Citation: Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction[J]. Acta Physico-Chimica Sinica, ;2022, 38(2): 210100. doi: 10.3866/PKU.WHXB202101009 shu

Graphene-Based Catalysts for CO2 Electroreduction

  • Corresponding author: Xiangtong Meng, mengxt@mail.buct.edu.cn Jieshan Qiu, qiujs@mail.buct.edu.cn
  • Received Date: 5 January 2021
    Revised Date: 9 February 2021
    Accepted Date: 18 February 2021
    Available Online: 26 February 2021

    Fund Project: the Fundamental Research Funds for the Central Universities, China buctrc201929the Fundamental Research Funds for the Central Universities, China buctrc202029the National Science Foundation of China 52002014the National Science Foundation of China U2003216the China Postdoctoral Science Foundation 2019M660419the CAS Key Laboratory of Carbon Material KLCMKFJJ2003

  • With the excessive exploitation and utilization of conventional fossil fuels such as coal, petroleum, and natural gas, the concentration of carbon dioxide (CO2) in the atmosphere has increased significantly, leading to serious greenhouse effect. The electrocatalytic conversion of CO2 to liquid fuels and value-added chemicals is one of ideal strategies, considering the atomic economy and artificial carbon circle. Moreover, this process can be driven by renewable energy (solar, wind, tidal power, etc.), thus achieving efficient clean-energy utilization. Electrocatalytic CO2 reduction (ECR) can be carried out under ambient conditions, yielding diverse products such as C1 (carbon monoxide, methane, methanol, formic acid/formate), C2 (ethane, ethanol, ethylene, acetic acid), and C2+ (propyl alcohol, acetone, etc.). However, it faces some challenging problems such as high overpotential on electrodes, the poor selectivity of C2 and C2+ products, the severely competitive hydrogen evolution reaction and the stability in the practice. The rational design and construction of highly active electrocatalysts with low cost, high selectivity, and robust stability are key to these issues. Recently, graphene-based materials have attracted significant attention owing to the following attributes: (1) robust stability in electrochemical environments; (2) tailorable atomic and electronic structures, leading to tuned catalytic activity; (3) adjustable dimensions and hierarchical porous structure, large surface area, and number of active sites; and (4) an excellent conductivity coupled with active, well-defined materials, synergistically enhancing the electrocatalytic activity in the ECR. In this review, recent progress in graphene-based electrocatalysts for ECR is summarized. First, ECR fundamentals, such as reaction routes, products, electrolyzers (e.g., H-cell electrolyzers, flow-cell electrolyzers, and membrane electrode assembly cells), electrolytes (e.g., inorganic electrolytes, organic electrolytes, and solid-state electrolytes), and evaluation parameters of ECR performance (e.g., faradaic efficiency, onset potential, overpotential, current density, Tafel slope, and stability) are briefly introduced. The methods for making graphene-based catalysts for ECR are outlined and discussed in detail, including in situ or post-treatment doping, surface functionalization, microwave-assisted synthesis, chemical vapor deposition, and static self-assembly. The relationships between the graphene structures, including the point/line defects, the surface functional groups (e.g., -COOH, -OH, C-O-C, C=O, C≡O), heteroatom-doping configurations (e.g., pyridinic N, graphitic N, and pyrrolic N, and oxidized pyridinic N), metal single-atom species (e.g., Fe, Zn, Ni, Cu, Co, Sn, Mo, In, Bi), surface/interface properties, and catalytic performance are highlighted, shedding light on the design principles for efficient yet stable carbon-based catalysts for ECR. Finally, the opportunities and perspectives of graphene-based catalysts for ECR are outlined.
  • 加载中
    1. [1]

      Singh, G.; Lee, J.; Karakoti, A.; Bahadur, R.; Yi, J.; Zhao, D.; AlBahily, K.; Vinu, A. Chem. Soc. Rev. 2020, 49, 4360. doi: 10.1039/D0CS00075B  doi: 10.1039/D0CS00075B

    2. [2]

      Panda, D.; Kumar, E. A.; Singh, S. K. Ind. Eng. Chem. Res. 2019, 58, 5301. doi: 10.1021/acs.iecr.8b03958  doi: 10.1021/acs.iecr.8b03958

    3. [3]

      Ye, L.; Ying, Y.; Sun, D.; Zhang, Z.; Fei, L.; Wen, Z.; Qiao, J.; Huang, H. Angew. Chem. Int. Ed. 2019, 59, 3244. doi: 10.1002/anie.201912751  doi: 10.1002/anie.201912751

    4. [4]

