Citation: Yingjie Ma, Linjie Zhi. Functionalized Graphene Materials: Definition, Classification, and Preparation Strategies[J]. Acta Physico-Chimica Sinica, ;2022, 38(1): 210100. doi: 10.3866/PKU.WHXB202101004 shu

Functionalized Graphene Materials: Definition, Classification, and Preparation Strategies



  • Author Bio: Yingjie Ma received his PhD in chemistry from Zhejiang University in 2013. Then, he joined Prof. Klaus Müllen's group at Max-Planck Institute for Polymer Research as postdoctor (2013-2016). Since the end of 2016, he has been an assistant researcher in the National Center for Nanoscience and Technology, China. His research interests focus on synthesis of functional organic molecules and their applications in energy storage and catalysis
    Linjie Zhi received his PhD in 2000 at the Institute of Coal Chemistry, Chinese Academy of Sciences. Since 2003 he worked with Prof. Klaus Müllen at the Max-Planck Institute for Polymer Research for two years before assuming the position of project leader until the end of 2007. Since early 2008, he has been a professor in the National Center for Nanoscience and Technology of China. His research interests focus on carbon-rich nanomaterials and their application in energy-related areas
  • Corresponding author: Yingjie Ma, mayj@nanoctr.cn Linjie Zhi, zhilj@nanoctr.cn
  • Received Date: 4 January 2021
    Revised Date: 24 February 2021
    Accepted Date: 25 February 2021
    Available Online: 3 March 2021

    Fund Project: the National Natural Science Foundation of China 51425302the National Natural Science Foundation of China 51302045the Beijing Natural Science Foundation 2182086

  • Since its emergence in 2004, graphene has attracted enormous attention because of its unique and fantastic properties, which signals the birth of two-dimensional (2D) nanomaterials. The strictly atomic-layered 2D structure endows graphene with unconventional optical, electronic, magnetic, and mechanical properties. Owing to these extraordinary features, graphene has exhibited great potential in various fields, such as biology, medicine, chemistry, physics, and the environment. Notably, when graphene is used in these fields, it is always functionalized to facilitate its manipulation or meet the different area demands. After functionalization, the properties of graphene, such as its composition, size, shape, and structure, are modified, leading to changes in its electronic structure, surface chemistry, solubility, and mechanical and chemical properties. Functionalization of graphene can be achieved through various approaches, including chemical oxidation, doping, covalent and non-covalent modification, and hybridization with other materials, yielding various products (i.e., graphene oxide, nano graphene, graphene nanoribbons (GNRs), graphene nanomeshes, and graphene-polymer hybrids). However, these resulting products have not been systematically classified or strictly defined until now; although they have been classified as covalent and non-covalent functionalized graphene, graphene-based polymer composites, and graphene-based composites. Systematic classification and exact definition will benefit research on functionalizing graphene. In this review, based on research on functionalization of graphene, we propose a systematic classification of the products from graphene functionalization, their corresponding definitions, and preparation strategies, which are illustrated by representative examples. All the products from graphene functionalization are defined as functionalized graphene materials, which fall into two categories: functionalized graphene and functionalized graphene composite. Functionalized graphene is the product of modifying graphene by tuning its composition, framework, dimension, and morphology, and functionalized graphene composites are hybrids of graphene (or functionalized graphene) with other materials, including small molecules, polymers, metals, inorganic compounds, and carbon nanotubes (CNTs). Functionalized graphene materials are prepared through two strategies: "top-down" and "bottom-up, " each of which has its advantages and shortcomings and includes many corresponding preparation methods. The selection of preparation strategies depends on the application requirements, as different applications require different types of graphene. Both strategies are elucidated with detailed examples through an extensive analysis of the literature. Finally, the major challenges and perspectives of functionalized graphene materials are discussed. This review presents the proposed systematic classification and exact definition of functionalized graphene materials, which can enhance their development. It is believed that functionalized graphene materials will achieve significant progress in the future.
  • 加载中
    1. [1]

      Wei, W.; Qu, X. Small 2012, 8, 2138. doi: 10.1002/smll.201200104  doi: 10.1002/smll.201200104

    2. [2]

      Morozov, S.; Novoselov, K.; Katsnelson, M.; Schedin, F.; Elias, D.; Jaszczak, J. A.; Geim, A. Phys. Rev. Lett. 2008, 100, 016602. doi: 10.1103/PhysRevLett.100.016602  doi: 10.1103/PhysRevLett.100.016602

    3. [3]

      Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902. doi: 10.1021/nl0731872  doi: 10.1021/nl0731872

