Citation: Xiaoming Li, Yidan Gao, Qingqiang Kong, Lijing Xie, Zhuo liu, Xiaoqian Guo, Yanzhen Liu, Xianxian Wei, Xiao Yang, Xinghua Zhang, Chengmeng Chen. Fabrication of Three-Dimensional Copper@Graphene Phase Change Composite with High Structural Stability and Low Leakage Rate[J]. Acta Physico-Chimica Sinica, ;2022, 38(1): 201209. doi: 10.3866/PKU.WHXB202012091 shu

Fabrication of Three-Dimensional Copper@Graphene Phase Change Composite with High Structural Stability and Low Leakage Rate

  • Corresponding author: Chengmeng Chen, ccm@sxicc.ac.cn
  • These authors contributed equally to this work.
  • Received Date: 31 December 2020
    Revised Date: 15 February 2021
    Accepted Date: 18 February 2021
    Available Online: 25 February 2021

    Fund Project: the National Natural Science Foundation of China 21922815the National Natural Science Foundation of China 51802325the Natural Science Foundation of Shanxi Province 201901D211585the Scientific and Technological Key Project of Shanxi Province 20191102003the Patent Promotion and Implementation Project of Shanxi Province 20200716the Key Research and Development (R&D) Projects of Shanxi Province 201903D121007

  • Owing to the continuous increase in energy consumption and the growing depletion of traditional fossil fuels, the development of renewable energy is becoming increasingly urgent. Renewable energy has come to the fore, represented by geothermal energy and solar energy. However, the application of these energy sources is highly susceptible to weather, season, location, and time. Thus, these alternative energies are unstable, random, fluctuating, intermittent, and inefficient. The development of energy storage technologies can efficiently solve these problems, storing and releasing energy when needed. Among the key materials used in various energy-storage technologies, phase-change materials (PCMs) are strong candidates for smart thermal energy management and portable thermal energy sectors. As most innate PCMs face issues of low thermal conductivity, environmental pollution, and leakage over their melting point, encapsulating PCMs into supporting materials is necessary. However, these supporting materials face significant challenges in their application. First, skeleton materials should be resistant to the PCM volume changes during melting and solidification processes to achieve suitable structural stability. Second, skeleton materials should also have high thermal conductivity and a low leakage rate. Graphene aerogel (GA) has proven to be an effective supporting skeleton to improve the shape-stability of PCMs; however, the leakage caused by the phase transition and the brittleness of the network structure is a primary problem restricting its application. Skeleton materials play a crucial role in the performance of PCMs. Herein, we propose a double-pulse plating reinforcement strategy for fabricating copper@graphene aerogel (Cu@GA) as a skeleton material for phase change energy. In this design, individual nanosheets of the GA were uniformly covered and interlinked by copper particles. The Cu@GA interlinked networks ensure suitable thermal conductivity and a robust framework, beneficial for phase change heat transfer and leak-suppression performance. In addition, we prepared a PCM composite with high structural stability and low leakage rate by encapsulating octadecylamine (ODA) in Cu@GA through vacuum impregnation to ensure homogeneous ODA dispersion in the Cu@GA porous structure. The influence of different skeletons on the PCM composite leakage rate was investigated by comparing the weight change of the PCM composite. Benefiting from these structural features, the optimized composite phase change material (CPCM) Cu@GA/ODA showed a reduced leakage rate of 19.82% (w, mass fraction) compared to 80.31% (w) of GA/ODA and 72.99% (w) of GOA/ODA after 20 heat storage and release cycles. The cycled skeleton morphology was investigated using scanning electron microscopy to determine the origin of this influence. The skeleton integrity of Cu@GA/ODA was well maintained, while the three-dimensional network structures of GOA/ODA and GA/ODA showed shrinkage or collapse. Thus, the copper coating increased the skeleton's microstructural stability, conducive to high structural stability and reducing the leakage rate of the PCM composite. This study paves the way for the construction of ideal metal-coating GA composites with an excellent comprehensive performance for future phase change energy storage, porous microwave absorption, and energy storage applications.
  • 加载中
    1. [1]

