Citation: Jian Wang, Bo Yin, Tian Gao, Xingyi Wang, Wang Li, Xingxing Hong, Zhuqing Wang, Haiyong He. Reduced Graphene Oxide Modified Few-Layer Exfoliated Graphite to Enhance the Stability of the Negative Electrode of a Graphite-Based Potassium Ion Battery[J]. Acta Physico-Chimica Sinica, ;2022, 38(2): 201208. doi: 10.3866/PKU.WHXB202012088 shu

Reduced Graphene Oxide Modified Few-Layer Exfoliated Graphite to Enhance the Stability of the Negative Electrode of a Graphite-Based Potassium Ion Battery

  • Corresponding author: Zhuqing Wang, wangzhq@aqnu.edu.cn Haiyong He, hehaiyong@nimte.ac.cn
  • Received Date: 31 December 2020
    Revised Date: 22 January 2021
    Accepted Date: 26 January 2021
    Available Online: 1 February 2021

    Fund Project: the National Natural Science Foundation of China 51872304Ningbo S & T Innovation 2025 Major Special Program 2018B10024

  • The intercalation of potassium in graphite provides high energy density owing to the low potential of 0.24 V vs. K/K+, thereby making it a promising anode material for potassium ion batteries. However, the high volume expansion (60%) of graphite after potassium intercalation induces significant stress and electrode pulverization. Additionally, the sluggish kinetics of potassium insertion undermine the rate capability of electrodes. Using few-layer exfoliated graphite (EG) as a negative electrode material effectively relieves expansion-induced stress. Unfortunately, the close stacking of ultra-thin two-dimensional EG impedes ion transport. Furthermore, EG with smooth surfaces lacks active sites to adsorb K+, which is unfavorable for intercalation reactions. To address these problems, in this study, we designed an rGO/EG/rGO sandwich that coats EG with reduced graphene oxide (rGO). This complex material has two main advantages: (1) its 3D network can effectively prevent EG from stacking and buffer the volumetric variation of EG to improve the cyclic stability of the electrode, and (2) the loose structure and rich functional groups of rGO can also enhance the kinetic of potassium intercalation. Through hydrothermal reduction, GO was coated onto the EG surface and cross-linked to form a 3D network, by which EG stacking could be effectively mitigated. The rGO : EG ratio was precisely controlled by modulating the amount of reactant GO and EG. Transmission electron microscopy and scanning electron microscopy images showed that the rGO was uniformly coated on the EG surface to form a sandwich structure. X-ray diffraction patterns and Raman spectra demonstrated that rGO was physically adsorbed on the EG surface without notable chemical interactions. The EG structure was retained to ensure that its characteristic electrochemical properties were unaffected. Cyclic voltammetry and galvanostatic cycling tests were performed on the complex material with various rGO : EG ratios, exhibiting that rGO : EG = 1 : 1 (w/w) was optimal with a specific capacity of 443 mAh·g-1 at 50 mA·g-1. Even when operated at a high current density of 800 mA·g-1, a specific capacity of 190 mAh·g-1 was achieved, retaining 42.9% of the low-rate capacity, far exceeding those of pristine EG (14.2%) and rGO (27.2%). These results demonstrate that the rGO coating indeed enhanced the kinetics of potassium intercalation and efficiently improved the capacity and rate capability compared to pristine EG. We hope this work sheds light on novel approaches to improving potassium intercalation mechanisms in graphite.
  • 加载中
    1. [1]

      Pei, Z.; Fan, G.; Qin, X. Energy Storage Sci. Technol. 2020, 9 (5), 1562.  doi: 10.19799/j.cnki.2095-4239.2020.0252

    2. [2]

      Liu, S. J.; Zhang, C.; Sun, Y. D.; Chen, Q.; He, L. F.; Zhang, K.; Zhang, J.; Liu, B.; Chen, L. F. Coord. Chem. Rev. 2020, 413, 213266. doi: 10.1016/j.ccr.2020.213266  doi: 10.1016/j.ccr.2020.213266

    3. [3]

      Fedotov, S. S.; Khasanova, N. R.; Samarin, A. S.; Drozhzhin, O. A.; Batuk, D.; Karakulina, O. M.; Hadermann, J.; Abakumov, A. M.; Antipov, E. V. Chem. Mater. 2016, 28, 411. doi: 10.1021/acs.chemmater.5b04065  doi: 10.1021/acs.chemmater.5b04065

    4. [4]

      Eftekhari, A.; Jian, Z.; Ji, X. ACS Appl. Mater. Interfaces 2017, 9, 4404. doi: 10.1021/acsami.6b07989  doi: 10.1021/acsami.6b07989

    5. [5]

      Liu, Y. C.; Huang, B.; Shao, Y. J.; Shen, M. Y.; Du, L.; Liao, S. J. Prog. Chem. 2019, 31 (9), 1329.  doi: 10.7536/PC190212

    6. [6]

