Citation: Houfu Song, Feiyu Kang. Recent Progress on Thermal Conduction of Graphene[J]. Acta Physico-Chimica Sinica, ;2022, 38(1): 210101. doi: 10.3866/PKU.WHXB202101013 shu

Recent Progress on Thermal Conduction of Graphene

  • Corresponding author: Feiyu Kang, fykang@sz.tsinghua.edu.cn
  • Received Date: 7 January 2021
    Revised Date: 4 February 2021
    Accepted Date: 8 February 2021
    Available Online: 25 February 2021

  • With the irreversible trend of miniaturization and the pursuit of a high power density in electronic devices, heat dissipation has become crucial for designing next-generation electronic products. Graphene, which has the highest thermal conductivity among all discovered solid materials, has attracted attention from both academia and the industry. As a two-dimensional material with atom-scale thickness, graphene is suitable for investigating the phonon transport behavior at reduced dimensions. The mass production technique of graphene makes it a promising material for thermal management in consumer electronics, information technology, medical devices, and new energy automobiles. In this review, we summarize the recent progress on the thermal conduction of graphene. In the first part, we introduce the thermal conductivity measurement methods for graphene, including the optothermal Raman method, suspended-pad method, and time-domain thermoreflectance (TDTR) method. The thermal measurement of graphene with high accuracy is key to understanding the heat transfer mechanism of graphene; however, it is still a significant challenge. Despite the development of measurement methods, the thermal measurement of suspended single-layer graphene is limited by the graphene transfer technique, estimation of the thermal contact resistance, sensitivity to the in-plane thermal conductivity in the thermal model, and other factors. In the second part, we discuss the theoretical study of the thermal conductivity of graphene via first principle calculations and molecular dynamics simulation. The "selection rule" of phonon scattering explains the thickness-dependent thermal conductivity of few-layer graphene, and the understanding of the contribution of phonon modes to the thermal conductivity of graphene has been updated recently by taking multiple-phonon scattering into consideration. The size effect on the thermal conductivity of graphene is discussed in this section for a better understanding of the phonon transport behavior of graphene. In the third part, we conclude with the thermal management applications of graphene, including a highly thermally conductive graphene film, graphene fiber, and graphene-enhanced thermal interface materials. For graphene films, which are the pioneering thermal management applications in industrial use, we focus on the challenge of fabricating highly thermally conductive graphene films with large thicknesses and propose possible technical methods. For graphene-enhanced thermal interface materials, we summarize the main factors affecting the thermal properties and discuss the tradeoff between the high thermal conductivity of graphene flakes and the dispersibility of graphene in the polymer matrix. It was demonstrated that a 3D thermal conductive network is essential for efficient heat dissipation in graphene-based composites. Finally, a summary of opportunities and challenges in the thermal study of graphene is presented at the end of the review. Research on the thermal properties of graphene has made immense progress since the discovery of the thermal conductivity of graphene more than a decade ago, and will continue in order to address the urgent requirements of thermal management.
  • 加载中
    1. [1]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    2. [2]

      Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. Rev. Mod. Phys. 2009, 81, 109. doi: 10.1103/RevModPhys.81.109  doi: 10.1103/RevModPhys.81.109

    3. [3]

      Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. doi: 10.1126/science.1157996  doi: 10.1126/science.1157996

    4. [4]

      Grigorenko, A. N.; Polini, M.; Novoselov, K. S. Nat. Photonics 2012, 6, 749. doi: 10.1038/nphoton.2012.262  doi: 10.1038/nphoton.2012.262

    5. [5]

      Novoselov, K.; Mishchenko, O. A.; Carvalho, O. A.; Neto, A. C. Science 2016, 353, 6298. doi: 10.1126/science.aac9439  doi: 10.1126/science.aac9439

    6. [6]

      Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902. doi: 10.1021/nl0731872  doi: 10.1021/nl0731872

    7. [7]

      Lindsay, L.; Broido, D.; Mingo, N. Phys. Rev. B 2010, 82, 115427. doi: 10.1103/PhysRevB.82.115427  doi: 10.1103/PhysRevB.82.115427

    8. [8]

      Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X.; Yao, Z.; Huang, R.; Broido, D.; et al. Science 2010, 328, 213. doi: 10.1126/science.1184014  doi: 10.1126/science.1184014

