Citation: Lai-Peng Ma, Wencai Ren, Hui-Ming Cheng. Progress in Surface Charge Transfer Doping of Graphene[J]. Acta Physico-Chimica Sinica, ;2022, 38(1): 201208. doi: 10.3866/PKU.WHXB202012080 shu

Progress in Surface Charge Transfer Doping of Graphene

  • Corresponding author: Wencai Ren, wcren@imr.ac.cn
  • Received Date: 29 December 2020
    Revised Date: 26 January 2021
    Accepted Date: 26 January 2021
    Available Online: 3 February 2021

    Fund Project: the National Key R & D Program of China 2016YFA0200101the National Natural Science Foundation of China 51325205the National Natural Science Foundation of China 51290273the National Natural Science Foundation of China 51521091the Chinese Academy of Sciences Program ZDBS-LY-JSC027the Chinese Academy of Sciences Program XDB30000000the Chinese Academy of Sciences Program KGZD-EW-303-1the Chinese Academy of Sciences Program KGZD-EW-303-3the Chinese Academy of Sciences Program KGZD-EWT06the Liaoning Revitalization Talents Program XLYC1808013

  • Graphene has shown great promise in the development of next-generation electronic and optoelectronic devices owing to its atomic thickness and extraordinary electrical/optical/thermal/mechanical properties. Surface charge transfer doping is an important strategy to modulate graphene's electrical and optical properties. Compared with other doping methods, surface charge transfer doping shows distinct advantages in several aspects such as the minimized negative impact on the carrier mobility without disrupting the graphene lattice, wide range and precise control over the doping concentration, and highly efficient treatment processes without using high-temperature or ion implantation. Therefore, it is necessary to develop strong and stable surface charge transfer dopants to improve the electrical and optical performances of graphene, advancing its potential application in electronics and optoelectronics. For more than a decade, efforts has been devoted to developing diverse surface charge transfer p- and n-type dopants, including acids, gases, transition metals, alkali metals, metal chlorides, metal oxides, organics containing electron-donating/withdrawing groups, ferroelectric organics, and carbon-based materials, which serve as a wide range of ways to modulate the properties of graphene. Recently, remarkable progress has been made in realizing heavy and stable doping by surface charge transfer. In this review, we summarize the research status of surface charge transfer doping for graphene and its application in electronic and optoelectronic devices by focusing on the doping strength and stability. Initially, we survey the typical surface charge transfer doping mechanisms and widely used characterization measures, discussing their advantages and limitations. We then review the recent progress in the development of strong p- and n-type surface charge transfer dopants for graphene. For example, heavy p- and n-doping in graphene has been achieved by intercalation doping with metal chlorides and alkali metals, respectively. A large-area graphene film with stable p-doping was also realized. Of particular interest, organics are promising materials for developing emerging dopants with high structural tunability and diverse functions. We also introduce novel stable dopants and effective strategies for improving the ambient/thermal/solvent stability of typical dopants. Then, we devote a manuscript section to advances in high-performance optoelectronic devices using doped graphene electrodes with superior performances, focusing on graphene-based touch screens, organic light-emitting diodes, and organic photovoltaics. In this area, graphene-based flexible light-emitting devices have demonstrated advantages over typical tin-doped indium oxide (ITO) devices in terms of overall efficiencies. Finally, we discuss the challenges faced in developing state-of-the-art surface charge transfer dopants with future perspectives.
  • 加载中
    1. [1]

      Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Nat. Photon. 2010, 4, 611. doi: 10.1038/Nphoton.2010.186  doi: 10.1038/Nphoton.2010.186

    2. [2]

      Ellmer, K. Nat. Photon. 2012, 6, 808. doi: 10.1038/Nphoton.2012.282  doi: 10.1038/Nphoton.2012.282

    3. [3]

      Du, J. H.; Pei, S. F.; Ma, L. P.; Cheng, H. M. Adv. Mater. 2014, 26, 1958. doi: 10.1002/adma.201304135  doi: 10.1002/adma.201304135