      Yang, C.; Liu, S.; Wang, Y.; Song, J.; Wang, G.; Wang, S.; Zhao, Z. J.; Mu, R.; Gong, J. Angew. Chem. Int. Ed. 2019, 58, 11242. doi: 10.1002/anie.201904649  doi: 10.1002/anie.201904649

    5. [5]

      Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A. E.; Evans, J.; Senanayake, S. D.; Stacchiola, D. J.; Liu, P.; Hrbek, J.; Sanz, J. F.; et al. Science 2014, 345, 546. doi: 10.1126/science.1253057  doi: 10.1126/science.1253057

    6. [6]

      Bie, C.; Zhu, B.; Xu, F.; Zhang, L.; Yu, J. Adv. Mater. 2019, 31, 1902868. doi: 10.1002/adma.201902868  doi: 10.1002/adma.201902868

    7. [7]

      Ouyang, T.; Huang, H. H.; Wang, J. W.; Zhong, D. C.; Lu, T. B. Angew. Chem. Int. Ed. 2017, 56, 738. doi: 10.1002/anie.201610607  doi: 10.1002/anie.201610607

    8. [8]

      Chang, X.; Wang, T.; Zhang, P.; Wei, Y.; Zhao, J.; Gong, J. Angew. Chem. Int. Ed. 2016, 55, 8840. doi: 10.1002/anie.201602973  doi: 10.1002/anie.201602973

    9. [9]

      Liu, T.; Ali, S.; Lian, Z.; Li, B.; Su, D. S. J. Mater. Chem. A 2017, 5, 21596. doi: 10.1039/C7TA06674K  doi: 10.1039/C7TA06674K

    10. [10]

      Cui, H.; Guo, Y.; Guo, L.; Wang, L.; Zhou, Z.; Peng, Z. J. Mater. Chem. A 2018, 6, 18782. doi: 10.1039/C8TA07430E  doi: 10.1039/C8TA07430E

    11. [11]

      Hu, C.; Bai, S.; Gao, L.; Liang, S.; Yang, J.; Cheng, S. D.; Mi, S. B.; Qiu, J. ACS Catal. 2019, 9, 11579. doi: 10.1021/acscatal.9b03175  doi: 10.1021/acscatal.9b03175

    12. [12]

      Hu, C.; Mu, Y.; Bai, S.; Yang, J.; Gao, L.; Cheng, S. D.; Mi, S. B.; Qiu, J. Carbon 2019, 153, 609. doi: 10.1016/j.carbon.2019.07.071  doi: 10.1016/j.carbon.2019.07.071

    13. [13]

      Guo, Z.; Xiao, N.; Li, H.; Wang, Y.; Li, C.; Liu, C.; Xiao, J.; Bai, J.; Zhao, S.; Qiu, J. J. CO2 Util. 2020, 38, 212. doi: 10.1016/j.jcou.2020.01.020  doi: 10.1016/j.jcou.2020.01.020

    14. [14]

      Li, H.; Xiao, N.; Wang, Y.; Liu, C.; Zhang, S.; Zhang, H.; Bai, J.; Xiao, J.; Li, C.; Guo, Z.; et al. J. Mater. Chem. A 2020, 8, 1779. doi: 10.1039/C9TA12401B  doi: 10.1039/C9TA12401B

    15. [15]

      Tan, X.; Yu, C.; Ren, Y.; Cui, S.; Li, W.; Qiu, J. Energy Environ. Sci. 2021, 14, 765. doi: 10.1039/D0EE02981E  doi: 10.1039/D0EE02981E

    16. [16]

      Schuchmann, K.; Müller, V. Science 2013, 342, 1382. doi: 10.1126/science.1244758  doi: 10.1126/science.1244758

    17. [17]

      Zhang, E.; Wang, T.; Yu, K.; Liu, J.; Chen, W.; Li, A.; Rong, H.; Lin, R.; Ji, S.; Zheng, X.; et al. J. Am. Chem. Soc. 2019, 141, 16569. doi: 10.1021/jacs.9b08259  doi: 10.1021/jacs.9b08259

    18. [18]

      Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. J. Phys. Chem. Lett. 2015, 6, 4073. doi: 10.1021/acs.jpclett.5b01559  doi: 10.1021/acs.jpclett.5b01559

    19. [19]

      Han, N.; Ding, P.; He, L.; Li, Y.; Li, Y. Adv. Energy Mater. 2020, 10, 1902338. doi: 10.1002/aenm.201902338  doi: 10.1002/aenm.201902338

    20. [20]