      Li, M.; Mu, B. Y. Appl. Energy 2019, 242, 695. doi: 10.1016/j.apenergy.2019.03.085  doi: 10.1016/j.apenergy.2019.03.085

    2. [2]

      Gao, H. Y.; Wang, J. J.; Chen, X.; Wang, G.; Huang, X. B.; Li, A.; Dong, W. J. Nano Energy 2018, 53, 769. doi: 10.1016/j.nanoen.2018.09.007  doi: 10.1016/j.nanoen.2018.09.007

    3. [3]

      Chen, X.; Tang, Z. D.; Gao, H. Y.; Chen, S. Y.; Wang, G. iScience 2020, 23 (6), 101208. doi: 10.1016/j.isci.2020.101208  doi: 10.1016/j.isci.2020.101208

    4. [4]

      Aftab, W.; Mahmood, A.; Guo, W. H.; Yousaf, M.; Tabassum, H.; Huang, X. Y.; Liang, Z. B.; Cao, A. Y.; Zou, R. Q. Energy Storage Mater. 2019, 20, 401. doi: 10.1016/j.ensm.2018.10.014  doi: 10.1016/j.ensm.2018.10.014

    5. [5]

      Liao, H. H.; Chen, W. H.; Liu, Y.; Wang, Q. Compos. Sci. Technol. 2020, 189, 108010. doi: 10.1016/j.compscitech.2020.108010  doi: 10.1016/j.compscitech.2020.108010

    6. [6]

      Sheng, N.; Zhu, R. J.; Nomura, T.; Rao, Z. H.; Zhu, C. Y.; Aoki, Y.; Habazaki, H.; Akiyama, T. Sol. Energy Mater. Sol. Cells 2020, 206, 110280. doi: 10.1016/j.solmat.2019.110280  doi: 10.1016/j.solmat.2019.110280

    7. [7]

      Feng, Y. J.; Wang, J. P.; Liu, L. L.; Wang, X. D. Acta Phys. -Chim. Sin. 2019, 35 (6), 644.  doi: 10.3866/pku.Whxb201805068

    8. [8]

      Nan, G. H.; Wang J. P.; Wang Y.; Wang H.; Li W.; Zhang X. X. . Acta Phys. -Chim. Sin. 2014, 30 (2), 338.  doi: 10.3866/pku.Whxb201312231

    9. [9]

      Cheng, G.; Wang, X. Z.; He, Y. R. Appl. Therm. Eng. 2020, 178, 115560. doi: 10.1016/j.applthermaleng.2020.115560  doi: 10.1016/j.applthermaleng.2020.115560

    10. [10]

      Cao, Y. F.; Fan, D. L.; Lin, S. H.; Mu, L. Y.; Ng, F. T. T.; Pan, Q. M. Chem. Eng. J. 2020, 389, 124318. doi: 10.1016/j.cej.2020.124318  doi: 10.1016/j.cej.2020.124318

    11. [11]

      Qi, G. Q.; Yang, J.; Bao, R. Y.; Xia, D. Y.; Cao, M.; Yang, W.; Yang, M. B.; Wei, D. C. Nano Res. 2017, 10 (3), 802. doi: 10.1007/s12274-016-1333-1  doi: 10.1007/s12274-016-1333-1

    12. [12]

      Khadiran, T.; Hussein, M. Z.; Zainal, Z.; Rusli, R. Energy 2015, 82, 468. doi: 10.1016/j.energy.2015.01.057  doi: 10.1016/j.energy.2015.01.057

    13. [13]

      Sobolciak, P.; Mrlík, M.; AlMaadeed, M. A.; Krupa, I. Thermochim. Acta 2015, 617, 111. doi: 10.1016/j.tca.2015.08.026  doi: 10.1016/j.tca.2015.08.026

    14. [14]

      Xiao, X.; Zhang, P.; Li, M. Appl. Energy 2013, 112, 1357. doi: 10.1016/j.apenergy.2013.04.050  doi: 10.1016/j.apenergy.2013.04.050

    15. [15]