    4. [4]

      Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. doi: 10.1126/science.1157996  doi: 10.1126/science.1157996

    5. [5]

      Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Lett. 2008, 8, 3498. doi: 10.1021/nl802558y  doi: 10.1021/nl802558y

    6. [6]

      Zhang, Y.; Tan, Y. -W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201. doi: 10.1038/nature04233  doi: 10.1038/nature04233

    7. [7]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    8. [8]

      Reina, G.; Gonzalez-Dominguez, J. M.; Criado, A.; Vazquez, E.; Bianco, A.; Prato, M. Chem. Soc. Rev. 2017, 46, 4400. doi: 10.1039/C7CS00363C  doi: 10.1039/C7CS00363C

    9. [9]

      Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Antonietti, M.; Garcia, H. Chem. Soc. Rev. 2017, 46, 4501. doi: 10.1039/C7CS00156H  doi: 10.1039/C7CS00156H

    10. [10]

      Seo, D. H.; Pineda, S.; Woo, Y. C.; Xie, M.; Murdock, A. T.; Ang, E.; Jiao, Y.; Park, M. J.; Lim, S. I.; Lawn, M. Nat. Commun. 2018, 9, 683. doi: 10.1038/s41467-018-02871-3  doi: 10.1038/s41467-018-02871-3

    11. [11]

      Ambrosi, A.; Chua, C. K.; Latiff, N. M.; Loo, A. H.; Wong, C. H. A.; Eng, A. Y. S.; Bonanni, A.; Pumera, M. Chem. Soc. Rev. 2016, 45, 2458. doi: 10.1039/C6CS00136J  doi: 10.1039/C6CS00136J

    12. [12]

      Xu, X.; Liu, C.; Sun, Z.; Cao, T.; Zhang, Z.; Wang, E.; Liu, Z.; Liu, K. Chem. Soc. Rev. 2018. doi: 10.1039/C7CS00836H  doi: 10.1039/C7CS00836H

    13. [13]

      Li, X.; Zhi, L. Chem. Soc. Rev. 2018. doi: 10.1039/C7CS00871F  doi: 10.1039/C7CS00871F

    14. [14]

      Khan, A.; Wang, J.; Li, J.; Wang, X.; Chen, Z.; Alsaedi, A.; Hayat, T.; Chen, Y.; Wang, X. Environ. Sci. Pollut. Res. Int. 2017, 24, 1. doi: 10.1007/s11356-017-8388-8  doi: 10.1007/s11356-017-8388-8

    15. [15]

      Liu, M.; Zhang, R.; Chen, W. Chem. Rev. 2014, 114, 5117. doi: 10.1021/cr400523y  doi: 10.1021/cr400523y

    16. [16]

      Gadipelli, S.; Guo, Z. X. Prog. Mater. Sci. 2015, 69, 1. doi: 10.1016/j.pmatsci.2014.10.004  doi: 10.1016/j.pmatsci.2014.10.004

    17. [17]

      Bhattacharjee, Y.; Arief, I.; Bose, S. J. Mater. Chem. C 2017, 5, 7390. doi: 10.1039/C7TC02172K  doi: 10.1039/C7TC02172K

    18. [18]

      Chen, W.; Lv, G.; Hu, W.; Li, D.; Chen, S.; Dai, Z. Nanotechnol Rev. 2018, 7, 157. doi: 10.1515/ntrev-2017-0199  doi: 10.1515/ntrev-2017-0199

    19. [19]

      Bottari, G.; Herranz, M. A.; Wibmer, L.; Volland, M.; Rodriguez-Perez, L.; Guldi, D. M.; Hirsch, A.; Martin, N.; D'Souza, F.; Torres, T. Chem. Soc. Rev. 2017, 46, 4464. doi: 10.1039/C7CS00229G  doi: 10.1039/C7CS00229G

    20. [20]

      Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I.; Holland, B.; Byrne, M.; Gun'Ko, Y. K. Nat. Nanotechnol. 2008, 3, 563. doi: 10.1038/nnano.2008.215  doi: 10.1038/nnano.2008.215

    21. [21]

      Compton, O. C.; Nguyen, S. B. T. Small 2010, 6, 711. doi: 10.1002/smll.200901934  doi: 10.1002/smll.200901934

    22. [22]

      Rizzo, D. J.; Veber, G.; Cao, T.; Bronner, C.; Chen, T.; Zhao, F.; Rodriguez, H.; Louie, S. G.; Crommie, M. F.; Fischer, F. R. Nature 2018, 560, 204. doi: 10.1038/s41586-018-0376-8  doi: 10.1038/s41586-018-0376-8