      Weng, Z.; Zhang, X.; Wu, Y.; Huo, S.; Jiang, J.; Liu, W.; He, G.; Liang, Y.; Wang, H. Angew. Chem. Int. Ed. 2017, 56, 13135. doi: 10.1002/anie.201707478  doi: 10.1002/anie.201707478

    21. [21]

      Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Adv. Mater. 2016, 28, 3423. doi: 10.1002/adma.201504766  doi: 10.1002/adma.201504766

    22. [22]

      Mou, S.; Wu, T.; Xie, J.; Zhang, Y.; Ji, L.; Huang, H.; Wang, T.; Luo, Y.; Xiong, X.; Tang, B.; et al. Adv. Mater. 2019, 31, 1903499. doi: 10.1002/adma.201903499  doi: 10.1002/adma.201903499

    23. [23]

      Ma, T.; Fan, Q.; Li, X.; Qiu, J.; Wu, T.; Sun, Z. J. CO2 Util. 2019, 30, 168. doi: 10.1016/j.jcou.2019.02.001  doi: 10.1016/j.jcou.2019.02.001

    24. [24]

      Wei, X.; Li, Y.; Chen, L.; Shi, J. Angew. Chem. Int. Ed. 2021, 60, 3148. doi: 10.1002/anie.202012066  doi: 10.1002/anie.202012066

    25. [25]

      Verma, S.; Lu, S.; Kenis, P. J. A. Nat. Energy 2019, 4, 466. doi: 10.1038/s41560-019-0374-6  doi: 10.1038/s41560-019-0374-6

    26. [26]

      Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; et al. Chem. Rev. 2019, 119, 7610. doi: 10.1021/acs.chemrev.8b00705  doi: 10.1021/acs.chemrev.8b00705

    27. [27]

      Handoko, A. D.; Wei, F.; Jenndy; Yeo, B. S.; Seh, Z. W. Nat. Catal. 2018, 1, 922. doi: 10.1038/s41929-018-0182-6  doi: 10.1038/s41929-018-0182-6

    28. [28]

      Lum, Y.; Cheng, T.; Goddard, W. A.; Ager, J. W. J. Am. Chem. Soc. 2018, 140, 9337. doi: 10.1021/jacs.8b03986  doi: 10.1021/jacs.8b03986

    29. [29]

      Gao, D.; Wei, P., Li, H.; Lin, L.; Wang, G.; Bao, X. Acta Phys. -Chim. Sin. 2021, 37, 2009021.  doi: 10.3866/PKU.WHXB202009021
       

    30. [30]

      Resasco, J.; Chen, L. D.; Clark, E.; Tsai, C.; Hahn, C.; Jaramillo, T. F.; Chan, K.; Bell, A. T. J. Am. Chem. Soc. 2017, 139, 11277. doi: 10.1021/jacs.7b06765  doi: 10.1021/jacs.7b06765

    31. [31]

      Dong, Q.; Zhang, X.; He, D.; Lang, C.; Wang, D. ACS Cent. Sci. 2019, 5, 1461. doi: 10.1021/acscentsci.9b00519  doi: 10.1021/acscentsci.9b00519

    32. [32]

      Zhong, Y.; Xu, Y.; Ma, J.; Wang, C.; Sheng, S.; Cheng, C.; Li, M.; Han, L.; Zhou, L.; Cai, Z.; et al. Angew. Chem. Int. Ed. 2020, 59, 19095. doi: 10.1002/anie.202005522  doi: 10.1002/anie.202005522

    33. [33]

      Nguyen, D. L. T.; Lee, C. W.; Na, J.; Kim, M. C.; Tu, N. D. K.; Lee, S. Y.; Sa, Y. J.; Won, D. H.; Oh, H. S.; Kim, H.; et al. ACS Catal. 2020, 10, 3222. doi: 10.1021/acscatal.9b05096  doi: 10.1021/acscatal.9b05096

    34. [34]

      Dong, H.; Zhang, L.; Li, L.; Deng, W.; Hu, C.; Zhao, Z. J.; Gong, J. Small 2019, 15, 1900289. doi: 10.1002/smll.201900289  doi: 10.1002/smll.201900289

    35. [35]

      Luo, W.; Zhang, J.; Li, M.; Züttel, A. ACS Catal. 2019, 9, 3783. doi: 10.1021/acscatal.8b05109  doi: 10.1021/acscatal.8b05109

    36. [36]

      Zhou, Y.; Han, N.; Li, Y. Acta Phys. -Chim. Sin. 2020, 36, 2001041.  doi: 10.3866/PKU.WHXB202001041
       

    37. [37]