      Zhang, P.; Meng, Z. N.; Zhu, H.; Wang, Y. L.; Peng, S. P. Appl. Energy 2017, 185, 1971. doi: 10.1016/j.apenergy.2015.10.075  doi: 10.1016/j.apenergy.2015.10.075

    16. [16]

      Karthik, M.; Faik, A.; D'Aguanno, B. Sol. Energy Mater. Sol. Cells 2017, 172, 324. doi: 10.1016/j.solmat.2017.08.004  doi: 10.1016/j.solmat.2017.08.004

    17. [17]

      Li, G. Y.; Hong, G.; Dong, D. P.; Song, W. H.; Zhang, X. T. Adv. Mater. 2018, 30 (30), 1801754. doi: 10.1002/adma.201801754  doi: 10.1002/adma.201801754

    18. [18]

      Gao, Z. Q.; Wang, C. Y.; Li, J. J.; Zhu, Y. T.; Zhang, Z. C.; Hu, W. P. Acta Phys. -Chim. Sin. 2021, 37 (7), 2010025.  doi: 10.3866/PKU.WHXB202010025

    19. [19]

      Xue, F.; Lu, Y.; Qi, X. D.; Yang, J. H.; Wang, Y. Chem. Eng. J. 2019, 365, 20. doi: 10.1016/j.cej.2019.02.023  doi: 10.1016/j.cej.2019.02.023

    20. [20]

      Wu, W. H.; Huang, X. Y.; Yao, R. M.; Chen, R. J.; Li, K.; Zou, R. Q. Acta Phys. -Chim. Sin. 2017, 33 (1), 255.  doi: 10.3866/pku.Whxb201610181

    21. [21]

      Li, B. L.; Guo, J. G.; Xu, Bing; Xu, H. T.; Dong, Z. j.; Li, X. K. New Carbon Mater. 2020, 35 (5), 567. doi: 10.1016/S1872-5805(20)60510-8  doi: 10.1016/S1872-5805(20)60510-8

    22. [22]

      Liu, X.; Deng, H. L.; Zheng, J. H.; Sun, M.; Cui, H.; Zhang, X. H.; Song, G. S. New Carbon Mater. 2020, 35 (5), 576. doi: 10.1016/S1872-5805(20)60511-X  doi: 10.1016/S1872-5805(20)60511-X

    23. [23]

      Yang, J.; Tang, L. S.; Bao, R. Y.; Bai, L.; Liu, Z. Y.; Yang, W.; Xie, B. H.; Yang, M. B. J. Mater. Chem. A 2016, 4 (48), 18841. doi: 10.1039/c6ta08454k  doi: 10.1039/c6ta08454k

    24. [24]

      Huang, J. H.; Zhang, B. N.; He, M.; Huang, X.; Wu, G. J.; Yin, G. Q.; Cui, Y. D. J. Mater. Sci. 2020, 55 (17), 7337. doi: 10.1007/s10853-020-04514-9  doi: 10.1007/s10853-020-04514-9

    25. [25]

      Yang, G. Q.; Zhao, L. Y.; Shen, C. F.; Mao, Z. P.; Xu, H.; Feng, X. L.; Wang, B. J.; Sui, X. F. Sol. Energy Mater. Sol. Cells 2020, 209, 110441. doi: 10.1016/j.solmat.2020.110441  doi: 10.1016/j.solmat.2020.110441

    26. [26]

      Mu, B. Y.; Li, M. Sol. Energy Mater. Sol. Cells 2019, 191, 466. doi: 10.1016/j.solmat.2018.11.025  doi: 10.1016/j.solmat.2018.11.025

    27. [27]

      Jiang, L. L.; Fan, Z. J. Nanoscale 2014, 6 (4), 1922. doi: 10.1039/c3nr04555b  doi: 10.1039/c3nr04555b

    28. [28]

      Wang, P.; Chong, H. D.; Zhang, J. J.; Lu, H. B. ACS Appl. Mater. Interfaces 2017, 9 (26), 22006. doi: 10.1021/acsami.7b07328  doi: 10.1021/acsami.7b07328

    29. [29]