    23. [23]

      Bai, J.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. Nat. Nanotechnol. 2010, 5, 190. doi: 10.1038/nnano.2010.8  doi: 10.1038/nnano.2010.8

    24. [24]

      Xu, X.; Liu, C.; Sun, Z.; Cao, T.; Zhang, Z.; Wang, E.; Liu, Z.; Liu, K. Chem. Soc. Rev. 2018, 47, 3059. doi: 10.1039/C7CS00836H  doi: 10.1039/C7CS00836H

    25. [25]

      Ye, R.; Xiang, C.; Lin, J.; Peng, Z.; Huang, K.; Yan, Z.; Cook, N. P.; Samuel, E. L. G.; Hwang, C. -C.; Ruan, G.; et al. Nat. Commun. 2013, 4, 2943. doi: 10.1038/ncomms3943  doi: 10.1038/ncomms3943

    26. [26]

      Ma, G.; Huang, K.; Ma, J. -S.; Ju, Z.; Xing, Z.; Zhuang, Q. -C. J. Mater. Chem. A 2017. doi: 10.1039/C7TA01108C  doi: 10.1039/C7TA01108C

    27. [27]

      Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Chem. Rev. 2012, 112, 6156. doi: 10.1021/cr3000412  doi: 10.1021/cr3000412

    28. [28]

      Zhang, Y.; Gong, S.; Zhang, Q.; Ming, P.; Wan, S.; Peng, J.; Jiang, L.; Cheng, Q. Chem. Soc. Rev. 2016, 45, 2378. doi: 10.1039/C5CS00258C  doi: 10.1039/C5CS00258C

    29. [29]

      Tarcan, R.; Todor-Boer, O.; Petrovai, I.; Leordean, C.; Astilean, S.; Botiz, I. J. Mater. Chem. C 2020. doi: 10.1039/c9tc04916a  doi: 10.1039/c9tc04916a

    30. [30]

      Chen, Z.; Narita, A.; Müllen, K. Adv. Mater. 2020, 32, 2001893. doi: 10.1002/adma.202001893  doi: 10.1002/adma.202001893

    31. [31]

      Guo, S.; Dong, S. Chem. Soc. Rev. 2011, 40, 2644. doi: 10.1039/C0CS00079E  doi: 10.1039/C0CS00079E

    32. [32]

      Shi, L.; Chen, K.; Du, R.; Bachmatiuk, A.; Rümmeli, M. H.; Xie, K.; Huang, Y.; Zhang, Y.; Liu, Z. J. Am. Chem. Soc. 2016, 138, 6360. doi: 10.1021/jacs.6b02262  doi: 10.1021/jacs.6b02262

    33. [33]

      Liu, G.; Jin, W.; Xu, N. Chem. Soc. Rev. 2015, 44, 5016. doi: 10.1039/C4CS00423J  doi: 10.1039/C4CS00423J

    34. [34]

      Georgakilas, V. Functionalization of Graphene. John Wiley & Sons: Weinheim, Germany, 2014; pp. 1-400.

    35. [35]

      Ferreira, F. V.; Cividanes, L. D. S.; Brito, F. S.; Menezes, B. R. C. D.; Franceschi, W.; Simonetti, E. A. N.; Thim, G. P. Functionalizing Graphene and Carbon Nanotubes: A Review. Springer: Berlin, Germany, 2016; pp. 1-63.

    36. [36]

      Gong, X.; Liu, G.; Li, Y.; Yu, D. Y. W.; Teoh, W. Y. Chem. Mater. 2016, 28, 8082. doi: 10.1021/acs.chemmater.6b01447  doi: 10.1021/acs.chemmater.6b01447

    37. [37]

      Ioniţă, M.; Vlăsceanu, G. M.; Watzlawek, A. A.; Voicu, S. I.; Burns, J. S.; Iovu, H. Compos. Part B: Eng. 2017, 121, 34. doi: 10.1016/j.compositesb.2017.03.031  doi: 10.1016/j.compositesb.2017.03.031

    38. [38]

      Kong, X. -K.; Chen, C. -L.; Chen, Q. -W. Chem. Soc. Rev. 2014, 43, 2841. doi: 10.1039/C3CS60401B  doi: 10.1039/C3CS60401B

    39. [39]

      Perreault, F.; Fonseca de Faria, A.; Elimelech, M. Chem. Soc. Rev. 2015, 44, 5861. doi: 10.1039/C5CS00021A  doi: 10.1039/C5CS00021A