    4. [4]

      Ma, L. P.; Wu, Z. B.; Yin, L. C.; Zhang, D. D.; Dong, S. C.; Zhang, Q.; Chen, M. L.; Ma, W.; Zhang, Z. B.; Du, J. H.; et al. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 25991. doi: 10.1073/pnas.1922521117  doi: 10.1073/pnas.1922521117

    5. [5]

      Qiu, C. G.; Liu, F.; Xu, L.; Deng, B.; Xiao, M. M.; Si, J.; Lin, L.; Zhang, Z. Y.; Wang, J.; Guo, H.; et al. Science 2018, 361, 387. doi: 10.1126/science.aap9195  doi: 10.1126/science.aap9195

    6. [6]

      Biswas, C.; Lee, Y. H. Adv. Funct. Mater. 2011, 21, 3806. doi: 10.1002/adfm.201101241  doi: 10.1002/adfm.201101241

    7. [7]

      Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; et al. Nat. Nanotechnol. 2008, 3, 210. doi: 10.1038/nnano.2008.67  doi: 10.1038/nnano.2008.67

    8. [8]

      Zhu, H. Y.; Gan, X.; McCreary, A.; Lv, R. T.; Lin, Z.; Terrones, M. Nano Today 2020, 30, 100829. doi: 10.1016/j.nantod.2019.100829  doi: 10.1016/j.nantod.2019.100829

    9. [9]

      Lin, L.; Li, J. Y.; Yuan, Q. H.; Li, Q. C.; Zhang, J. C.; Sun, L. Z.; Rui, D. R.; Chen, Z. L.; Jia, K. C.; Wang, M. Z.; et al. Sci. Adv. 2019, 5, eaaw8337. doi: 10.1126/sciadv.aaw8337  doi: 10.1126/sciadv.aaw8337

    10. [10]

      Zhang, X. J.; Shao, Z. B.; Zhang, X. H.; He, Y. Y.; Jie, J. S. Adv. Mater. 2016, 28, 10409. doi: 10.1002/adma.201601966  doi: 10.1002/adma.201601966

    11. [11]

      Liu, H. T.; Liu, Y. Q.; Zhu, D. B. J. Mater. Chem. 2011, 21, 3335. doi: 10.1039/c0jm02922j  doi: 10.1039/c0jm02922j

    12. [12]

      Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; et al. Nat. Nanotechnol. 2010, 5, 574. doi: 10.1038/Nnano.2010.132  doi: 10.1038/Nnano.2010.132

    13. [13]

      Kasry, A.; Kuroda, M. A.; Martyna, G. J.; Tulevski, G. S.; Bol, A. A. ACS Nano 2010, 4, 3839. doi: 10.1021/nn100508g  doi: 10.1021/nn100508g

    14. [14]

      Wang, Y.; Tong, S. W.; Xu, X. F.; Ozyilmaz, B.; Loh, K. P. Adv. Mater. 2011, 23, 1514. doi: 10.1002/adma.201003673  doi: 10.1002/adma.201003673

    15. [15]

      Ma, L. P.; Dong, S. C.; Chen, M. L.; Ma, W.; Sun, D. M.; Gao, Y.; Ma, T.; Cheng, H. M.; Ren, W. C. ACS Appl. Mater. Interfaces 2018, 10, 40756. doi: 10.1021/acsami.8b13686  doi: 10.1021/acsami.8b13686

    16. [16]

      Jung, N.; Kim, N.; Jockusch, S.; Turro, N. J.; Kim, P.; Brus, L. Nano Lett. 2009, 9, 4133. doi: 10.1021/nl902362q  doi: 10.1021/nl902362q

    17. [17]

      Crowther, A. C.; Ghassaei, A.; Jung, N.; Brus, L. E. ACS Nano 2012, 6, 1865. doi: 10.1021/nn300252a  doi: 10.1021/nn300252a

    18. [18]