      Woltornist, S. J.; Varghese, D.; Massucci, D.; Cao, Z.; Dobrynin, A. V.; Adamson, D. H. Adv. Mater. 2017, 1604947. doi: 10.1002/adma.201604947  doi: 10.1002/adma.201604947

    30. [30]

      Zhong, Y. J.; Zhou, M.; Huang, F. Q.; Lin, T. Q.; Wan, D. Y. Sol. Energy Mater. Sol. Cells 2013, 113, 195. doi: 10.1016/j.solmat.2013.01.046  doi: 10.1016/j.solmat.2013.01.046

    31. [31]

      Yang, J.; Zhang, E. W.; Li, X. F.; Zhang, Y. T.; Qu, J.; Yu, Z. Z. Carbon 2016, 98, 50. doi: 10.1016/j.carbon.2015.10.082  doi: 10.1016/j.carbon.2015.10.082

    32. [32]

      Zhou, Y.; Li, C. H.; Wu, H.; Guo, S. Y. Colloids Surf. A 2020, 597, 124780. doi: 10.1016/j.colsurfa.2020.124780  doi: 10.1016/j.colsurfa.2020.124780

    33. [33]

      Zhu, X. Y.; Yang, C.; Wu, P. W.; Ma, Z. Q.; Shang, Y. Y.; Bai, G. Z.; Liu, X. Y.; Chang, G.; Li, N.; Dai, J. J; et al. Nanoscale 2020, 12 (8), 4882. doi: 10.1039/c9nr07861d  doi: 10.1039/c9nr07861d

    34. [34]

      Qiu, L.; Liu, J. Z.; Chang, S. L.; Wu, Y. Z.; Li, D. Nat. Commun. 2012, 3, 1241. doi: 10.1038/ncomms2251  doi: 10.1038/ncomms2251

    35. [35]

      Kashyap, S.; Kabra, S.; Kandasubramanian, B. J. Mater. Sci. 2020, 55 (10), 4127. doi: 10.1007/s10853-019-04325-7  doi: 10.1007/s10853-019-04325-7

    36. [36]

      Yan, F.; Liu, L.; Li, M.; Zhang, M. J.; Shang, L.; Xiao, L. H.; Ao, Y. H. Compos. Part A 2019, 125, 105530. doi: 10.1016/j.compositesa.2019.105530  doi: 10.1016/j.compositesa.2019.105530

    37. [37]

      Lu, L.; Shen, Y. F.; Chen, X. H.; Qian, L. H.; Lu, K. Science 2004, 304 (5669), 422. doi: 10.1126/science.1092905  doi: 10.1126/science.1092905

    38. [38]

      Chen, C. M.; Zhang, Q.; Yang, M. G.; Huang, C. H.; Yang, Y. G.; Wang, M. Z. Carbon 2012, 50 (10), 3572. doi: 10.1016/j.carbon.2012.03.029  doi: 10.1016/j.carbon.2012.03.029

    39. [39]

      Hu, H.; Zhao, Z. B.; Wan, W. B.; Gogotsi, Y.; Qiu, J. S. Adv. Mater. 2013, 25 (15), 2219. doi: 10.1002/adma.201204530  doi: 10.1002/adma.201204530

    40. [40]

      Yang, J.; Qi, G. Q.; Bao, R. Y.; Yi, K. Y.; Li, M. L.; Peng, L.; Cai, Z.; Yang, M. B.; Wei, D. C.; Yang, W. Energy Storage Mater. 2018, 13, 88. doi: 10.1016/j.ensm.2017.12.028  doi: 10.1016/j.ensm.2017.12.028

    41. [41]

      Zhao, J. L.; Luo, W. J.; Kim, J. K.; Yang, J. L. ACS Appl. Energy Mater. 2019, 2 (5), 3657. doi: 10.1021/acsaem.9b00374  doi: 10.1021/acsaem.9b00374

    42. [42]

      Tian, B. Q.; Yang, W. B.; Luo, L. J.; Wang, J.; Zhang, K.; Fan, J. H.; Wu, J. Y.; Xing, T. Sol. Energy 2016, 127, 48. doi: 10.1016/j.solener.2016.01.011  doi: 10.1016/j.solener.2016.01.011

    43. [43]