    9. [9]

      Akbari, A.; Cunning, B. V.; Joshi, S. R.; Wang, C. H.; Camacho-Mojica, D. C.; Chatterjee, S.; Modepalli, V.; Cahoon, C.; Bielawski, C. W.; Bakharev, P.; et al. Matter 2020, 2, 1198. doi: 10.1016/j.matt.2020.02.014  doi: 10.1016/j.matt.2020.02.014

    10. [10]

      Peng, L.; Xu, Z.; Liu, Z.; Guo, Y.; Li, P.; Gao, C. Adv. Mater. 2017, 29, 1700589. doi: 10.1002/adma.201700589  doi: 10.1002/adma.201700589

    11. [11]

      Ji, H.; Sellan, D. P.; Pettes, M. T.; Kong, X.; Ji, J.; Shi, L.; Ruoff, R. S. Energy Environ. Sci. 2014, 7, 1185. doi: 10.1039/c3ee42573h  doi: 10.1039/c3ee42573h

    12. [12]

      Chen, Z. L.; Gao, P.; Liu, Z. F. Acta Phys. -Chim. Sin. 2020, 36, 1907004.  doi: 10.3866/PKU.WHXB201907004

    13. [13]

      Shi, L.; Li, D.; Yu, C.; Jang, W.; Kim, D.; Yao, Z.; Kim, P.; Majumdar, A. J. Heat Transf. 2003, 125, 881. doi: 10.1115/1.1597619  doi: 10.1115/1.1597619

    14. [14]

      Cahill, D. G.; Katiyar, M.; Abelson, J. R. Phys. Rev. B 1994, 50, 6077. doi: 10.1103/physrevb.50.6077  doi: 10.1103/physrevb.50.6077

    15. [15]

      Cahill, D. G. Rev. Sci. Instrum. 2004, 75, 5119. doi: 10.1063/1.1819431  doi: 10.1063/1.1819431

    16. [16]

      Faugeras, C.; Faugeras, B.; Orlita, M.; Potemski, M.; Nair, R. R.; Geim, A. ACS Nano 2010, 4, 1889. doi: 10.1021/nn9016229  doi: 10.1021/nn9016229

    17. [17]

      Cai, W.; Moore, A. L.; Zhu, Y.; Li, X.; Chen, S.; Shi, L.; Ruoff, R. S. Nano Lett. 2010, 10, 1645. doi: 10.1021/nl9041966  doi: 10.1021/nl9041966

    18. [18]

      Fan, A.; Hu, Y.; Ma, W.; Wang, H.; Zhang, X. J. Therm. Sci. 2019, 28, 159. doi: 10.1007/s11630-019-1084-x  doi: 10.1007/s11630-019-1084-x

    19. [19]

      Zhou, H.; Zhu, J.; Liu, Z.; Yan, Z.; Fan, X.; Lin, J.; Wang, G.; Yan, Q.; Yu, T.; Ajayan, P. M. Nano Res. 2014, 7, 1232. doi: 10.1007/s12274-014-0486-z  doi: 10.1007/s12274-014-0486-z

    20. [20]

      Sahoo, S.; Gaur, A. P.; Ahmadi, M.; Guinel, M. J. -F.; Katiyar, R. S. J. Phys. Chem. C 2013, 117, 9042. doi: 10.1021/jp402509w  doi: 10.1021/jp402509w

    21. [21]

      Yan, R.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X.; Kis, A.; Luo, T.; Hight Walker, A. R.; Xing, H. G. ACS Nano 2014, 8, 986. doi: 10.1021/nn405826k  doi: 10.1021/nn405826k

    22. [22]

      Peimyoo, N.; Shang, J.; Yang, W.; Wang, Y.; Cong, C.; Yu, T. Nano Res. 2015, 8, 1210. doi: 10.1007/s12274-014-0602-0  doi: 10.1007/s12274-014-0602-0

    23. [23]

      Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. L. Phys. Rev. Lett. 2001, 87, 215502. doi: 10.1103/PhysRevLett.87.215502  doi: 10.1103/PhysRevLett.87.215502

    24. [24]

      Wang, Z.; Xie, R.; Bui, C. T.; Liu, D.; Ni, X.; Li, B.; Thong, J. T. L. Nano Lett. 2011, 11, 113. doi: 10.1021/nl102923q  doi: 10.1021/nl102923q

