.; Sun, J.; He, S. B.; Tang, M. L.; Chai, R. J. Am. J. Transl. Res. 2019, 6, 3246. PMCID: PMC6614642

    26. [26]

      Krishnan, S. K.; Singh, E.; Singh, P.; Meyyappan, M.; Nalwa, H. S. RSC Adv. 2019, 9, 8778. doi: 10.1039/C8RA09577A  doi: 10.1039/C8RA09577A

    27. [27]

      Liu, H.; Qiu, H. Chem. Eng. J. 2020, 393, 124691. doi: 10.1016/j.cej.2020.124691  doi: 10.1016/j.cej.2020.124691

    28. [28]

      Wang, H. T.; Mi, X. Y.; Li, Y.; Zhan, S. H. Adv. Mater. 2019, 32, 1806843. doi: 10.1002/adma.201806843  doi: 10.1002/adma.201806843

    29. [29]

      Chang, H. X.; Wu H. K. Energy Environ. Sci. 2013, 6, 3483. doi: 10.1039/C3EE42518E  doi: 10.1039/C3EE42518E

    30. [30]

      Qiu, B. C.; Xing, M. Y.; Zhang, J. L. Chem. Soc. Rev. 2018, 47, 2165. doi: 10.1039/C7CS00904F  doi: 10.1039/C7CS00904F

    31. [31]

      Zhang, P. P.; Liao, Q. H.; Yao, H. Z.; Huang, Y. X.; Cheng, H. H.; Qu, L. T. Energy Storage Mater. 2019, 18, 429. doi: 10.1016/j.ensm.2018.10.006  doi: 10.1016/j.ensm.2018.10.006

    32. [32]

      Xu, X.; Guan, C.; Xu, L.; Tan, H.Y.; Zhang, D. W.; Wang, Y. Q.; Zhang, H.; Blackwood, D. J.; Wang, J.; Ding, J.; et al. ACS Nano 2020, 14, 937. doi: 10.1021/acsnano.9b08191  doi: 10.1021/acsnano.9b08191

    33. [33]

      Ding, T. P.; Zhou, Y.; Ong, W. L.; Ho, G. W. Mater. Today 2021, 41, 178. doi: 10.1016/j.mattod.2020.10.022  doi: 10.1016/j.mattod.2020.10.022

    34. [34]

      Mao, J. J.; Iocozzia, J.; Huang, J. Y.; Meng, K.; Lai, Y. K.; Lin, Z. Q. Energy Environ. Sci. 2018, 11, 772. doi: 10.1039/C7EE03031B  doi: 10.1039/C7EE03031B

    35. [35]

      Hensleigh, R. M.; Cui, H. C.; Oakdale, J. S.; Ye, J. C.; Campbell, P. G.; Duoss, E. B.; Spadaccini, C. M.; Zheng, X. Y.; Worsley, M. A. Mater. Horiz. 2018, 5, 1035. doi: 10.1039/C8MH00668G  doi: 10.1039/C8MH00668G

    36. [36]

      Zhang, H. F.; Zhang, J. B.; Liu, K. H.; Zhu, Y. Q.; Qiu, X. Y.; Sun, D. M.; Tang, Y. W. Green Energy Environ. 2019, 4, 245. doi: 10.1016/j.gee.2018.12.002  doi: 10.1016/j.gee.2018.12.002

    37. [37]

      Gao, S. H.; Yang, Y.; Wu, J. L.; Qin, L. X.; Kang, S. Z.; Li, X. Q. Chin. J. Appl. Chem. 2020, 37, 923.  doi: 10.11944/j.issn.1000-0518.2020.08.200034

    38. [38]

      Wang, R.; Hao, Y. F.; Wang, Z. Q.; Gong, H.; Thong, J. T. L. Nano Lett. 2010, 10, 4844. doi: 10.1021/nl102445x  doi: 10.1021/nl102445x

    39. [39]

      Li, Y. Z.; Yan, K.; Lee, H. W.; Lu, Z. D.; Liu, N. L.; Cui, Y. Nat. Energy 2016, 1, 16017. doi: 10.1038/nenergy.2016.17  doi: 10.1038/nenergy.2016.17