      Yuan, J. T.; Ma, L. P.; Pei, S. F.; Du, J. H.; Su, Y.; Ren, W. C.; Cheng, H. M. ACS Nano 2013, 7, 4233. doi: 10.1021/nn400682u  doi: 10.1021/nn400682u

    19. [19]

      Khrapach, I.; Withers, F.; Bointon, T. H.; Polyushkin, D. K.; Barnes, W. L.; Russo, S.; Craciun, M. F. Adv. Mater. 2012, 24, 2844. doi: 10.1002/adma.201200489  doi: 10.1002/adma.201200489

    20. [20]

      Ho, P. H.; Chen, C. H.; Shih, F. Y.; Chang, Y. R.; Li, S. S.; Wang, W. H.; Shih, M. C.; Chen, W. T.; Chiu, Y. P.; Li, M. K.; et al. Adv. Mater. 2015, 27, 7809. doi: 10.1002/adma.201503592  doi: 10.1002/adma.201503592

    21. [21]

      Kinoshita, H.; Jeon, I.; Maruyama, M.; Kawahara, K.; Terao, Y.; Ding, D.; Matsumoto, R.; Matsuo, Y.; Okada, S.; Ago, H. Adv. Mater. 2017, 29, 1702141. doi: 10.1002/adma.201702141  doi: 10.1002/adma.201702141

    22. [22]

      Park, I. J.; Kim, T. I.; Yoon, T.; Kang, S.; Cho, H.; Cho, N. S.; Lee, J. I.; Kim, T. S.; Choi, S. Y. Adv. Funct. Mater. 2018, 28, 1704435. doi: 10.1002/Adfm.201704435  doi: 10.1002/Adfm.201704435

    23. [23]

      Kim, K. K.; Reina, A.; Shi, Y. M.; Park, H.; Li, L. J.; Lee, Y. H.; Kong, J. Nanotechnology 2010, 21, 285205. doi: 10.1088/0957-4484/21/28/285205  doi: 10.1088/0957-4484/21/28/285205

    24. [24]

      Chandramohan, S.; Seo, T. H.; Janardhanam, V.; Hong, C. H.; Suh, E. K. Appl. Surf. Sci. 2017, 418, 258. doi: 10.1016/j.apsusc.2017.01.097  doi: 10.1016/j.apsusc.2017.01.097

    25. [25]

      Farmer, D. B.; Golizadeh-Mojarad, R.; Perebeinos, V.; Lin, Y. M.; Tulevski, G. S.; Tsang, J. C.; Avouris, P. Nano Lett. 2009, 9, 388. doi: 10.1021/nl803214a  doi: 10.1021/nl803214a

    26. [26]

      Dong, X. C.; Fu, D. L.; Fang, W. J.; Shi, Y. M.; Chen, P.; Li, L. J. Small 2009, 5, 1422. doi: 10.1002/smll.200801711  doi: 10.1002/smll.200801711

    27. [27]

      Yokota, K.; Takai, K.; Enoki, T. Nano Lett. 2011, 11, 3669. doi: 10.1021/nl201607t  doi: 10.1021/nl201607t

    28. [28]

      Tongay, S.; Berke, K.; Lemaitre, M.; Nasrollahi, Z.; Tanner, D. B.; Hebard, A. F.; Appleton, B. R. Nanotechnology 2011, 22, 425701. doi: 10.1088/0957-4484/22/42/425701  doi: 10.1088/0957-4484/22/42/425701

    29. [29]

      Lee, W. H.; Suk, J. W.; Lee, J.; Hao, Y. F.; Park, J.; Yang, J. W.; Ha, H. W.; Murali, S.; Chou, H.; Akinwande, D.; et al. ACS Nano 2012, 6, 1284. doi: 10.1021/nn203998j  doi: 10.1021/nn203998j

    30. [30]

      Li, N.; Oida, S.; Tulevski, G. S.; Han, S. J.; Hannon, J. B.; Sadana, D. K.; Chen, T. C. Nat. Commun. 2013, 4, 2294. doi: 10.1038/Ncomms3294  doi: 10.1038/Ncomms3294