    25. [25]

      Pettes, M. T.; Jo, I.; Yao, Z.; Shi, L. Nano Lett. 2011, 11, 1195. doi: 10.1021/nl104156y  doi: 10.1021/nl104156y

    26. [26]

      Xu, X.; Pereira, L. F. C.; Wang, Y.; Wu, J.; Zhang, K.; Zhao, X.; Bae, S.; Bui, C. T.; Xie, R.; Thong, J. T. L.; et al. Nat. Commun. 2014, 5, 1. doi: 10.1038/ncomms4689  doi: 10.1038/ncomms4689

    27. [27]

      Jo, I.; Pettes, M. T.; Kim, J.; Watanabe, K.; Taniguchi, T.; Yao, Z.; Shi, L. Nano Lett. 2013, 13, 550. doi: 10.1021/nl304060g  doi: 10.1021/nl304060g

    28. [28]

      Wang, C.; Guo, J.; Dong, L.; Aiyiti, A.; Xu, X.; Li, B. Sci. Rep. 2016, 6, 25334. doi: 10.1038/srep25334  doi: 10.1038/srep25334

    29. [29]

      Jo, I.; Pettes, M. T.; Ou, E.; Wu, W.; Shi, L. Appl. Phys. Lett. 2014, 104, 201902. doi: 10.1063/1.4876965  doi: 10.1063/1.4876965

    30. [30]

      Zhao, Y.; Zheng, M.; Wu, J.; Huang, B.; Thong, J. T. Nanotechnology 2020, 31, 225702. doi: 10.1088/1361-6528/ab7647  doi: 10.1088/1361-6528/ab7647

    31. [31]

      Lee, S.; Yang, F.; Suh, J.; Yang, S.; Lee, Y.; Li, G.; Choe, H. S.; Suslu, A.; Chen, Y.; Ko, C. Nat. Commun. 2015, 6, 1. doi: 10.1038/ncomms9573  doi: 10.1038/ncomms9573

    32. [32]

      Aiyiti, A.; Bai, X.; Wu, J.; Xu, X.; Li, B. Sci. Bull. 2018, 63, 452. doi: 10.1016/j.scib.2018.02.022  doi: 10.1016/j.scib.2018.02.022

    33. [33]

      Feldman, A. High Temp. High Press. 1999, 31, 293. doi: 10.1068/htrt171  doi: 10.1068/htrt171

    34. [34]

      Wang, Y.; Park, J. Y.; Koh, Y. K.; Cahill, D. G. J. Appl. Phys. 2010, 108, 043507. doi: 10.1063/1.3457151  doi: 10.1063/1.3457151

    35. [35]

      Zhang, H.; Chen, X.; Jho, Y. -D.; Minnich, A. Nano Lett. 2016, 16, 1643. doi: 10.1021/acs.nanolett.5b04499  doi: 10.1021/acs.nanolett.5b04499

    36. [36]

      Taylor, R. Philos. Mag. 1966, 13, 157. doi: 10.1080/14786436608211993  doi: 10.1080/14786436608211993

    37. [37]

      Klemens, P. G.; Pedraza, D. F. Carbon 1994, 32, 735. doi: 10.1016/0008-6223(94)90096-5  doi: 10.1016/0008-6223(94)90096-5

    38. [38]

      Feser, J. P.; Cahill, D. G. Rev. Sci. Instrum. 2012, 83, 104901. doi: 10.1063/1.4757863  doi: 10.1063/1.4757863

    39. [39]

      Rodin, D.; Yee, S. K. Rev. Sci. Instrum. 2017, 88, 014902. doi: 10.1063/1.4973297  doi: 10.1063/1.4973297

    40. [40]

      Qian, X.; Ding, Z.; Shin, J.; Schmidt, A. J.; Chen, G. Rev. Sci. Instrum. 2020, 91, 064903. doi: 10.1063/5.0003770  doi: 10.1063/5.0003770

    41. [41]

      Sun, B.; Gu, X.; Zeng, Q.; Huang, X.; Yan, Y.; Liu, Z.; Yang, R.; Koh, Y. K. Adv. Mater. 2017, 29, 1603297. doi: 10.1002/adma.201603297  doi: 10.1002/adma.201603297