      Zhu, Q.; Ma, J.; Kang, X.; Sun, X.; Liu, H.; Hu, J.; Liu, Z.; Han, B. Angew. Chem. Int. Ed. 2016, 55, 9012. doi: 10.1002/anie.201601974  doi: 10.1002/anie.201601974

    38. [38]

      Bai, X.; Chen, W.; Zhao, C.; Li, S.; Song, Y.; Ge, R.; Wei, W.; Sun, Y. Angew. Chem. Int. Ed. 2017, 56, 12219. doi: 10.1002/anie.201707098  doi: 10.1002/anie.201707098

    39. [39]

      Yang, H.; Han, N.; Deng, J.; Wu, J.; Wang, Y.; Hu, Y.; Ding, P.; Li, Y.; Li, Y.; Lu, J. Adv. Energy Mater. 2018, 8, 1801536. doi: 10.1002/aenm.201801536  doi: 10.1002/aenm.201801536

    40. [40]

      Lai, Q.; Yang, N.; Yuan, G. Electrochem. Commun. 2017, 83, 24. doi: 10.1016/j.elecom.2017.08.015  doi: 10.1016/j.elecom.2017.08.015

    41. [41]

      Zhu, Q.; Sun, X.; Yang, D.; Ma, J.; Kang, X.; Zheng, L.; Zhang, J.; Wu, Z.; Han, B. Nat. Commun. 2019, 10, 3851. doi: 10.1038/s41467-019-11599-7  doi: 10.1038/s41467-019-11599-7

    42. [42]

      Dinh, C.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; García de Arquer, F. P.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S.; et al. Science 2018, 360, 783. doi: 10.1126/science.aas9100  doi: 10.1126/science.aas9100

    43. [43]

      Meng, Y.; Kuang, S.; Liu, H.; Fan, Q.; Ma, X.; Zhang, S. Acta Phys. -Chim. Sin. 2021, 37, 2006034.  doi: 10.3866/PKU.WHXB202006034
       

    44. [44]

      Tan, X.; Yu, C.; Zhao, C.; Huang, H.; Yao, X.; Han, X.; Guo, W.; Cui, S.; Huang, H.; Qiu, J. ACS Appl. Mater. Interfaces 2019, 11, 9904. doi: 10.1021/acsami.8b19111  doi: 10.1021/acsami.8b19111

    45. [45]

      Li, Y.; Sun, Q. Adv. Energy Mater. 2016, 6, 1600463. doi: 10.1002/aenm.201600463  doi: 10.1002/aenm.201600463

    46. [46]

      Liu, X.; Xiao, J.; Peng, H.; Hong, X.; Chan, K.; Nørskov, J. K. Nat. Commun. 2017, 8, 15438. doi: 10.1038/ncomms15438  doi: 10.1038/ncomms15438

    47. [47]

      Wang, H.; Jia, J.; Song, P.; Wang, Q.; Li, D.; Min, S.; Qian, C.; Wang, L.; Li, Y. F.; Ma, C.; et al. Angew. Chem. Int. Ed. 2017, 56, 7847. doi: 10.1002/anie.201703720  doi: 10.1002/anie.201703720

    48. [48]

      Ma, C.; Hou, P.; Wang, X.; Wang, Z.; Li, W.; Kang, P. Appl. Catal. B 2019, 250, 347. doi: 10.1016/j.apcatb.2019.03.041  doi: 10.1016/j.apcatb.2019.03.041

    49. [49]

      Kumar, B.; Asadi, M.; Pisasale, D.; Sinha-Ray, S.; Rosen, B. A.; Haasch, R.; Abiade, J.; Yarin, A. L.; Salehi-Khojin, A. Nat. Commun. 2013, 4, 2819. doi: 10.1038/ncomms3819  doi: 10.1038/ncomms3819

    50. [50]

      Han, P.; Yu, X.; Yuan, D.; Kuang, M.; Wang, Y.; Al-Enizi, A. M.; Zheng, G. J. Colloid Interface Sci. 2019, 534, 332. doi: 10.1016/j.jcis.2018.09.036  doi: 10.1016/j.jcis.2018.09.036

    51. [51]

      Yang, F.; Ma, X.; Cai, W. B.; Song, P.; Xu, W. J. Am. Chem. Soc. 2019, 141, 20451. doi: 10.1021/jacs.9b11123  doi: 10.1021/jacs.9b11123

    52. [52]

      Wu, J.; Liu, M.; Sharma, P. P.; Yadav, R. M.; Ma, L.; Yang, Y.; Zou, X.; Zhou, X. D.; Vajtai, R.; Yakobson, B. I.; et al. Nano Lett. 2016, 16, 466. doi: 10.1021/acs.nanolett.5b04123  doi: 10.1021/acs.nanolett.5b04123