      Huang, H.; Wang, J.; Yang, X.; Hu, R.; Liu, J.; Zhang, L.; Zhu, M. Angew. Chem. Int. Ed. 2020, 59 (34), 14504. doi: 10.1002/anie.202004193  doi: 10.1002/anie.202004193

    7. [7]

      Wang, S.; Xiong, P.; Guo, X.; Zhang, J.; Gao, X.; Zhang, F.; Tang, X.; Notten, P. H. L.; Wang, G. Adv. Funct. Mater. 2020, 30 (27), 2001588. doi: 10.1002/adfm.202001588  doi: 10.1002/adfm.202001588

    8. [8]

      Zhao, R.; Di, H.; Hui, X.; Zhao, D.; Wang, R.; Wang, C.; Yin, L. Energy Environ. Sci. 2020, 13 (1), 246. doi: 10.1039/c9ee03250a  doi: 10.1039/c9ee03250a

    9. [9]

      Qi, S. H.; Deng, J. W.; Zhang, W. C.; Feng, Y. Z.; Ma, J. M. Rare Met. 2020, 39 (9), 970. doi: 10.1007/s12598-020-01454-w  doi: 10.1007/s12598-020-01454-w

    10. [10]

      Wei, C.; Tao, Y.; Fei, H.; An, Y.; Tian, Y.; Feng, J.; Qian, Y. Energy Storage Mater. 2020, 30, 206. doi: 10.1016/j.ensm.2020.05.018  doi: 10.1016/j.ensm.2020.05.018

    11. [11]

      Wang, W.; Ji, B.; Yao, W.; Zhang, X.; Zheng, Y.; Zhou, X.; Kidkhunthod, P.; He, H.; Tang, Y. Sci. China Mater. 2020, 64, 1047. doi: 10.1007/s40843-020-1512-0  doi: 10.1007/s40843-020-1512-0

    12. [12]

      Zhang, H.; Luo, C.; He, H.; Wu, H. H.; Zhang, L.; Zhang, Q.; Wang, H.; Wang, M. S. Nanoscale Horiz. 2020, 5 (5), 895. doi: 10.1039/d0nh00018c  doi: 10.1039/d0nh00018c

    13. [13]

      Zhang, Z.; Jia, B.; Liu, L.; Zhao, Y.; Wu, H.; Qin, M.; Han, K.; Wang, W. A.; Xi, K.; Zhang, L.; et al. ACS Nano 2019, 13 (10), 11363. doi: 10.1021/acsnano.9b04728  doi: 10.1021/acsnano.9b04728

    14. [14]

      Ji, B.; Yao, W.; Zheng, Y.; Kidkhunthod, P.; Zhou, X.; Tunmee, S.; Sattayaporn, S.; Nat. Commun. 2020, 11 (1), 1225. doi: 10.1038/s41467-020-15044-y  doi: 10.1038/s41467-020-15044-y

    15. [15]

      Yu, A.; Pan, Q.; Zhang, M.; Xie, D.; Tang, Y. Adv. Funct. Mater. 2020, 30 (24), 2001440. doi: 10.1002/adfm.202001440  doi: 10.1002/adfm.202001440

    16. [16]

      Kim, C.; Yang, K. S.; Kojima, M.; Yoshida, K.; Kim, Y. J.; Kim, Y. A.; Endo, M. Adv. Funct. Mater. 2006, 16 (18), 2393. doi: 10.1002/adfm.200500911  doi: 10.1002/adfm.200500911

    17. [17]

      Chen, J.; Cheng, Y.; Zhang, Q.; Luo, C.; Li, H. Y.; Wu, Y.; Zhang, H.; Wang, X.; Liu, H.; He, X.; et al. Adv. Funct Mater. 2021, 31 (1), 2007158. doi: 10.1002/adfm.202007158  doi: 10.1002/adfm.202007158

    18. [18]

      Gabaudan, V.; Monconduit, L.; Stievano, L.; Berthelot, R. Front. Energy Res. 2019, 7, 46. doi: 10.3389/fenrg.2019.00046  doi: 10.3389/fenrg.2019.00046

    19. [19]

      Zhang, C.; Zhao, H.; Lei, Y. Energy Environ. Mater. 2020, 3 (2), 105. doi: 10.1002/eem2.12059  doi: 10.1002/eem2.12059

    20. [20]

      Wu, Y.; Zhao, H.; Wu, Z.; Yue, L.; Liang, J.; Liu, Q.; Luo, Y.; Gao, S.; Lu, S.; Chen, G.; et al. Energy Storage Mater. 2021, 34, 483. doi: 10.1016/j.ensm.2020.10.015  doi: 10.1016/j.ensm.2020.10.015

    21. [21]

      Jian, Z.; Luo, W.; Ji, X. J. Am. Chem. Soc. 2015, 137 (36), 11566. doi: 10.1021/jacs.5b06809  doi: 10.1021/jacs.5b06809

    22. [22]

      Qin, L.; Xiao, N.; Zheng, J.; Lei, Y.; Zhai, D.; Wu, Y. Adv. Energy Mater. 2019, 9 (44), 1902618. doi: 10.1002/aenm.201902618  doi: 10.1002/aenm.201902618