    42. [42]

      Jang, H.; Wood, J. D.; Ryder, C. R.; Hersam, M. C.; Cahill, D. G. Adv. Mater. 2015, 27, 8017. doi: 10.1002/adma.201503466  doi: 10.1002/adma.201503466

    43. [43]

      Zhu, G.; Liu, J.; Zheng, Q.; Zhang, R.; Li, D.; Banerjee, D.; Cahill, D. G. Nat. Commun. 2016, 7, 13211. doi: 10.1038/ncomms13211  doi: 10.1038/ncomms13211

    44. [44]

      Chiritescu, C.; Cahill, D. G.; Nguyen, N.; Johnson, D.; Bodapati, A.; Keblinski, P.; Zschack, P. Science 2007, 315, 351. doi: 10.1126/science.1136494  doi: 10.1126/science.1136494

    45. [45]

      Kang, K.; Koh, Y. K.; Chiritescu, C.; Zheng, X.; Cahill, D. G. Rev. Sci. Instrum. 2008, 79, 114901. doi: 10.1063/1.3020759  doi: 10.1063/1.3020759

    46. [46]

      Schmidt, A. J.; Cheaito, R.; Chiesa, M. Rev. Sci. Instrum. 2009, 80, 094901. doi: 10.1063/1.3212673  doi: 10.1063/1.3212673

    47. [47]

      Liu, J.; Choi, G. -M.; Cahill, D. G. J. Appl. Phys. 2014, 116, 233107. doi: 10.1063/1.4904513  doi: 10.1063/1.4904513

    48. [48]

      Shen, B.; Zhai, W. T.; Zheng, W. G. Adv. Funct. Mater. 2014, 24, 4542. doi: 10.1002/adfm.201400079  doi: 10.1002/adfm.201400079

    49. [49]

      Song, H.; Liu, J.; Liu, B.; Wu, J.; Cheng, H. -M.; Kang, F. Joule 2018, 2, 442. doi: 10.1016/j.joule.2018.01.006  doi: 10.1016/j.joule.2018.01.006

    50. [50]

      Wang, Y.; Xu, N.; Li, D.; Zhu, J. Adv. Funct. Mater. 2017, 27. doi: 10.1002/adfm.201604134  doi: 10.1002/adfm.201604134

    51. [51]

      Wu, X.; Tang, W.; Xu, X. Acta Phys. Sin. 2020, 69, 196602.  doi: 10.7498/aps.69.20200709

    52. [52]

      Ward, A.; Broido, D.; Stewart, D. A.; Deinzer, G. Phys. Rev. B 2009, 80, 125203. doi: 10.1103/PhysRevB.80.125203  doi: 10.1103/PhysRevB.80.125203

    53. [53]

      Nika, D.; Pokatilov, E.; Askerov, A.; Balandin, A. Phys. Rev. B 2009, 79, 155413. doi: 10.1103/PhysRevB.79.155413  doi: 10.1103/PhysRevB.79.155413

    54. [54]

      Nika, D. L.; Ghosh, S.; Pokatilov, E. P.; Balandin, A. A. Appl. Phys. Lett. 2009, 94, 203103. doi: 10.1063/1.3136860  doi: 10.1063/1.3136860

    55. [55]

      Klemens, P. G. Int. J. Thermophys. 2001, 22, 265. doi: 10.1023/A:1006776107140  doi: 10.1023/A:1006776107140

    56. [56]

      Lindsay, L.; Broido, D.; Mingo, N. Phys. Rev. B 2011, 83, 235428. doi: 10.1103/PhysRevB.83.235428  doi: 10.1103/PhysRevB.83.235428

    57. [57]

      Feng, T.; Ruan, X. Phys. Rev. B 2018, 97, 045202. doi: 10.1103/PhysRevB.97.045202  doi: 10.1103/PhysRevB.97.045202

    58. [58]

      Zou, J. -H.; Ye, Z. -Q.; Cao, B. -Y. J. Chem. Phys. 2016, 145, 134705. doi: 10.1063/1.4963918  doi: 10.1063/1.4963918

    59. [59]

      Cepellotti, A.; Fugallo, G.; Paulatto, L.; Lazzeri, M.; Mauri, F.; Marzari, N. Nat. Commun. 2015, 6, 6400. doi: 10.1038/ncomms7400  doi: 10.1038/ncomms7400