    53. [53]

      Wu, J.; Ma, S.; Sun, J.; Gold, J. I.; Tiwary, C.; Kim, B.; Zhu, L.; Chopra, N.; Odeh, I. N.; Vajtai, R.; et al. Nat. Commun. 2016, 7, 13869. doi: 10.1038/ncomms13869  doi: 10.1038/ncomms13869

    54. [54]

      Chen, Z.; Mou, K.; Yao, S.; Liu, L. J. Mater. Chem. A 2018, 6, 11236. doi: 10.1039/C8TA03328E  doi: 10.1039/C8TA03328E

    55. [55]

      Yao, P.; Qiu, Y.; Zhang, T.; Su, P.; Li, X.; Zhang, H. ACS Sustainable Chem. Eng. 2019, 7, 5249. doi: 10.1021/acssuschemeng.8b06160  doi: 10.1021/acssuschemeng.8b06160

    56. [56]

      Wang, R.; Sun, X.; Ould-Chikh, S.; Osadchii, D.; Bai, F.; Kapteijn, F.; Gascon, J. ACS Appl. Mater. Interfaces 2018, 10, 14751. doi: 10.1021/acsami.8b02226  doi: 10.1021/acsami.8b02226

    57. [57]

      Kuang, M.; Guan, A.; Gu, Z.; Han, P.; Qian, L.; Zheng, G. Nano Res. 2019, 12, 2324. doi: 10.1007/s12274-019-2396-6  doi: 10.1007/s12274-019-2396-6

    58. [58]

      Li, C.; Wang, Y.; Xiao, N.; Li, H.; Ji, Y.; Guo, Z.; Liu, C.; Qiu, J. Carbon 2019, 151, 46. doi: 10.1016/j.carbon.2019.05.042  doi: 10.1016/j.carbon.2019.05.042

    59. [59]

      Li, H.; Xiao, N.; Wang, Y.; Li, C.; Ye, X.; Guo, Z.; Pan, X.; Liu, C.; Bai, J.; Xiao, J.; et al. J. Mater. Chem. A 2019, 7, 18852. doi: 10.1039/C9TA05904K  doi: 10.1039/C9TA05904K

    60. [60]

      Rao, C. N. R.; Sood, A. K.; Voggu, R.; Subrahmanyam, K. S. J. Phys. Chem. Lett. 2010, 1, 572. doi: 10.1021/jz9004174  doi: 10.1021/jz9004174

    61. [61]

      Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849  doi: 10.1038/nmat1849

    62. [62]

      Dong, Y.; Zhang, Q.; Tian, Z.; Li, B.; Yan, W.; Wang, S.; Jiang, K.; Su, J.; Oloman, C. W.; Gyenge, E. L.; et al. Adv. Mater. 2020, 32, 2001300. doi: 10.1002/adma.202001300  doi: 10.1002/adma.202001300

    63. [63]

      Wang, H.; Chen, Y.; Hou, X.; Ma, C.; Tan, T. Green Chem. 2016, 18, 3250. doi: 10.1039/C6GC00410E  doi: 10.1039/C6GC00410E

    64. [64]

      Su, P.; Iwase, K.; Nakanishi, S.; Hashimoto, K.; Kamiya, K. Small 2016, 12, 6083. doi: 10.1002/smll.201602158  doi: 10.1002/smll.201602158

    65. [65]

      Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.; Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D.; et al. Energy Environ. Sci. 2018, 11, 893. doi: 10.1039/C7EE03245E  doi: 10.1039/C7EE03245E

    66. [66]

      Bi, W.; Li, X.; You, R.; Chen, M.; Yuan, R.; Huang, W.; Wu, X.; Chu, W.; Wu, C.; Xie, Y. Adv. Mater. 2018, 30, 1706617. doi: 10.1002/adma.201706617  doi: 10.1002/adma.201706617

    67. [67]

      Cheng, Y.; Zhao, S.; Li, H.; He, S.; Veder, J. P.; Johannessen, B.; Xiao, J.; Lu, S.; Pan, J.; Chisholm, M. F.; et al. Appl. Catal. B 2019, 243, 294. doi: 10.1016/j.apcatb.2018.10.046  doi: 10.1016/j.apcatb.2018.10.046

    68. [68]

      Zhang, C.; Yang, S.; Wu, J.; Liu, M.; Yazdi, S.; Ren, M.; Sha, J.; Zhong, J.; Nie, K.; Jalilov, A. S.; et al. Adv. Energy Mater. 2018, 8, 1703487. doi: 10.1002/aenm.201703487  doi: 10.1002/aenm.201703487