    40. [40]

      Zhou, G. M.; Sun, J.; Jin, Y.; Chen, W.; Zu, C. X.; Zhang, R. F.; Qiu, Y. C.; Zhao, J.; Zhuo, D.; Cui, Y.; et al. Adv. Mater. 2017, 29, 1603366. doi: 10.1002/adma.201603366  doi: 10.1002/adma.201603366

    41. [41]

      Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. ACS Nano 2012, 4, 4324. doi: 10.1021/nn101187z  doi: 10.1021/nn101187z

    42. [42]

      Zhao, Y.; Hu, C. G.; Hu, Y.; Cheng, H. H.; Shi, G. Q.; Qu, L. T. Angew. Chem. 2012, 124, 11533. doi: 10.1002/ange.201206554  doi: 10.1002/ange.201206554

    43. [43]

      Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H. ACS Nano 2012, 6, 3, 2693. doi: 10.1021/nn300082k  doi: 10.1021/nn300082k

    44. [44]

      Hu, C. G.; Zhai, X. Q.; Liu, L. L.; Zhao, Y.; Jiang, L.; Qu, L. T. Sci. Rep. 2013, 3, 2065. doi: 10.1038/srep02065  doi: 10.1038/srep02065

    45. [45]

      Zhao, K.; Zhang, T. F.; Chang, H. C.; Yang, Y.; Xiao, P. S.; Zhang, H. T.; Li, C. X.; Tiwary, C. S.; Ajayan, P. M.; Chen, Y. S. Sci. Adv. 2019, 5, eaav2589. doi: 10.1126/sciadv.aav2589  doi: 10.1126/sciadv.aav2589

    46. [46]

      Varghese, D.; Bento, J. L.; Ward, S. P.; Adamson, D. H. ACS Appl. Mater. Interfaces 2020, 12, 29692. doi: 10.1021/acsami.0c05831  doi: 10.1021/acsami.0c05831

    47. [47]

      Hou, Z. X.; Bo, D. M.; Li, J. J.; Li, W. J. Synth. Cryst. 2019, 48, 652.  doi: 10.16553/j.cnki.issn1000-985x.2019.04.015

    48. [48]

      Zeng, Z. Y.; Huang, X.; Yin, Z. Y.; Li, H.; Chen, Y.; Li, H.; Zhang, Q.; Ma, J.; Boey, F.; Zhang, H. Adv. Mater. 2012, 24, 4138. doi: 10.1002/adma.201104281  doi: 10.1002/adma.201104281

    49. [49]

      Kim, K.; Lee, T.; Kwon, Y. Nature 2016, 535, 131. doi: 10.1038/nature18284  doi: 10.1038/nature18284

    50. [50]

      Zheng, Z.; Zheng, X. H.; Wang, H. T.; Du, Q. G. ACS Appl. Mater. Interfaces 2013, 5, 7974. doi: 10.1021/am4020549  doi: 10.1021/am4020549

    51. [51]

      Huang, X. D.; Zhao, Y. F.; Ao, Z. M.; Wang, G. X. Sci. Rep. 2014, 4, 7557. doi: 10.1038/srep07557  doi: 10.1038/srep07557

    52. [52]

      Yan, J.; Ding, Y.; Hu, C. G.; Cheng, H. H.; Chen, N.; Feng, Z. H.; Zhang, Z. P.; Qu, L. T. J. Mater. Chem. A 2014, 2, 16786. doi: 10.1039/C4TA03057E  doi: 10.1039/C4TA03057E

    53. [53]

      Sun, H. Y.; Xu, Z.; Gao, C. Adv. Mater. 2013, 25, 2554. doi: 10.1002/adma.201204576  doi: 10.1002/adma.201204576

    54. [54]

      Liu, H. H.; Zhang, H. L.; Xu, H. B.; Lou, T. P.; Sui, Z. T.; Zhang, Y. Nanoscale 2018, 10, 5246. doi: 10.1039/C7NR08985F  doi: 10.1039/C7NR08985F

    55. [55]