    60. [60]

      Wang, H.; Hu, S.; Takahashi, K.; Zhang, X.; Takamatsu, H.; Chen, J. Nat. Commun. 2017, 8, 1. doi: 10.1038/ncomms15843  doi: 10.1038/ncomms15843

    61. [61]

      Ghosh, S.; Bao, W.; Nika, D. L.; Subrina, S.; Pokatilov, E. P.; Lau, C. N.; Balandin, A. A. Nat. Mater. 2010, 9, 555. doi: 10.1038/nmat2753  doi: 10.1038/nmat2753

    62. [62]

      Sadeghi, M. M.; Jo, I.; Shi, L. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 16321. doi: 10.1073/pnas.1306175110  doi: 10.1073/pnas.1306175110

    63. [63]

      Gu, X.; Wei, Y.; Yin, X.; Li, B.; Yang, R. Rev. Mod. Phys. 2018, 90, 041002. doi: 10.1103/RevModPhys.90.041002  doi: 10.1103/RevModPhys.90.041002

    64. [64]

      Nika, D. L.; Askerov, A. S.; Balandin, A. A. Nano Lett. 2012, 12, 3238. doi: 10.1021/nl301230g  doi: 10.1021/nl301230g

    65. [65]

      Lee, W.; Kihm, K. D.; Kim, H. G.; Shin, S.; Lee, C.; Park, J. S.; Cheon, S.; Kwon, O. M.; Lim, G.; Lee, W. Nano Lett. 2017, 17, 2361. doi: 10.1021/acs.nanolett.6b05269  doi: 10.1021/acs.nanolett.6b05269

    66. [66]

      Mortazavi, B.; Ahzi, S. Carbon 2013, 63, 460. doi: 10.1016/j.carbon.2013.07.017  doi: 10.1016/j.carbon.2013.07.017

    67. [67]

      Chen, S.; Wu, Q.; Mishra, C.; Kang, J.; Zhang, H.; Cho, K.; Cai, W.; Balandin, A. A.; Ruoff, R. S. Nat. Mater. 2012, 11, 203. doi: 10.1038/nmat3207  doi: 10.1038/nmat3207

    68. [68]

      Chien, S. K.; Yang, Y. T.; Chen, C. K. Appl. Phys. Lett. 2011, 98, 033107. doi: 10.1063/1.3543622  doi: 10.1063/1.3543622

    69. [69]

      Murakami, M.; Nishiki, N.; Nakamura, K.; Ehara, J.; Okada, H.; Kouzaki, T.; Watanabe, K.; Hoshi, T.; Yoshimura, S. Carbon 1992, 30, 255. doi: 10.1016/0008-6223(92)90088-E  doi: 10.1016/0008-6223(92)90088-E

    70. [70]

      Chen, H.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Adv. Mater. 2008, 20, 3557. doi: 10.1002/adma.200800757  doi: 10.1002/adma.200800757

    71. [71]

      Chen, C. M.; Huang, J. Q.; Zhang, Q.; Gong, W. Z.; Yang, Q. H.; Wang, M. Z.; Yang, Y. G. Carbon 2012, 50, 659. doi: 10.1016/j.carbon.2011.09.022  doi: 10.1016/j.carbon.2011.09.022

    72. [72]

      Liu, Y.; Li, P.; Wang, F.; Fang, W.; Xu, Z.; Gao, W.; Gao, C. Carbon 2019, 155, 462. doi: 10.1016/j.carbon.2019.09.021  doi: 10.1016/j.carbon.2019.09.021

    73. [73]

      Pei, S.; Cheng, H. -M. Carbon 2012, 50, 3210. doi: 10.1016/j.carbon.2011.11.010  doi: 10.1016/j.carbon.2011.11.010

    74. [74]

      Rozada, R.; Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. Nano Res. 2013, 6, 216. doi: 10.1007/s12274-013-0298-6  doi: 10.1007/s12274-013-0298-6

    75. [75]

      Wu, H.; Drzal, L. T. Carbon 2012, 50, 1135. doi: 10.1016/j.carbon.2011.10.026  doi: 10.1016/j.carbon.2011.10.026

    76. [76]