    69. [69]

      Zhang, H.; Li, J.; Xi, S.; Du, Y.; Hai, X.; Wang, J.; Xu, H.; Wu, G.; Zhang, J.; Lu, J.; et al. Angew. Chem. Int. Ed. 2019, 58, 14871. doi: 10.1002/anie.201906079  doi: 10.1002/anie.201906079

    70. [70]

      Pan, F.; Li, B.; Sarnello, E.; Fei, Y.; Feng, X.; Gang, Y.; Xiang, X.; Fang, L.; Li, T.; Hu, Y. H.; et al. ACS Catal. 2020, 10, 10803. doi: 10.1021/acscatal.0c02499  doi: 10.1021/acscatal.0c02499

    71. [71]

      Zu, X.; Li, X.; Liu, W.; Sun, Y.; Xu, J.; Yao, T.; Yan, W.; Gao, S.; Wang, C.; Wei, S.; et al. Adv. Mater. 2019, 31, 1808135. doi: 10.1002/adma.201808135  doi: 10.1002/adma.201808135

    72. [72]

      Chen, Z.; Mou, K.; Yao, S.; Liu, L. ChemSusChem 2018, 11, 2944. doi: 10.1002/cssc.201800925  doi: 10.1002/cssc.201800925

    73. [73]

      Karapinar, D.; Huan, N. T.; Ranjbar Sahraie, N.; Li, J.; Wakerley, D.; Touati, N.; Zanna, S.; Taverna, D.; Galvão Tizei, L.H.; Zitolo, A.; et al. Angew. Chem. Int. Ed. 2019, 58, 15098. doi: 10.1002/anie.201907994  doi: 10.1002/anie.201907994

    74. [74]

      Zhang, B.; Zhang, J.; Shi, J.; Tan, D.; Liu, L.; Zhang, F.; Lu, C.; Su, Z.; Tan, X.; Cheng, X.; et al. Nat. Commun. 2019, 10, 2980. doi: 10.1038/s41467-019-10854-1  doi: 10.1038/s41467-019-10854-1

    75. [75]

      Shang, H.; Wang, T.; Pei, J.; Jiang, Z.; Zhou, D.; Wang, Y.; Li, H.; Dong, J.; Zhuang, Z.; Chen, W.; et al. Angew. Chem. Int. Ed. 2020, 59, 22465. doi: 10.1002/anie.202010903  doi: 10.1002/anie.202010903

    76. [76]

      Zhao, Y.; Wang, C.; Liu, Y.; MacFarlane, D. R.; Wallace, G. G. Adv. Energy Mater. 2018, 8, 1801400. doi: 10.1002/aenm.201801400  doi: 10.1002/aenm.201801400

    77. [77]

      Rogers, C.; Perkins, W. S.; Veber, G.; Williams, T. E.; Cloke, R. R.; Fischer, F. R. J. Am. Chem. Soc. 2017, 139, 4052. doi: 10.1021/jacs.6b12217  doi: 10.1021/jacs.6b12217

    78. [78]

      Fu, J.; Wang, Y.; Liu, J.; Huang, K.; Chen, Y.; Li, Y.; Zhu, J. J. ACS Energy Lett. 2018, 3, 946. doi: 10.1021/acsenergylett.8b00261  doi: 10.1021/acsenergylett.8b00261

    79. [79]

      Duan, Y. X.; Liu, K. H.; Zhang, Q.; Yan, J. M.; Jiang, Q. Small Methods 2020, 4, 1900846. doi: 10.1002/smtd.201900846  doi: 10.1002/smtd.201900846

    80. [80]

      Li, Q.; Zhu, W.; Fu, J.; Zhang, H.; Wu, G.; Sun, S. Nano Energy 2016, 24, 1. doi: 10.1016/j.nanoen.2016.03.024  doi: 10.1016/j.nanoen.2016.03.024

    81. [81]

      Chen, C.; Yan, X.; Liu, S.; Wu, Y.; Wan, Q.; Sun, X.; Zhu, Q.; Liu, H.; Ma, J.; Zheng, L.; et al. Angew. Chem. Int. Ed. 2020, 59, 16459. doi: 10.1002/anie.202006847  doi: 10.1002/anie.202006847

    82. [82]

      Huang, J.; Guo, X.; Yue, G.; Hu, Q.; Wang, L. ACS Appl. Mater. Interfaces 2018, 10, 44403. doi: 10.1021/acsami.8b14822  doi: 10.1021/acsami.8b14822

    83. [83]