      Chen, Z. P.; Ren, W. C.; Cao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Nat. Mater. 2011, 10, 424. doi: 10.1038/NMAT3001  doi: 10.1038/NMAT3001

    56. [56]

      Shi, L. R.; Chen, K.; Du, R.; Bachmatiuk, A.; Rummeli, M. H.; Xie, K. W.; Huang, Y. Y.; Zhang, Y. F.; Liu, Z. F. J. Am. Chem. Soc. 2016, 138, 6360. doi: 10.1021/jacs.6b02262  doi: 10.1021/jacs.6b02262

    57. [57]

      Wang, K. X.; Shi, L. R.; Liu, Z. F.; Peng, H. L. Acta Phys. -Chim. Sin. 2019, 35, 1112.

    58. [58]

      Huang, M.; Wang, C. H.; Quan, L.; Nguyen, T. H. Y.; Zhang, H. Y.; Jiang, Y.; Byun, G.; Ruoff, R. S. Matter 2020, 3, 487. doi: 10.1016/j.matt.2020.06.012  doi: 10.1016/j.matt.2020.06.012

    59. [59]

      Zang, X. N.; Jiang, Y. Q.; Sanghadasa, M.; Lin, L. W. Sensor Actuat. A-Phys. 2020, 304, 111886. doi: 10.1016/j.sna.2020.111886  doi: 10.1016/j.sna.2020.111886

    60. [60]

      Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. Compos. B: Eng. 2017, 110, 442. doi: 10.1016/j.compositesb.2016.11.034  doi: 10.1016/j.compositesb.2016.11.034

    61. [61]

      Bassoli, E.; Gatto, A.; Iuliano, L.; Violante, M. G. Rapid Prototyp. J. 2007, 13, 30. doi: 10.1108/13552540710750898  doi: 10.1108/13552540710750898

    62. [62]

      Ponnamma, D.; Yin, Y. F.; Salim, N.; Parameswaranpillai, J.; Thomas, S.; Hameed, N. Compos. B: Eng. 2021, 204, 108493. doi: 10.1016/j.compositesb.2020.108493  doi: 10.1016/j.compositesb.2020.108493

    63. [63]

      Kim, J. H.; Chang, W. S.; Kim, D.; Yang, J. R.; Han, J. T.; Lee, G. W.; Kim, J. T.; Seol, S. K. Adv. Mater. 2015, 27, 157. doi: 10.1002/adma.201404380  doi: 10.1002/adma.201404380

    64. [64]

      Wei, X. J.; Li, D.; Jiang, W.; Gu, Z. M.; Wang, X. J.; Zhang, Z. X.; Sun, Z. Z. Sci. Rep. 2015, 5, 11181. doi: 10.1038/srep11181  doi: 10.1038/srep11181

    65. [65]

      Dua, V.; Surwade, S. P.; Manohar, S. K. Angew. Chem. Int. Ed. 2010, 49, 2154. doi: 10.1002/anie.200905089  doi: 10.1002/anie.200905089

    66. [66]

      Zhong, J.; Zhou, G. X.; He, P. G.; Yang, Z. H.; Jia, D. C. Carbon 2017, 117, 421. doi: 10.1016/j.carbon.2017.02.102  doi: 10.1016/j.carbon.2017.02.102

    67. [67]

      Yan, Z. Q.; Yao, W. L.; Hu, L.; Liu, D. D.; Wang, C. D.; Lee, C. S. Nanoscale 2015, 7, 5563. doi: 10.1039/C5NR00030K  doi: 10.1039/C5NR00030K

    68. [68]

      Yang, H. S.; Zhang, T. P.; Jiang, M.; Duan, Y. X.; Zhang, J. M. J. Mater. Chem. A 2015, 3, 19268. doi: 10.1039/C5TA06452J  doi: 10.1039/C5TA06452J

    69. [69]

      Ding, C. H.; Zhao, Y. J.; Yan, D.; Zhao, Y. Z.; Zhou, H. B.; Li, J. B.; Jin, H. B. Electrochim. Acta 2016, 221, 124. doi: 10.1016/j.electacta.2016.10.054  doi: 10.1016/j.electacta.2016.10.054

    70. [70]