    23. [23]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306 (5696), 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    24. [24]

      Liu, X. T.; Zhang, J. C.; Chen, H.; Liu, Z. F. Acta Phys. -Chim. Sin. 2021, 37, 2012047.  doi: 10.3866/PKU.WHXB202012047
       

    25. [25]

      Chung, D. D. L. J. Mater. Sci. 2016, 51 (1), 544. doi: 10.1007/s10853-015-9284-6  doi: 10.1007/s10853-015-9284-6

    26. [26]

      Doughty, D. H.; Butler, P. C.; Akhil, A. A.; Clark, N. H.; Boyes, J. D. Electrochem. Soc. Interface 2010, 19 (3), 49. doi: 10.1149/2.f05103if  doi: 10.1149/2.f05103if

    27. [27]

      Hong, W.; Zhang, Y.; Yang, L.; Tian, Y.; Ge, P.; Hu, J.; Wei, W.; Zou, G.; Hou, H.; Ji, X. Nano Energy 2019, 65, 104038. doi: 10.1016/j.nanoen.2019.104038  doi: 10.1016/j.nanoen.2019.104038

    28. [28]

      Yang, W.; Zhou, J.; Wang, S.; Zhang, W.; Wang, Z.; Lv, F.; Wang, K.; Sun, Q.; Guo, S. Energy Environ. Sci. 2019, 12 (5), 1605. doi: 10.1039/c9ee00536f  doi: 10.1039/c9ee00536f

    29. [29]

      Chou, S. L.; Wang, J. Z.; Choucair, M.; Liu, H. K.; Stride, J. A.; Dou, S. X. Electrochem. Commun. 2010, 12 (2), 303. doi: 10.1016/j.elecom.2009.12.024  doi: 10.1016/j.elecom.2009.12.024

    30. [30]

      Zhou, X.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Chem. Commun. 2012, 48 (16), 2198. doi: 10.1039/c2cc17061b  doi: 10.1039/c2cc17061b

    31. [31]

      Zhang, E.; Jia, X.; Wang, B.; Wang, J.; Yu, X.; Lu, B. Adv. Sci. 2020, 7 (15), 2000470. doi: 10.1002/advs.202000470  doi: 10.1002/advs.202000470

    32. [32]

      Wang, Y.; Gao, X.; Li, L.; Wang, M.; Shui, J.; Xu, M. Nano Energy 2020, 67, 104248. doi: 10.1016/j.nanoen.2019.104248  doi: 10.1016/j.nanoen.2019.104248

    33. [33]

      Nawar, A. M.; Yahia, I. S.; Al-Kotb, M. S. J. Mater. Sci. -Mater. Electron. 2020, 31 (15), 12127. doi: 10.1007/s10854-020-03759-z  doi: 10.1007/s10854-020-03759-z

    34. [34]

      Jian, Z.; Hwang, S.; Li, Z.; Hernandez, A. S.; Wang, X.; Xing, Z.; Su, D.; Ji, X. Adv. Funct. Mater. 2017, 27 (26), 1700324. doi: 10.1002/adfm.201700324  doi: 10.1002/adfm.201700324

    35. [35]

      Tang, Z. Y.; Xue, J. J.; Liu, C. Y.; Zhuang, X. G. Acta Phys. -Chim. Sin. 2001, 17 (5), 38.  doi: 10.3866/PKU.WHXB20010501
       

    36. [36]

      Wan, J.; Chen, Q. Q.; Li, W.; Pan, L. H.; Zhao, Z. H.; Yu, D. D.; Tang, Z. H.; He, H. Y. Electrochim. Acta 2020, 345, 136238. doi: 10.1016/j.electacta.2020.136238  doi: 10.1016/j.electacta.2020.136238

    37. [37]

      Chen, L. F.; Hou, C. C.; Zou, L.; Kitta, M.; Xu, Q. Sci. Bull. 2021, 66 (2), 170. doi: 10.1016/j.scib.2020.06.022  doi: 10.1016/j.scib.2020.06.022

    38. [38]

      Chen, D. M. Chin. Phys. Soc. 2010, 59 (9), 6399. doi: 10.7498/aps.59.6399  doi: 10.7498/aps.59.6399

    39. [39]

      Zhang, K. L; Li, W.; Cai, W. L.; Chen, L. F.; Wang, D.; Chen, Y. H.; Pan, H. L.; Wang, L. B.; Qian, Y. T. Inorg. Chem. Front. 2019, 6 (4), 955. doi: 10.1039/c9qi00052f  doi: 10.1039/c9qi00052f

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    3. [3]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    7. [7]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    8. [8]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    9. [9]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    10. [10]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    11. [11]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    14. [14]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    15. [15]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    16. [16]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    17. [17]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    18. [18]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    19. [19]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    20. [20]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

Metrics
  • PDF Downloads(43)
  • Abstract views(1825)
  • HTML views(305)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return