      Ni, W.; Li, C.; Zang, X.; Xu, M.; Huo, S.; Liu, M.; Yang, Z.; Yan, Y. M. Appl. Catal. B 2019, 259, 118044. doi: 10.1016/j.apcatb.2019.118044  doi: 10.1016/j.apcatb.2019.118044

    84. [84]

      Ma, Z.; Tsounis, C.; Kumar, P. V.; Han, Z.; Wong, R. J.; Toe, C. Y.; Zhou, S.; Bedford, N. M.; Thomsen, L.; Ng, Y. H.; et al. Adv. Funct. Mater. 2020, 30, 1910118. doi: 10.1002/adfm.201910118  doi: 10.1002/adfm.201910118

    85. [85]

      Zhang, Z.; Ahmad, F.; Zhao, W.; Yan, W.; Zhang, W.; Huang, H.; Ma, C.; Zeng, J. Nano Lett. 2019, 19, 4029. doi: 10.1021/acs.nanolett.9b01393  doi: 10.1021/acs.nanolett.9b01393

    86. [86]

      Chen, Z.; Mou, K.; Wang, X.; Liu, L. Angew. Chem. Int. Ed. 2018, 57, 12790. doi: 10.1002/anie.201807643  doi: 10.1002/anie.201807643

    87. [87]

      Wang, J.; Huang, X.; Xi, S.; Lee, J.M.; Wang, C.; Du, Y.; Wang, X. Angew. Chem. Int. Ed. 2019, 58, 13532. doi: 10.1002/anie.201906475  doi: 10.1002/anie.201906475

    88. [88]

      Wang, J.; Gan, L.; Zhang, Q.; Reddu, V.; Peng, Y.; Liu, Z.; Xia, X.; Wang, C.; Wang, X. Adv. Energy Mater. 2019, 9, 1803151. doi: 10.1002/aenm.201803151  doi: 10.1002/aenm.201803151

    89. [89]

      Choi, J.; Wagner, P.; Gambhir, S.; Jalili, R.; MacFarlane, D. R.; Wallace, G. G.; Officer, D. L. ACS Energy Lett. 2019, 4, 666. doi: 10.1021/acsenergylett.8b02355  doi: 10.1021/acsenergylett.8b02355

    90. [90]

      Li, L.; Huang, Y.; Li, Y. EnergyChem 2020, 2, 100024. doi: 10.1016/j.enchem.2019.100024  doi: 10.1016/j.enchem.2019.100024

    91. [91]

      Tang, C.; Zhang, Q. Adv. Mater. 2017, 29, 1604103. doi: 10.1002/adma.201604103  doi: 10.1002/adma.201604103

    92. [92]

      Yuan, W.; Zhou, Y.; Li, Y.; Li, C.; Peng, H.; Zhang, J.; Liu, Z.; Dai, L.; Shi, G. Sci. Rep. 2013, 3, 2248. doi: 10.1038/srep02248  doi: 10.1038/srep02248

    93. [93]

      Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. ACS Nano 2011, 5, 26. doi: 10.1021/nn102598m  doi: 10.1021/nn102598m

    94. [94]

      Lu, J.; Bao, Y.; Su, C. L.; Loh, K. P. ACS Nano 2013, 7, 8350. doi: 10.1021/nn4051248  doi: 10.1021/nn4051248

    95. [95]

      Zhu, Y.; Lv, K.; Wang, X.; Yang, H.; Xiao, G.; Zhu, Y. J. Mater. Chem. A 2019, 7, 14895. doi: 10.1039/C9TA02353D  doi: 10.1039/C9TA02353D

    96. [96]

      Meng, X.; Yu, C.; Song, X.; Iocozzia, J.; Hong, J.; Rager, M.; Jin, H.; Wang, S.; Huang, L.; Qiu, J.; et al. Angew. Chem. Int. Ed. 2018, 57, 4682. doi: 10.1002/anie.201801337  doi: 10.1002/anie.201801337

    97. [97]

      Zou, X.; Liu, M.; Wu, J.; Ajayan, P. M.; Li, J.; Liu, B.; Yakobson, B. I. ACS Catal. 2017, 7, 6245. doi: 10.1021/acscatal.7b01839  doi: 10.1021/acscatal.7b01839

    98. [98]

      Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrochim. Acta 1994, 39, 1833. doi: 10.1016/0013-4686(94]85172-7  doi: 10.1016/0013-4686(94]85172-7

    99. [99]

      Zhang, S.; Kang, P.; Meyer, T. J. J. Am. Chem. Soc. 2014, 136, 1734. doi: 10.1021/ja4113885  doi: 10.1021/ja4113885

    100. [100]