    31. [31]

      Wei, P.; Liu, N.; Lee, H. R.; Adijanto, E.; Ci, L. J.; Naab, B. D.; Zhong, J. Q.; Park, J.; Chen, W.; Cui, Y.; et al. Nano Lett. 2013, 13, 1890. doi: 10.1021/nl303410g  doi: 10.1021/nl303410g

    32. [32]

      Yun, J. M.; Park, S.; Hwang, Y. H.; Lee, E. S.; Maiti, U.; Moon, H.; Kim, B. H.; Bae, B. S.; Kim, Y. H.; Kim, S. O. ACS Nano 2014, 8, 650. doi: 10.1021/nn4053099  doi: 10.1021/nn4053099

    33. [33]

      Sojoudi, H.; Baltazar, J.; Tolbert, L.; Henderson, C.; Graham, S. Adv. Mater. Interfaces 2014, 1, 1400378. doi: 10.1002/admi.201400378  doi: 10.1002/admi.201400378

    34. [34]

      Lee, B. H.; Lee, J. H.; Kahng, Y. H.; Kim, N.; Kim, Y. J.; Lee, J.; Lee, T.; Lee, K. Adv. Funct. Mater. 2014, 24, 1847. doi: 10.1002/adfm.201302928  doi: 10.1002/adfm.201302928

    35. [35]

      Cha, M. J.; Song, W.; Kim, Y.; Jung, D. S.; Jung, M. W.; Lee, S. I.; Adhikari, P. D.; An, K. S.; Park, C. Y. RSC Adv. 2014, 4, 37849. doi: 10.1039/c4ra04518a  doi: 10.1039/c4ra04518a

    36. [36]

      Kim, S. J.; Ryu, J.; Son, S.; Yoo, J. M.; Park, J. B.; Won, D.; Lee, E. K.; Cho, S. P.; Bae, S.; Cho, S.; et al. Chem. Mater. 2014, 26, 2332. doi: 10.1021/cm500335y  doi: 10.1021/cm500335y

    37. [37]

      Kim, Y.; Ryu, J.; Park, M.; Kim, E. S.; Yoo, J. M.; Park, J.; Kang, J. H.; Hong, B. H. ACS Nano 2014, 8, 868. doi: 10.1021/nn405596j  doi: 10.1021/nn405596j

    38. [38]

      Xu, W.; Wang, L.; Liu, Y.; Thomas, S.; Seo, H. K.; Kim, K. I.; Kim, K. S.; Lee, T. W. Adv. Mater. 2015, 27, 1619. doi: 10.1002/adma.201405353  doi: 10.1002/adma.201405353

    39. [39]

      Han, T. H.; Kwon, S. J.; Li, N. N.; Seo, H. K.; Xu, W. T.; Kim, K. S.; Lee, T. W. Angew. Chem. Int. Edit. 2016, 55, 6197. doi: 10.1002/anie.201600414  doi: 10.1002/anie.201600414

    40. [40]

      Seo, S. W.; Lee, H. S.; Shin, D. H.; Kim, J. H.; Jang, C. W.; Kim, J. M.; Kim, S.; Choi, S. H. Nanotechnology 2017, 28, 425203. doi: 10.1088/1361-6528/aa8533  doi: 10.1088/1361-6528/aa8533

    41. [41]

      Kwon, S. J.; Han, T. H.; Ko, T. Y.; Li, N.; Kim, Y.; Kim, D. J.; Bae, S. H.; Yang, Y.; Hong, B. H.; Kim, K. S.; et al. Nat. Commun. 2018, 9, 2037. doi: 10.1038/s41467-018-04385-4  doi: 10.1038/s41467-018-04385-4

    42. [42]

      He, H.; Kim, K. H.; Danilov, A.; Montemurro, D.; Yu, L. Y.; Park, Y. W.; Lombardi, F.; Bauch, T.; Moth-Poulsen, K.; Lakimov, T.; et al. Nat. Commun. 2018, 9, 3956. doi: 10.1038/s41467-018-06352-5  doi: 10.1038/s41467-018-06352-5