    40. [40]

      Lu, H.; Zhang, S.; Guo, L.; Li, W. RSC Adv. 2017, 7, 51008. doi: 10.1039/C7RA09634H  doi: 10.1039/C7RA09634H

    41. [41]

      Wang, H.; Maiyalagan, T.; Wang, X. ACS Catal. 2012, 2, 781. doi: 10.1021/cs200652y  doi: 10.1021/cs200652y

    42. [42]

      Yoon, K. -Y.; Dong, G. Mater. Chem. Front. 2020, 4, 29. doi: 10.1039/C9QM00519F  doi: 10.1039/C9QM00519F

    43. [43]

      Lu, J.; Yeo, P. S. E.; Gan, C. K.; Wu, P.; Loh, K. P. Nat. Nanotechnol. 2011, 6, 247. doi: 10.1038/nnano.2011.30  doi: 10.1038/nnano.2011.30

    44. [44]

      Buzaglo, M.; Shtein, M.; Regev, O. Chem. Mater. 2016, 28, 21. doi: 10.1021/acs.chemmater.5b03301  doi: 10.1021/acs.chemmater.5b03301

    45. [45]

      Xia, W.; Tang, J.; Li, J.; Zhang, S.; Wu, K. C. W.; He, J.; Yamauchi, Y. Angew. Chem. Int. Ed. 2019, 131, 13488. doi: 10.1002/anie.201906870  doi: 10.1002/anie.201906870

    46. [46]

      Zhang, Z.; Tian, X.; Liu, M.; Xu, P.; Xiao, F.; Wang, S. J. Mater. Chem. A 2018, 6, 23856. doi: 10.1039/C8TA07946C  doi: 10.1039/C8TA07946C

    47. [47]

      Chi, K.; Chen, Z.; Xiao, F.; Guo, W.; Xi, W.; Liu, J.; Yan, H.; Zhang, Z.; Xiao, J.; Liu, J.; et al. J. Mater. Chem. A 2019, 7, 15575. doi: 10.1039/C9TA00942F  doi: 10.1039/C9TA00942F

    48. [48]

      Zhang, Z.; Liu, M.; Tian, X.; Xu, P.; Fu, C.; Wang, S.; Liu, Y. Nano Energy 2018, 50, 182. doi: 10.1016/j.nanoen.2018.05.030  doi: 10.1016/j.nanoen.2018.05.030

    49. [49]

      Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Nature 2018, 556, 43. doi: 10.1038/nature26160  doi: 10.1038/nature26160

    50. [50]

      Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; et al. Nature 2018, 556, 80. doi: 10.1038/nature26154  doi: 10.1038/nature26154

    51. [51]

      Zhang, Y.; Tang, T. -T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Nature 2009, 459, 820. doi: 10.1038/nature08105  doi: 10.1038/nature08105

    52. [52]

      Yankowitz, M.; Chen, S.; Polshyn, H.; Zhang, Y.; Watanabe, K.; Taniguchi, T.; Graf, D.; Young, A. F.; Dean, C. R. Science 2019, 363, 1059. doi: 10.1126/science.aav1910  doi: 10.1126/science.aav1910

    53. [53]

      Oostinga, J. B.; Heersche, H. B.; Liu, X.; Morpurgo, A. F.; Vandersypen, L. M. K. Nat. Mater. 2008, 7, 151. doi: 10.1038/nmat2082  doi: 10.1038/nmat2082

    54. [54]

      Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Science 2006, 313, 951. doi: 10.1126/science.1130681  doi: 10.1126/science.1130681

    55. [55]

      Xu, Z.; Gao, C. Mater. Today 2015, 18, 480. doi: 10.1016/j.mattod.2015.06.009  doi: 10.1016/j.mattod.2015.06.009

    56. [56]

      Fang, B.; Chang, D.; Xu, Z.; Gao, C. Adv. Mater. 2020, 32, 1902664. doi: 10.1002/adma.201902664  doi: 10.1002/adma.201902664

    57. [57]

      Wu, Y.; Yi, N.; Huang, L.; Zhang, T.; Fang, S.; Chang, H.; Li, N.; Oh, J.; Lee, J. A.; Kozlov, M.; et al. Nat. Commun. 2015, 6, 6141. doi: 10.1038/ncomms7141  doi: 10.1038/ncomms7141

    58. [58]

      Pei, S.; Wei, Q.; Huang, K.; Cheng, H. -M.; Ren, W. Nat. Commun. 2018, 9, 145. doi: 10.1038/s41467-017-02479-z  doi: 10.1038/s41467-017-02479-z