      Sreekanth, N.; Nazrulla, M.A.; Vineesh, T. V.; Sailaja, K.; Phani, K. L. Chem. Commun. 2015, 51, 16061. doi: 10.1039/c5cc06051f  doi: 10.1039/c5cc06051f

    101. [101]

      Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634. doi: 10.1038/nchem.1095  doi: 10.1038/nchem.1095

    102. [102]

      Zhao, D.; Zhuang, Z.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. Chem. Soc. Rev. 2020, 49, 2215. doi: 10.1039/C9CS00869A  doi: 10.1039/C9CS00869A

    103. [103]

      Cui, X.; Shi, F. Acta Phys. -Chim. Sin. 2021, 37, 2006080.  doi: 10.3866/PKU.WHXB202006080
       

    104. [104]

      Huang, P.; Cheng, M.; Zhang, H.; Zuo, M.; Xiao, C.; Xie, Y. Nano Energy 2019, 61, 428. doi: 10.1016/j.nanoen.2019.05.003  doi: 10.1016/j.nanoen.2019.05.003

    105. [105]

      Ning, H.; Wang, X.; Wang, W.; Mao, Q.; Yang, Z.; Zhao, Q.; Song, Y.; Wu, M. Carbon 2019, 146, 218. doi: 10.1016/j.carbon.2019.02.010  doi: 10.1016/j.carbon.2019.02.010

    106. [106]

      Mistry, H.; Reske, R.; Zeng, Z.; Zhao, Z. J.; Greeley, J.; Strasser, P.; Cuenya, B. R. J. Am. Chem. Soc. 2014, 136, 16473. doi: 10.1021/ja508879j  doi: 10.1021/ja508879j

    107. [107]

      Zhu, W.; Michalsky, R.; Metin, Ö.; Lv, H.; Guo, S.; Wright, C. J.; Sun, X.; Peterson, A. A.; Sun, S. J. Am. Chem. Soc. 2013, 135, 16833. doi: 10.1021/ja409445p  doi: 10.1021/ja409445p

    108. [108]

      Daiyan, R.; Lovell, E. C.; Huang, B.; Zubair, M.; Leverett, J.; Zhang, Q.; Lim, S.; Horlyck, J.; Tang, J.; Lu, X.; et al. Adv. Energy Mater. 2020, 10, 2001381. doi: 10.1002/aenm.202001381  doi: 10.1002/aenm.202001381

    109. [109]

      Feng, Y.; Cheng, C. Q.; Zou, C. Q.; Zheng, X. L.; Mao, J.; Liu, H.; Li, Z.; Dong, C. K.; Du, X. W. Angew. Chem. Int. Ed. 2020, 59, 19297. doi: 10.1002/anie.202008852  doi: 10.1002/anie.202008852

    110. [110]

      Zheng, T.; Jiang, K.; Wang, H. Adv. Mater. 2018, 30, 1802066. doi: 10.1002/adma.201802066  doi: 10.1002/adma.201802066

    111. [111]

      Yi, J. D.; Xie, R.; Xie, Z. L.; Chai, G. L.; Liu, T. F.; Chen, R. P.; Huang, Y. B.; Cao, R. Angew. Chem. Int. Ed. 2020, 59, 23641. doi: 10.1002/anie.202010601  doi: 10.1002/anie.202010601

    112. [112]

      Yang, F.; Mao, X.; Ma, M.; Jiang, C.; Zhang, P.; Wang, J.; Deng, Q.; Zeng, Z.; Deng, S. Carbon 2020, 168, 528. doi: 10.1016/j.carbon.2020.06.088  doi: 10.1016/j.carbon.2020.06.088

    113. [113]

      Azenha, C.; Mateos-Pedrero, C.; Alvarez-Guerra, M.; Irabien, A.; Mendes, A. Electrochim. Acta 2020, 363, 137207. doi: 10.1016/j.electacta.2020.137207  doi: 10.1016/j.electacta.2020.137207

    114. [114]

      Wang, Y.; Wang, Z.; Dinh, C. T.; Li, J.; Ozden, A.; Golam Kibria, M.; Seifitokaldani, A.; Tan, C. S.; Gabardo, C. M.; Luo, M.; et al. Nat. Catal. 2020, 3, 98. doi: 10.1038/s41929-019-0397-1  doi: 10.1038/s41929-019-0397-1

  • 加载中
    1. [1]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    5. [5]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    6. [6]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    7. [7]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    8. [8]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    9. [9]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    10. [10]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    11. [11]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    12. [12]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    18. [18]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    19. [19]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    20. [20]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

Metrics
  • PDF Downloads(94)
  • Abstract views(3559)
  • HTML views(785)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return