      Zhang, P. P.; Li, J.; Lv, L. X.; Zhao, Y.; Qu, L. T. ACS Nano 2017, 11 (5), 5087. doi: 10.1021/acsnano.7b01965  doi: 10.1021/acsnano.7b01965

    71. [71]

      Antonelli, D. M.; Jackie, Y. Y. Angw. Chem. Int. Ed. 1995, 34, 2014. doi: 10.1002/anie.199520141  doi: 10.1002/anie.199520141

    72. [72]

      Tang, G. Q.; Jiang, Z. G.; Li, X. F.; Zhang, H. B.; Dasari, A.; Yu, Z. Z. Carbon 2014, 77, 592. doi: 10.1016/j.carbon.2014.05.063  doi: 10.1016/j.carbon.2014.05.063

    73. [73]

      Xu, X.; Zhang, Q. Q.; Yu, Y. K.; Chen, W. L.; Hu, H.; Li, H. Adv. Mater. 2016, 28, 9223. doi: 10.1002/adma.201603079  doi: 10.1002/adma.201603079

    74. [74]

      Zhao, X. L.; Yao, W. Q.; Gao, W. W.; Chen, H.; Gao, C. Adv. Mater. 2017, 29, 1701482. doi: 10.1002/adma.201701482  doi: 10.1002/adma.201701482

    75. [75]

      Yang, H. S.; Li, Z. L.; Lu, B.; Gao, J.; Jin, X. T.; Sun, G. Q.; Zhang, G. F.; Zhang, P. P.; Qu, L. T. ACS Nano 2018, 12, 11407. doi: 10.1021/acsnano.8b06380  doi: 10.1021/acsnano.8b06380

    76. [76]

      Xu, J. Z.; Sui, J.; Li, B. Y.; Yang, M. L. Energy 2010, 35, 4361. doi: 10.1016/j.energy.2009.03.019  doi: 10.1016/j.energy.2009.03.019

    77. [77]

      Zhang, Z. H.; Li, X. M.; Yin, J.; Fei, W. W.; Xue, M. M.; Wang, Q.; Zhou, J. X.; Guo, W. L. Nat. Nanotechnol. 2018, 13, 1109. doi: 10.1038/s41565-018-0228-6  doi: 10.1038/s41565-018-0228-6

    78. [78]

      Ito, Y.; Tanabe, Y.; Han, J. H.; Fujita, T.; Tanigaki, K.; Chen, M. W. Adv. Mater. 2015, 27, 4302. doi: 10.1002/adma.201501832  doi: 10.1002/adma.201501832

    79. [79]

      Yang, Y.; Zhao, R. Q.; Zhang, T. F.; Zhao, K.; Xiao, P. S.; Ma, Y. F.; Ajayan, P. M.; Shi, G. Q.; Chen, Y. S. ACS Nano 2018, 12, 829. doi: 10.1021/acsnano.7b08196  doi: 10.1021/acsnano.7b08196

    80. [80]

      Ren, H. Y.; Tang, M.; Guan, B. L.; Wang, K. X.; Yang, J. W.; Wang, F. F.; Wang, M. Z.; Shan, J. Y.; Chen, Z. L.; Liu, Z. F. Adv. Mater. 2017, 29, 1702590. doi: 10.1002/adma.201702590  doi: 10.1002/adma.201702590

    81. [81]

      Liang, H. X.; Liao, Q. H.; Chen, N.; Liang, Y.; Lv, G. Q.; Zhang, P. P.; Lu, B.; Qu, L. T. Angew. Chem. Int. Ed. 2019, 58, 19041. doi: 10.1002/anie.201911457  doi: 10.1002/anie.201911457

    82. [82]

      Zhang, P. P.; Liao, Q. H.; Zhang, T.; Cheng, H. H.; Huang, Y. X.; Yang, C.; Li, C.; Jiang, L.; Qu, L. T. Nano Energy 2018, 46, 415. doi: 10.1016/j.nanoen.2018.02.018  doi: 10.1016/j.nanoen.2018.02.018

    83. [83]