    59. [59]

      Chua, C. K.; Pumera, M. Chem. Soc. Rev. 2013, 42, 3222. doi: 10.1039/C2CS35474H  doi: 10.1039/C2CS35474H

    60. [60]

      Duan, J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. ACS Catal. 2015, 5, 5207. doi: 10.1021/acscatal.5b00991  doi: 10.1021/acscatal.5b00991

    61. [61]

      Johannsen, J. C.; Ulstrup, S.; Crepaldi, A.; Cilento, F.; Zacchigna, M.; Miwa, J. A.; Cacho, C.; Chapman, R. T.; Springate, E.; Fromm, F.; et al. Nano Lett. 2015, 15, 326. doi: 10.1021/nl503614v  doi: 10.1021/nl503614v

    62. [62]

      Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Nano Lett. 2009, 9, 1752. doi: 10.1021/nl803279t  doi: 10.1021/nl803279t

    63. [63]

      Yadav, R.; Dixit, C. K. J. Sci. : Adv. Mater. Devices 2017, 2, 141. doi: 10.1016/j.jsamd.2017.05.007  doi: 10.1016/j.jsamd.2017.05.007

    64. [64]

      Yu, X.; Han, P.; Wei, Z.; Huang, L.; Gu, Z.; Peng, S.; Ma, J.; Zheng, G. Joule 2018, 2, 1610. doi: 10.1016/j.joule.2018.06.007  doi: 10.1016/j.joule.2018.06.007

    65. [65]

      Putri, L. K.; Ong, W. -J.; Chang, W. S.; Chai, S. -P. Appl. Surf. Sci. 2015, 358, 2. doi: 10.1016/j.apsusc.2015.08.177  doi: 10.1016/j.apsusc.2015.08.177

    66. [66]

      Xia, L.; Yang, J.; Wang, H.; Zhao, R.; Chen, H.; Fang, W.; Asiri, A. M.; Xie, F.; Cui, G.; Sun, X. Chem. Commun. (Cambridge, U. K. ) 2019, 55, 3371. doi: 10.1039/C9CC00602H

    67. [67]

      Wang, X.; Sun, G.; Routh, P.; Kim, D. -H.; Huang, W.; Chen, P. Chem. Soc. Rev. 2014, 43, 7067. doi: 10.1039/C4CS00141A  doi: 10.1039/C4CS00141A

    68. [68]

      Liu, R.; Wu, D.; Feng, X.; Müllen, K. J. Am. Chem. Soc. 2011, 133, 15221. doi: 10.1021/ja204953k  doi: 10.1021/ja204953k

    69. [69]

      Wang, G.; Guo, Q.; Chen, D.; Liu, Z.; Zheng, X.; Xu, A.; Yang, S.; Ding, G. ACS Appl. Mater. Interfaces 2018, 10, 5750. doi: 10.1021/acsami.7b16002  doi: 10.1021/acsami.7b16002

    70. [70]

      Narita, A.; Feng, X.; Müllen, K. Chem. Rec. 2015, 15, 295. doi: 10.1002/tcr.201402082  doi: 10.1002/tcr.201402082

    71. [71]

      Obradovic, B.; Kotlyar, R.; Heinz, F.; Matagne, P.; Rakshit, T.; Giles, M.; Stettler, M.; Nikonov, D. Appl. Phys. Lett. 2006, 88, 142102. doi: 10.1063/1.2191420  doi: 10.1063/1.2191420

    72. [72]

      Barone, V.; Hod, O.; Scuseria, G. E. Nano Lett. 2006, 6, 2748. doi: 10.1021/nl0617033  doi: 10.1021/nl0617033

    73. [73]

      Wang, J.; Zhao, R.; Yang, M.; Liu, Z.; Liu, Z. J. Chem. Phys. 2013, 138, 084701. doi: 10.1063/1.4792142  doi: 10.1063/1.4792142

    74. [74]

      Yan, L.; Zheng, Y. B.; Zhao, F.; Li, S.; Gao, X.; Xu, B.; Weiss, P. S.; Zhao, Y. Chem. Soc. Rev. 2012, 41, 97. doi: 10.1039/C1CS15193B  doi: 10.1039/C1CS15193B

    75. [75]

      Son, Y. -W.; Cohen, M. L.; Louie, S. G. Nature 2006, 444, 347. doi: 10.1038/nature05180  doi: 10.1038/nature05180

    76. [76]

      Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Phys. Rev. B 1996, 54, 17954. doi: 10.1103/PhysRevB.54.17954  doi: 10.1103/PhysRevB.54.17954