      Xin, G.; Sun, H.; Hu, T.; Fard, H. R.; Sun, X.; Koratkar, N.; Borca-Tasciuc, T.; Lian, J. Adv. Mater. 2014, 26, 4521. doi: 10.1002/adma.201400951  doi: 10.1002/adma.201400951

    77. [77]

      Kumar, P.; Shahzad, F.; Yu, S.; Hong, S. M.; Kim, Y. -H.; Koo, C. M. Carbon 2015, 94, 494. doi: 10.1016/j.carbon.2015.07.032  doi: 10.1016/j.carbon.2015.07.032

    78. [78]

      Teng, C.; Xie, D.; Wang, J.; Yang, Z.; Ren, G.; Zhu, Y. Adv. Funct. Mater. 2017, 27. doi: 10.1002/adfm.201700240  doi: 10.1002/adfm.201700240

    79. [79]

      Cai, X.; Luo, Y.; Liu, B.; Cheng, H. M. Chem. Soc. Rev. 2018, 47, 6224. doi: 10.1039/c8cs00254a  doi: 10.1039/c8cs00254a

    80. [80]

      Luo, C.; Yeh, C. N.; Baltazar, J. M. L.; Tsai, C. L.; Huang, J. Adv. Mater. 2018, 30, 1706229. doi: 10.1002/adma.201706229  doi: 10.1002/adma.201706229

    81. [81]

      Zhang, X.; Guo, Y.; Liu, Y.; Li, Z.; Fang, W.; Peng, L.; Zhou, J.; Xu, Z.; Gao, C. Carbon 2020, 167, 249 doi: 10.1016/j.carbon.2020.05.051  doi: 10.1016/j.carbon.2020.05.051

    82. [82]

      Liu, Y.; Liang, C.; Wei, A.; Jiang, Y.; Tian, Q.; Wu, Y.; Xu, Z.; Li, Y.; Guo, F.; Yang, Q. Mater. Today Nano 2018, 3, 1. doi: 10.1016/j.mtnano.2018.09.005  doi: 10.1016/j.mtnano.2018.09.005

    83. [83]

      Lin, S.; Zhong, Y.; Zhao, X.; Sawada, T.; Li, X.; Lei, W.; Wang, M.; Serizawa, T.; Zhu, H. Adv. Mater. 2018, 30, 1803004. doi: 10.1002/adma.201803004  doi: 10.1002/adma.201803004

    84. [84]

      Xu, Z.; Liu, Z.; Sun, H.; Gao, C. Adv. Mater. 2013, 25, 3249. doi: 10.1002/adma.201300774  doi: 10.1002/adma.201300774

    85. [85]

      Meng, Y.; Zhao, Y.; Hu, C.; Cheng, H.; Hu, Y.; Zhang, Z.; Shi, G.; Qu, L. Adv. Mater. 2013, 25, 2326. doi: 10.1002/adma.201300132  doi: 10.1002/adma.201300132

    86. [86]

      Cheng, Y.; Wang, K.; Qi, Y.; Liu, Z. Acta Phys. -Chim. Sin. 2022, 38, 2006046.  doi: 10.3866/PKU.WHXB202006046

    87. [87]

      Jian, M.; Zhang, Y.; Liu, Z. Acta Phys. -Chim. Sin. 2022, 38, 2007093.  doi: 10.3866/PKU.WHXB202007093

    88. [88]

      Xu, Z.; Liu, Y.; Zhao, X.; Peng, L.; Sun, H.; Xu, Y.; Ren, X.; Jin, C.; Xu, P.; Wang, M. Adv. Mater. 2016, 28, 6449. doi: 10.1002/adma.201506426  doi: 10.1002/adma.201506426

    89. [89]

      Xin, G.; Yao, T.; Sun, H.; Scott, S. M.; Shao, D.; Wang, G.; Lian, J. Science 2015, 349, 1083. doi: 10.1126/science.aaa6502  doi: 10.1126/science.aaa6502

    90. [90]

      Wang, Q.; Xia, H.; Zhang, C. J. Appl. Polym. Sci. 2001, 80, 1478. doi: 10.1002/app.1239  doi: 10.1002/app.1239

    91. [91]