      Zhang, P. P.; Liao, Q. H.; Yao, H. Z.; Cheng, H. H.; Huang, Y. X.; Yang, C.; Jiang, L.; Qu, L. T. J. Mater. Chem. A 2018, 6, 15303. doi: 10.1039/c8ta05412f  doi: 10.1039/c8ta05412f

    84. [84]

      Cui, L. F.; Zhang, P. P.; Xiao, Y. K.; Liang, Y.; Liang, H. X.; Cheng, Z. H.; Qu, L. T. Adv. Mater. 2018, 30, 1706805. doi: 10.1002/adma.201706805  doi: 10.1002/adma.201706805

    85. [85]

      Wang, Z. Y.; Liu, H. W.; Chen, F. J.; Zhang, Q. Q. J. Mater. Chem. A 2020, 8, 19387. doi: 10.1039/d0ta06797k  doi: 10.1039/d0ta06797k

    86. [86]

      Yu, Z. Q.; Qu, J. Y.; Li, J. L.; Zang, Y. H.; Gu, J. F.; Gao, F. Chin. J. Appl. Chem. 2020, 37, 1164.  doi: 10.11944/j.Issn.1000-0518.2020.10.200087

    87. [87]

      Huo, B. B.; Jiang, D. G.; Cao, X. Y.; Liang, H.; Liu, Z.; Li, C. W.; Liu, J. Q. Carbon 2019, 142, 13. doi: 10.1016/j.carbon.2018.10.008  doi: 10.1016/j.carbon.2018.10.008

    88. [88]

      Wang, X. Q.; Qu, G.; Wang, N.; Wu, H. ACS Appl. Mater. Interfaces 2016, 8, 9194. doi: 10.1021/acsami.6b02071  doi: 10.1021/acsami.6b02071

    89. [89]

      Feng, X. M.; Zhao, J. L.; Sun, D. W.; Shanmugam, L.; Kim, J. K.; Yang, J. L. J. Mater. Chem. A 2019, 7, 4400. doi: 10.1039/c8ta09062a  doi: 10.1039/c8ta09062a

    90. [90]

      Zhang, Z.; Mu, P.; Han, J. X.; He, J. X.; Zhu, Z. Q.; Sun, H. X.; Liang, W. D.; Li, A. J. Mater. Chem. A 2019, 7, 18092. doi: 10.1039/c9ta04509k  doi: 10.1039/c9ta04509k

    91. [91]

      Zhou, X. Y.; Zhao, F.; Yu, G. H.; Zhang, Y.; Yu, G. H. Energy Environ. Sci. 2018, 11, 1985. doi: 10.1039/C8EE00567B  doi: 10.1039/C8EE00567B

    92. [92]

      Meng, S.; Zhao, X.; Tang, C. Y.; Yu, P.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. J. Mater. Chem. A 2020, 8, 2701. doi: 10.1039/c9ta12802f  doi: 10.1039/c9ta12802f

    93. [93]

      Wang, G.; Fu, Y.; Ma, X. F.; Pi, W. B.; Liu, D. W.; Wang, X. B. Carbon 2017, 114, 117. doi: 10.1016/j.carbon.2016.11.071  doi: 10.1016/j.carbon.2016.11.071

    94. [94]

      Wang, G.; Fu, Y.; Guo, A. K.; Mei, T.; Wang, J. Y.; Li, J. H.; Wang, X. B. Chem. Mater. 2017, 29, 5629. doi: 10.1021/acs.chemmater.7b01280  doi: 10.1021/acs.chemmater.7b01280

    95. [95]

      Li, Y. J.; Gao, T. T.; Yang, Z.; Chen, C. J.; Luo, W.; Song, J. W.; Hitz, E.; Jia, C.; Zhou, Y. B.; Hu, L. B.; et al. Adv. Mater. 2017, 29, 1700981. doi: 10.1002/adma.201700981  doi: 10.1002/adma.201700981

    96. [96]

      Yao, H. Z.; Zhang, P. P.; Huang, Y. X.; Cheng, H. H.; Qu, L. T. Adv. Mater. 2020, 32, 1925875. doi: 10.1002/adma.201905875  doi: 10.1002/adma.201905875

    97. [97]