    77. [77]

      Valencia, A. M.; Caldas, M. J. Phys. Rev. B 2017, 96, 125431. doi: 10.1103/PhysRevB.96.125431  doi: 10.1103/PhysRevB.96.125431

    78. [78]

      Luican-Mayer, A.; Li, G.; Andrei, E. Y. J. Electron Spectrosc. Relat. Phenom. 2017, 219, 92. doi: 10.1016/j.elspec.2017.01.005  doi: 10.1016/j.elspec.2017.01.005

    79. [79]

      Tian, S.; Li, L.; Sun, W.; Xia, X.; Han, D.; Li, J.; Gu, C. Sci. Rep. 2012, 2, 511. doi: 10.1038/srep00511  doi: 10.1038/srep00511

    80. [80]

      Liu, S.; Wang, A.; Li, Q.; Wu, J.; Chiou, K.; Huang, J.; Luo, J. Joule 2018, 2, 184. doi: 10.1016/j.joule.2017.11.004  doi: 10.1016/j.joule.2017.11.004

    81. [81]

      Qiu, B.; Xing, M.; Zhang, J. Chem. Soc. Rev. 2018, 47, 2165. doi: 10.1039/C7CS00904F  doi: 10.1039/C7CS00904F

    82. [82]

      Ma, Y.; Zhi, L. Small Methods 2019, 3, 1800199. doi: 10.1002/smtd.201800199  doi: 10.1002/smtd.201800199

    83. [83]

      Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H. -M. Nat. Mater. 2011, 10, 424. doi: 10.1038/nmat3001  doi: 10.1038/nmat3001

    84. [84]

      de Sousa, M.; Martins, C. H. Z.; Franqui, L. S.; Fonseca, L. C.; Delite, F. S.; Lanzoni, E. M.; Martinez, D. S. T.; Alves, O. L. J. Mater. Chem. B 2018, 6, 2803. doi: 10.1039/C7TB02997G  doi: 10.1039/C7TB02997G

    85. [85]

      Mi, X.; Huang, G.; Xie, W.; Wang, W.; Liu, Y.; Gao, J. Carbon 2012, 50, 4856. doi: 10.1016/j.carbon.2012.06.013  doi: 10.1016/j.carbon.2012.06.013

    86. [86]

      Dreyer, D. R.; Todd, A. D.; Bielawski, C. W. Chem. Soc. Rev. 2014, 43, 5288. doi: 10.1039/C4CS00060A  doi: 10.1039/C4CS00060A

    87. [87]

      Dong, L.; Yang, J.; Chhowalla, M.; Loh, K. P. Chem. Soc. Rev. 2017, 46, 7306. doi: 10.1039/C7CS00485K  doi: 10.1039/C7CS00485K

    88. [88]

      Torres, T. Chem. Soc. Rev. 2017. doi: 10.1039/C7CS90061A  doi: 10.1039/C7CS90061A

    89. [89]

      Roth, A.; Schaub, T. A.; Meinhardt, U.; Thiel, D.; Storch, J.; Cirkva, V.; Jakubik, P.; Guldi, D. M.; Kivala, M. Chem. Sci. 2017, 8, 3494. doi: 10.1039/C7SC00533D  doi: 10.1039/C7SC00533D

    90. [90]

      Liu, J.; Liu, G.; Xu, J.; Liu, C.; Zhou, W.; Liu, P.; Nie, G.; Duan, X.; Jiang, F. ACS Appl. Energy Mater. 2020, 3, 6165. doi: 10.1021/acsaem.0c00001  doi: 10.1021/acsaem.0c00001

    91. [91]

      Yao, Q.; Lu, Z. -H.; Yang, Y.; Chen, Y.; Chen, X.; Jiang, H. -L. Nano Res. 2018, 11, 4412. doi: 10.1007/s12274-018-2031-y  doi: 10.1007/s12274-018-2031-y

    92. [92]

      Sun, H.; You, X.; Deng, J.; Chen, X.; Yang, Z.; Ren, J.; Peng, H. Adv. Mater. 2014, 26, 2868. doi: 10.1002/adma.201305188  doi: 10.1002/adma.201305188

    93. [93]

      Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; Zboril, R. Chem. Rev. 2016, 116, 5464. doi: 10.1021/acs.chemrev.5b00620  doi: 10.1021/acs.chemrev.5b00620

    94. [94]

      Huang, X.; Qi, X.; Boey, F.; Zhang, H. Chem. Soc. Rev. 2012, 41, 666. doi: 10.1039/C1CS15078B  doi: 10.1039/C1CS15078B