      Ji, J.; Chiang, S. -W.; Liu, M.; Liang, X.; Li, J.; Gan, L.; He, Y.; Li, B.; Kang, F.; Du, H. Thermochim. Acta 2020, 690, 178649. doi: 10.1016/j.tca.2020.178649  doi: 10.1016/j.tca.2020.178649

    92. [92]

      Pashayi, K.; Fard, H. R.; Lai, F.; Iruvanti, S.; Plawsky, J.; Borca-Tasciuc, T. J. Appl. Phys. 2012, 111, 104310. doi: 10.1063/1.4716179  doi: 10.1063/1.4716179

    93. [93]

      Gou, Y.; Liu, Z.; Zhang, G.; Li, Y. Int. J. Heat Mass Transf. 2014, 74, 358. doi: 10.1016/j.ijheatmasstransfer.2014.03.009  doi: 10.1016/j.ijheatmasstransfer.2014.03.009

    94. [94]

      Li, H.; Chen, W.; Xu, J.; Li, J.; Gan, L.; Chu, X.; Yao, Y.; He, Y.; Li, B.; Kang, F. Thermochim. Acta 2019, 676, 198. doi: 10.1016/j.tca.2019.04.008  doi: 10.1016/j.tca.2019.04.008

    95. [95]

      Chen, H.; Ginzburg, V. V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Prog. Polym. Sci. 2016, 59, 41. doi: 10.1016/j.progpolymsci.2016.03.001  doi: 10.1016/j.progpolymsci.2016.03.001

    96. [96]

      Yu, A.; Ramesh, P.; Itkis, M. E.; Bekyarova, E.; Haddon, R. C. J. Phys. Chem. C 2007, 111, 7565. doi: 10.1021/jp071761s  doi: 10.1021/jp071761s

    97. [97]

      Ganguli, S.; Roy, A. K.; Anderson, D. P. Carbon 2008, 46, 806. doi: 10.1016/j.carbon.2008.02.008  doi: 10.1016/j.carbon.2008.02.008

    98. [98]

      Shahil, K. M.; Balandin, A. A. Nano Lett. 2012, 12, 861. doi: 10.1021/nl203906r  doi: 10.1021/nl203906r

    99. [99]

      Bigg, D. M. Polym. Compos. 1986, 7, 125. doi: 10.1002/pc.750070302  doi: 10.1002/pc.750070302

    100. [100]

      Zhu, Y.; Chen, K.; Kang, F. Solid State Commun. 2013, 158, 46. doi: 10.1016/j.ssc.2013.01.013  doi: 10.1016/j.ssc.2013.01.013

    101. [101]

      Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558. doi: 10.1016/j.carbon.2007.02.034  doi: 10.1016/j.carbon.2007.02.034

    102. [102]

      Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; et al. Science 2011, 331, 568. doi: 10.1126/science.1194975  doi: 10.1126/science.1194975

    103. [103]

      Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Science 2013, 340, 1226419. doi: 10.1126/science.1226419  doi: 10.1126/science.1226419

    104. [104]

      Guo, Y.; Xu, G.; Yang, X.; Ruan, K.; Ma, T.; Zhang, Q.; Gu, J.; Wu, Y.; Liu, H.; Guo, Z. J. Mater. Chem. C 2018, 6, 3004. doi: 10.1039/c8tc00452h  doi: 10.1039/c8tc00452h

    105. [105]

      Zhang, Y.; Choi, J. R.; Park, S. -J. Compos. Part A: Appl. Sci. Manuf. 2018, 109, 498. doi: 10.1016/j.compositesa.2018.04.001  doi: 10.1016/j.compositesa.2018.04.001

    106. [106]

      Shen, X.; Wang, Z.; Wu, Y.; Liu, X.; Kim, J. -K. Carbon 2016, 108, 412. doi: 10.1016/j.carbon.2016.07.042  doi: 10.1016/j.carbon.2016.07.042

    107. [107]

      Teng, C. -C.; Ma, C. -C. M.; Lu, C. -H.; Yang, S. -Y.; Lee, S. -H.; Hsiao, M. -C.; Yen, M. -Y.; Chiou, K. -C.; Lee, T. -M. Carbon 2011, 49, 5107. doi: 10.1016/j.carbon.2011.06.095  doi: 10.1016/j.carbon.2011.06.095

    108. [108]