      Biener, J.; Stadermann, M.; Suss, M.; Worsley, M. A.; Biener, M. M.; Rose, K. A.; Baumann, T. F. Energy Environ. Sci. 2011, 4 (3), 656. doi: 10.1039/c0ee00627k  doi: 10.1039/c0ee00627k

    44. [44]

      Xu, Y.; Fleischer, A. S.; Feng, G. Carbon 2017, 114, 334. doi: 10.1016/j.carbon.2016.11.069  doi: 10.1016/j.carbon.2016.11.069

    45. [45]

      Padmajan Sasikala, S.; Poulin, P.; Aymonier, C. Adv. Mater. 2016, 28 (14), 2663. doi: 10.1002/adma.201504436  doi: 10.1002/adma.201504436

    46. [46]

      Balandin, A. A. Nat. Mater. 2011, 10 (8), 569. doi: 10.1038/nmat3064  doi: 10.1038/nmat3064

    47. [47]

      Zhang, X.; Wan, D. Q.; Peng, K.; Zhang, W. J. Mater. Eng. Perform. 2019, 28 (8), 5165. doi: 10.1007/s11665-019-04212-x  doi: 10.1007/s11665-019-04212-x

    48. [48]

      Gao, W. W.; Zhao, N. F.; Yao, W. Q.; Xu, Z.; Bai, H.; Gao, C. RSC Adv. 2017, 7 (53), 33600. doi: 10.1039/c7ra05557a  doi: 10.1039/c7ra05557a

    49. [49]

      Almajali, M.; Lafdi, K.; Prodhomme, P. H.; Ochoa, O. Carbon 2010, 48 (5), 1604. doi: 10.1016/j.carbon.2009.12.060  doi: 10.1016/j.carbon.2009.12.060

    50. [50]

      Cao, A. Y.; Dickrell, P. L.; Sawyer, W. G.; Ghasemi-Nejhad, M. N.; Ajayan, P. M. Science 2005, 310 (5752), 1307. doi: 10.1126/science.1118957  doi: 10.1126/science.1118957

    51. [51]

      Zhang, Q. Q.; Lin, D.; Deng, B. W.; Xu, X.; Nian, Q.; Jin, S. Y.; Leedy, K. D.; Li, H.; Cheng, G. J. Adv. Mater. 2017, 29 (28), 69469. doi: 10.1002/adma.201605506  doi: 10.1002/adma.201605506

    52. [52]

      Park, J. H.; Lee, J. H.; Soon, A. Phys. Chem. Chem. Phys. 2016, 18 (31), 21893. doi: 10.1039/c6cp03249d  doi: 10.1039/c6cp03249d

    53. [53]

      He, L. J.; Mo, S. P.; Lin, P. C.; Jia, L.; Chen, Y.; Cheng, Z. D. Appl. Energy 2020, 268. 115020. doi: 10.1016/j.apenergy.2020.115020  doi: 10.1016/j.apenergy.2020.115020

    54. [54]

      Liang, K.; Shi, L.; Zhang, J. Y.; Cheng, J.; Wang, X. D. Thermochim. Acta 2018, 664, 1. doi: 10.1016/j.tca.2018.04.002  doi: 10.1016/j.tca.2018.04.002

    55. [55]

      Shen, J.; Zhang, P.; Song, L. X.; Li, J. P.; Ji, B. Q.; Li, J. J.; Chen, L. Compos. Part B 2019, 179, 107545. doi: 10.1016/j.compositesb.2019.107545  doi: 10.1016/j.compositesb.2019.107545

  • 加载中
    1. [1]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    2. [2]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    3. [3]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    4. [4]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    5. [5]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    6. [6]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    7. [7]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    8. [8]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    9. [9]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    10. [10]

      Chengmin HuPingxuan LiuZiyang SongYaokang LvHui DuanLi XieLing MiaoMingxian LiuLihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381

    11. [11]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    12. [12]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    13. [13]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    14. [14]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    15. [15]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    16. [16]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    17. [17]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    18. [18]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    19. [19]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    20. [20]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

Metrics
  • PDF Downloads(3)
  • Abstract views(703)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return