    95. [95]

      Yu, X.; Cheng, H.; Zhang, M.; Zhao, Y.; Qu, L.; Shi, G. Nat. Rev. Mater. 2017, 2, 17046. doi: 10.1038/natrevmats.2017.46  doi: 10.1038/natrevmats.2017.46

    96. [96]

      Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. Nat. Mater. 2015, 14, 271. doi: 10.1038/nmat4170  doi: 10.1038/nmat4170

    97. [97]

      Wang, X. -Y.; Narita, A.; Müllen, K. Nat. Rev. Chem. 2017, 2, 0100. doi: 10.1038/s41570-017-0100  doi: 10.1038/s41570-017-0100

    98. [98]

      Chua, C. K.; Sofer, Z.; Šimek, P.; Jankovský, O.; Klímová, K.; Bakardjieva, S.; Hrdličková Kučková, Š.; Pumera, M. ACS Nano 2015, 9, 2548. doi: 10.1021/nn505639q  doi: 10.1021/nn505639q

    99. [99]

      Jiao, L.; Wang, X.; Diankov, G.; Wang, H.; Dai, H. Nat. Nanotechnol. 2010, 5, 321. doi: 10.1038/nnano.2010.54  doi: 10.1038/nnano.2010.54

    100. [100]

      Neri, G.; Scala, A.; Fazio, E.; Mineo, P. G.; Rescifina, A.; Piperno, A.; Grassi, G. Chem. Sci. 2015, 6, 6961. doi: 10.1039/C5SC02576A  doi: 10.1039/C5SC02576A

    101. [101]

      Sampath, S.; Basuray, A. N.; Hartlieb, K. J.; Aytun, T.; Stupp, S. I.; Stoddart, J. F. Adv. Mater. 2013, 25, 2740. doi: 10.1002/adma.201205157  doi: 10.1002/adma.201205157

    102. [102]

      Jeon, I. -Y.; Shin, Y. -R.; Sohn, G. -J.; Choi, H. -J.; Bae, S. -Y.; Mahmood, J.; Jung, S. -M.; Seo, J. -M.; Kim, M. -J.; Wook Chang, D.; et al. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 5588. doi: 10.1073/pnas.1116897109  doi: 10.1073/pnas.1116897109

    103. [103]

      Yu, P.; Lowe, S. E.; Simon, G. P.; Zhong, Y. L. Curr. Opin. Colloid Interface Sci. 2015, 20, 329. doi: 10.1016/j.cocis.2015.10.007  doi: 10.1016/j.cocis.2015.10.007

    104. [104]

      Kim, W. S.; Moon, S. Y.; Bang, S. Y.; Choi, B. G.; Ham, H.; Sekino, T.; Shim, K. B. Appl. Phys. Lett. 2009, 95, 083103. doi: 10.1063/1.3213350  doi: 10.1063/1.3213350

    105. [105]

      Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H. Nature 2009, 458, 877. doi: 10.1038/nature07919  doi: 10.1038/nature07919

    106. [106]

      Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X.; et al. Nature 2010, 466, 470. doi: 10.1038/nature09211  doi: 10.1038/nature09211

    107. [107]

      Kashani, H. M.; Madrakian, T.; Afkhami, A.; Mahjoubi, F.; Moosavi, M. A. Mater. Sci. Eng. B 2019, 251, 114452. doi: 10.1016/j.mseb.2019.114452  doi: 10.1016/j.mseb.2019.114452

    108. [108]

      Jacobse, P. H.; McCurdy, R. D.; Jiang, J.; Rizzo, D. J.; Veber, G.; Butler, P.; Zuzak, R.; Louie, S. G.; Fischer, F. R.; Crommie, M. F. J. Am. Chem. Soc. 2020, 142, 13507. doi: 10.1021/jacs.0c05235  doi: 10.1021/jacs.0c05235

    109. [109]

      Hao, L.; Zhang, S.; Liu, R.; Ning, J.; Zhang, G.; Zhi, L. Adv. Mater. 2015, 27, 3190. doi: 10.1002/adma.201500863  doi: 10.1002/adma.201500863

    110. [110]

      Han, P.; Akagi, K.; Federici Canova, F.; Mutoh, H.; Shiraki, S.; Iwaya, K.; Weiss, P. S.; Asao, N.; Hitosugi, T. ACS Nano 2014, 8, 9181. doi: 10.1021/nn5028642  doi: 10.1021/nn5028642

    111. [111]