    43. [43]

      Yu, J. J.; Zhang, M. J.; He, J. J.; Zhang, C. F.; Cui, W. W.; Wang, N.; Huang, C. S. Appl. Surf. Sci. 2019, 463, 900. doi: 10.1016/j.apsusc.2018.09.021  doi: 10.1016/j.apsusc.2018.09.021

    44. [44]

      Bianco, G. V.; Sacchetti, A.; Milella, A.; Grande, M.; D'Orazio, A.; Capezzuto, P.; Bruno, G. Carbon 2020, 170, 75. doi: 10.1016/j.carbon.2020.07.038  doi: 10.1016/j.carbon.2020.07.038

    45. [45]

      Tavakoli, M. M.; Azzellino, G.; Hempel, M.; Lu, A. Y.; Martin-Martinez, F. J.; Zhao, J. Y.; Yeo, J. J.; Palacios, T.; Buehler, M. J.; Kong, J. Adv. Funct. Mater. 2020, 30, 2001924. doi: 10.1002/adfm.202001924  doi: 10.1002/adfm.202001924

    46. [46]

      Ni, G. X.; Zheng, Y.; Bae, S.; Tan, C. Y.; Kahya, O.; Wu, J.; Hong, B. H.; Yao, K.; Ozyilmaz, B. ACS Nano 2012, 6, 3935. doi: 10.1021/nn3010137  doi: 10.1021/nn3010137

    47. [47]

      Kim, H.; Kim, H. H.; Jang, J. I.; Lee, S. K.; Lee, G. W.; Han, J. T.; Cho, K. Adv. Mater. 2014, 26, 8141. doi: 10.1002/adma.201403196  doi: 10.1002/adma.201403196

    48. [48]

      Seo, Y. M.; Cho, H. J.; Jang, H. S.; Jang, W.; Lim, J. Y.; Jang, Y.; Gu, T.; Choi, J. Y.; Whang, D. Adv. Electron. Mater. 2018, 4, 1700622. doi: 10.1002/aelm.201700622  doi: 10.1002/aelm.201700622

    49. [49]

      Chugh, S.; Adhikar, N.; Lee, J. H.; Berman, D.; Echegoyen, L.; Kaul, A. B. ACS Appl. Mater. Inter. 2019, 11, 24349. doi: 10.1021/acsami.9b00603  doi: 10.1021/acsami.9b00603

    50. [50]

      Yang, J. H.; Yang, H. W.; Jun, B. O.; Shin, J. H.; Kim, S.; Jang, A. R.; Yoon, S. I.; Shin, H. S.; Park, D.; Park, K.; et al. Adv. Funct. Mater. 2019, 29, 1808057. doi: 10.1002/adfm.201808057  doi: 10.1002/adfm.201808057

    51. [51]

      Gierz, I.; Riedl, C.; Starke, U.; Ast, C. R.; Kern, K. Nano Lett. 2008, 8, 4603. doi: 10.1021/nl802996s  doi: 10.1021/nl802996s

    52. [52]

      Ren, Y. J.; Chen, S. S.; Cai, W. W.; Zhu, Y. W.; Zhu, C. F.; Ruoff, R. S. Appl. Phys. Lett. 2010, 97, 053107. doi: 10.1063/1.3471396  doi: 10.1063/1.3471396

    53. [53]

      Kim, M.; Kim, K. J.; Lee, S. J.; Kim, H. M.; Cho, S. Y.; Kim, M. S.; Kim, S. H.; Kim, K. B. ACS Appl. Mater. Interfaces 2017, 9, 701. doi: 10.1021/acsami.6b12622  doi: 10.1021/acsami.6b12622

    54. [54]

      Jung, N.; Kim, B.; Crowther, A. C.; Kim, N.; Nuckolls, C.; Brus, L. ACS Nano 2011, 5, 5708. doi: 10.1021/nn201368g  doi: 10.1021/nn201368g