      Huang, X.; Zhi, C.; Jiang, P. J. Phys. Chem. C 2012, 116, 23812. doi: 10.1021/jp308556r  doi: 10.1021/jp308556r

    109. [109]

      Zeng, X.; Ye, L.; Yu, S.; Li, H.; Sun, R.; Xu, J.; Wong, C. P. Nanoscale 2015, 7, 6774. doi: 10.1039/c5nr00228a  doi: 10.1039/c5nr00228a

    110. [110]

      Ding, P.; Zhang, J.; Song, N.; Tang, S.; Liu, Y.; Shi, L. Compos. Sci. Technol. 2015, 109, 25. doi: 10.1016/j.compscitech.2015.01.015  doi: 10.1016/j.compscitech.2015.01.015

    111. [111]

      Xu, J.; Gao, B.; Du, H.; Kang, F. Int. J. Therm. Sci. 2016, 104, 348. doi: 10.1016/j.ijthermalsci.2015.12.023  doi: 10.1016/j.ijthermalsci.2015.12.023

    112. [112]

      Xiong, Y. H.; Wu, H.; Gao, J. S.; Chen, W.; Zhang, J. C.; Yue, Y. N. Acta Phys. -Chim. Sin. 2019, 35, 1150.  doi: 10.3866/PKU.WHXB201901002

    113. [113]

      Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H. -M. Nat. Mater. 2011, 10, 424. doi: 10.1038/nmat3001  doi: 10.1038/nmat3001

    114. [114]

      Shi, L.; Chen, K.; Du, R.; Bachmatiuk, A.; Rümmeli, M. H.; Xie, K.; Huang, Y.; Zhang, Y.; Liu, Z. J. Am. Chem. Soc. 2016, 138, 6360. doi: 10.1021/jacs.6b02262  doi: 10.1021/jacs.6b02262

    115. [115]

      Chen, Z.; Xu, C.; Ma, C.; Ren, W.; Cheng, H. M. Adv. Mater. 2013, 25, 1296. doi: 10.1002/adma.201204196  doi: 10.1002/adma.201204196

    116. [116]

      Pettes, M. T.; Ji, H.; Ruoff, R. S.; Shi, L. Nano Lett. 2012, 12, 2959. doi: 10.1021/nl300662q  doi: 10.1021/nl300662q

    117. [117]

      Kholmanov, I.; Kim, J.; Ou, E.; Ruoff, R. S.; Shi, L. ACS Nano 2015, 9, 11699. doi: 10.1021/acsnano.5b02917  doi: 10.1021/acsnano.5b02917

    118. [118]

      Cong, H. -P.; Ren, X. -C.; Wang, P.; Yu, S. -H. ACS Nano 2012, 6, 2693. doi: 10.1021/nn300082k  doi: 10.1021/nn300082k

    119. [119]

      Lv, W.; Zhang, C.; Li, Z.; Yang, Q. -H. J. Phys. Chem. Lett. 2015, 6, 658. doi: 10.1021/jz502655m  doi: 10.1021/jz502655m

    120. [120]

      Sun, H.; Xu, Z.; Gao, C. Adv. Mater. 2013, 25, 2554. doi: 10.1002/adma.201204576  doi: 10.1002/adma.201204576

    121. [121]

      Xu, Y.; Sheng, K.; Li, C.; Shi, G. ACS Nano 2010, 4, 4324. doi: 10.1021/nn101187z  doi: 10.1021/nn101187z

    122. [122]

      Lian, G.; Tuan, C. C.; Li, L. Y.; Jiao, S. L.; Wang, Q. L.; Moon, K. S.; Cui, D. L.; Wong, C. P. Chem. Mater. 2016, 28, 6096. doi: 10.1021/acs.chemmater.6b01595  doi: 10.1021/acs.chemmater.6b01595

    123. [123]

      Idowu, A.; Boesl, B.; Agarwal, A. Carbon 2018, 135, 52. doi: 10.1016/j.carbon.2018.04.024  doi: 10.1016/j.carbon.2018.04.024

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    5. [5]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    6. [6]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    7. [7]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    8. [8]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    9. [9]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    10. [10]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    11. [11]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    14. [14]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    19. [19]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    20. [20]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

Metrics
  • PDF Downloads(86)
  • Abstract views(2144)
  • HTML views(659)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return