      Wang, X. -Y.; Urgel, J. I.; Barin, G. B.; Eimre, K.; Di Giovannantonio, M.; Milani, A.; Tommasini, M.; Pignedoli, C. A.; Ruffieux, P.; Feng, X.; et al. J. Am. Chem. Soc. 2018, 140, 9104. doi: 10.1021/jacs.8b06210  doi: 10.1021/jacs.8b06210

    112. [112]

      Narita, A.; Verzhbitskiy, I. A.; Frederickx, W.; Mali, K. S.; Jensen, S. A.; Hansen, M. R.; Bonn, M.; De Feyter, S.; Casiraghi, C.; Feng, X.; et al. ACS Nano 2014, 8, 11622. doi: 10.1021/nn5049014  doi: 10.1021/nn5049014

    113. [113]

      Moreno, C.; Vilas-Varela, M.; Kretz, B.; Garcia-Lekue, A.; Costache, M. V.; Paradinas, M.; Panighel, M.; Ceballos, G.; Valenzuela, S. O.; Peña, D.; et al. Science 2018, 360, 199. doi: 10.1126/science.aar2009  doi: 10.1126/science.aar2009

    114. [114]

      Park, J.; Yan, M. Acc. Chem. Res. 2013, 46, 181. doi: 10.1021/ar300172h  doi: 10.1021/ar300172h

    115. [115]

      Żyła-Karwowska, M.; Zhylitskaya, H.; Cybińska, J.; Lis, T.; Chmielewski, P. J.; Stępień, M. Angew. Chem. 2016, 128, 14878. doi: 10.1002/ange.201608400  doi: 10.1002/ange.201608400

    116. [116]

      Cai, J.; Pignedoli, C. A.; Talirz, L.; Ruffieux, P.; Söde, H.; Liang, L.; Meunier, V.; Berger, R.; Li, R.; Feng, X. Nat. Nanotechnol. 2014, 9, 896. doi: 10.1038/nnano.2014.184  doi: 10.1038/nnano.2014.184

    117. [117]

      Vo, T. H.; Shekhirev, M.; Kunkel, D. A.; Morton, M. D.; Berglund, E.; Kong, L.; Wilson, P. M.; Dowben, P. A.; Enders, A.; Sinitskii, A. Nat. Commun. 2014, 5, 3189. doi: 10.1038/ncomms4189  doi: 10.1038/ncomms4189

    118. [118]

      Wang, X. -Y.; Yao, X.; Müllen, K. Sci. China Chem. 2019, 62, 1099. doi: 10.1007/s11426-019-9491-2  doi: 10.1007/s11426-019-9491-2

    119. [119]

      Bakandritsos, A.; Chronopoulos, D. D.; Jakubec, P.; Pykal, M.; Čépe, K.; Steriotis, T.; Kalytchuk, S.; Petr, M.; Zbořil, R.; Otyepka, M. Adv. Funct. Mater. 2018, 28, 1801111. doi: 10.1002/adfm.201801111  doi: 10.1002/adfm.201801111

    120. [120]

      Lei, T.; Chen, W.; Lv, W.; Huang, J.; Zhu, J.; Chu, J.; Yan, C.; Wu, C.; Yan, Y.; He, W.; et al. Joule 2018, 2, 2091. doi: 10.1016/j.joule.2018.07.022  doi: 10.1016/j.joule.2018.07.022

    121. [121]

      Xu, Y.; Peng, B.; Mulder, F. M. Adv. Energy Mater. 2018, 8, 1701847. doi: 10.1002/aenm.201701847  doi: 10.1002/aenm.201701847

  • 加载中
    1. [1]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    2. [2]

      Limin Wang Feiyi Huang Xinyi Liang Rajkumar Devasenathipathy Xiaotian Liu Qiulan Huang Zhongyun Yang Dujuan Huang Xinglan Peng Du-Hong Chen Youjun Fan Wei Chen . Photoelectric synergy induced synchronous functionalization of graphene and its applications in water splitting and desalination. Chinese Journal of Structural Chemistry, 2025, 44(2): 100501-100501. doi: 10.1016/j.cjsc.2024.100501

    3. [3]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    4. [4]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    5. [5]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    6. [6]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    7. [7]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    8. [8]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    9. [9]

      Ningxiang Wu Huaping Zhao Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392

    10. [10]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    11. [11]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    12. [12]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    13. [13]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    14. [14]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    15. [15]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    16. [16]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    17. [17]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    18. [18]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    19. [19]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    20. [20]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

Metrics
  • PDF Downloads(61)
  • Abstract views(1114)
  • HTML views(407)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return