    55. [55]

      Bao, W. Z.; Wan, J. Y.; Han, X. G.; Cai, X. H.; Zhu, H. L.; Kim, D. H.; Ma, D. K.; Xu, Y. L.; Munday, J. N.; Drew, H. D.; et al. Nat. Commun. 2014, 5, 4224. doi: 10.1038/Ncomms5224  doi: 10.1038/Ncomms5224

    56. [56]

      Rosenzweig, P.; Karakachian, H.; Marchenko, D.; Kuster, K.; Starke, U. Phys. Rev. Lett. 2020, 125, 176403. doi: 10.1103/PhysRevLett.125.176403  doi: 10.1103/PhysRevLett.125.176403

    57. [57]

      Eda, G.; Lin, Y. Y.; Miller, S.; Chen, C. W.; Su, W. F.; Chhowalla, M. Appl. Phys. Lett. 2008, 92, 233305. doi: 10.1063/1.2937846  doi: 10.1063/1.2937846

    58. [58]

      Cui, T. X.; Lv, R. T.; Huang, Z. H.; Chen, S. X.; Zhang, Z. X.; Gan, X.; Jia, Y.; Li, X. M.; Wang, K. L.; Wu, D. H.; et al. J. Mater. Chem. A 2013, 1, 5736. doi: 10.1039/c3ta01634j  doi: 10.1039/c3ta01634j

    59. [59]

      Ojeda-Aristizabal, C.; Santos, E. J. G.; Onishi, S.; Yan, A. M.; Rasool, H. I.; Kahn, S.; Lv, Y. C.; Latzke, D. W.; Velasco, J.; Crommie, M. F.; et al. ACS Nano 2017, 11, 4686. doi: 10.1021/acsnano.7b00551  doi: 10.1021/acsnano.7b00551

    60. [60]

      Bult, J. B.; Crisp, R.; Perkins, C. L.; Blackburn, J. L. ACS Nano 2013, 7, 7251. doi: 10.1021/nn402673z  doi: 10.1021/nn402673z

    61. [61]

      De Sanctis, A.; Jones, G. F.; Wehenkel, D. J.; Bezares, F.; Koppens, F. H. L.; Craciun, M. F.; Russo, S. Sci. Adv. 2017, 3, e1602617. doi: 10.1126/sciadv.1602617  doi: 10.1126/sciadv.1602617

    62. [62]

      De Sanctis, A.; Barnes, M. D.; Amit, I.; Craciun, M. F.; Russo, S. Nanotechnology 2017, 28, 124004. doi: 10.1088/1361-6528/aa5ec0  doi: 10.1088/1361-6528/aa5ec0

    63. [63]

      Kim, J. S.; Kim, B. J.; Choi, Y. J.; Lee, M. H.; Kang, M. S.; Cho, J. H. Adv. Mater. 2016, 28, 4803. doi: 10.1002/adma.201505378  doi: 10.1002/adma.201505378

    64. [64]

      Chen, Z. L.; Gao, P.; Liu, Z. F., Acta Phys. -Chim. Sin. 2020, 36, 1907004.  doi: 10.3866/PKU.WHXB201907004

    65. [65]

      Jia, S.; Sun, H. D.; Du, J. H.; Zhang, Z. K.; Zhang, D. D.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C. Nanoscale 2016, 8, 10714. doi: 10.1039/c6nr01649a  doi: 10.1039/c6nr01649a

    66. [66]

      Zhang, Z. K.; Du, J. H.; Zhang, D. D.; Sun, H. D.; Yin, L. C.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C. Nat. Commun. 2017, 8, 14560. doi: 10.1038/Ncomms14560  doi: 10.1038/Ncomms14560

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    6. [6]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    7. [7]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    8. [8]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    9. [9]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    10. [10]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    11. [11]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    12. [12]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    15. [15]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    16. [16]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    17. [17]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    18. [18]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

Metrics
  • PDF Downloads(27)
  • Abstract views(1385)
  • HTML views(287)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return