      Li, Y. J.; Gao, T. T.; Yang, Z.; Chen, C. J.; Kuang, Y. D.; Song, J. W.; Jia, C.; Hitz, E.; Yang, B.; Hu, L. B. Nano Energy 2017, 41, 201. doi: 10.1016/j.nanoen.2017.09.034  doi: 10.1016/j.nanoen.2017.09.034

    98. [98]

      Hu, X. Z.; Xu, W. C.; Zhou, L.; Tan, Y. L.; Wang, Y.; Zhu, S. N.; Zhu, J. Adv. Mater. 2017, 29, 1604031. doi: 10.1002/adma.201604031  doi: 10.1002/adma.201604031

    99. [99]

      Liu, K. K.; Jiang, Q. S.; Tadepalli, S.; Raliya, R.; Biswas, P.; Naik, R. R.; Singamaneni, S. ACS Appl. Mater. Interfaces 2017, 9, 7675. doi: 10.1021/acsami.7b01307  doi: 10.1021/acsami.7b01307

    100. [100]

      Huang, L. B.; Ling, L.; Su, J. J.; Song, Y.; Wang, Z. Y.; Tang, B. Z.; Westerhoff, P.; Ye, R. Q. ACS Appl. Mater. Interfaces 2020, 12, 51864. doi: 10.1021/acsami.0c16596  doi: 10.1021/acsami.0c16596

    101. [101]

      Zhang, Q.; Xiao, X. F.; Wang, G.; Ming, X.; Liu, X. H.; Wang, H.; Yang, H. J.; Xu, W. L.; Wang, X. B. J. Mater. Chem. A 2018, 6, 17212. doi: 10.1039/c8ta05193c  doi: 10.1039/c8ta05193c

    102. [102]

      Zhang, Q.; Yang, H. J.; Xiao, X. F.; Wang, H.; Yan, L.; Shi, Z. X.; Chen, Y. L.; Xu, W. L.; Wang, X. B. J. Mater. Chem. A 2019, 7, 14620. doi: 10.1039/c9ta03045j  doi: 10.1039/c9ta03045j

    103. [103]

      Xiong, H.; Xie, X. W.; Wang, M.; Hou, Y. Q.; Hou, X. Acta Phys. -Chim. Sin. 2020, 36(9), 1912008.  doi: 10.3866/PKU.WHXB201912008

    104. [104]

      Chen, T. J.; Wang, S.; Wu, Z. Z.; Wang, X. D.; Peng, J.; Wu, B. H.; Cui, J. Q.; Fang, X. L.; Xie, Y. Q.; Zheng, N. F. J. Mater. Chem. A 2018, 6, 14571. doi: 10.1039/c8ta04420a  doi: 10.1039/c8ta04420a

    105. [105]

      Wu, X.; Gao, T.; Han, C. H.; Xu, J. S.; Owens, G.; Xu, H. L. Sci. Bull. 2019, 64, 1625. doi: 10.1016/j.scib.2019.08.022  doi: 10.1016/j.scib.2019.08.022

    106. [106]

      Li, X. Q.; Lin, R. X.; Ni, G.; Xu, N.; Hu, X. Z.; Zhu, B.; Lv, G. G.; Li, J. L.; Zhu, S. N.; Zhu, J. Nat. Sci. Rev. 2018, 5, 70. doi: 10.1093/nsr/nwx051  doi: 10.1093/nsr/nwx051

    107. [107]

      Ming, X.; Guo, A. K.; Zhang, Q.; Guo, Z. Z.; Yu, F.; Hou, B. F.; Wang, Y.; Homewood, K. P.; Wang, X. B. Carbon 2020, 167, 285. doi: 10.1016/j.carbon.2020.06.023  doi: 10.1016/j.carbon.2020.06.023

  • 加载中
    1. [1]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    4. [4]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    5. [5]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    6. [6]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    7. [7]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    8. [8]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    9. [9]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    10. [10]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    11. [11]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    14. [14]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    15. [15]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    16. [16]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    17. [17]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    20. [20]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

Metrics
  • PDF Downloads(23)
  • Abstract views(1010)
  • HTML views(181)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return