Citation: Ting Cheng, Luzhao Sun, Zhirong Liu, Feng Ding, Zhongfan Liu. Roles of Transition Metal Substrates in Graphene Chemical Vapor Deposition Growth[J]. Acta Physico-Chimica Sinica, ;2022, 38(1): 201200. doi: 10.3866/PKU.WHXB202012006 shu

Roles of Transition Metal Substrates in Graphene Chemical Vapor Deposition Growth

  • Corresponding author: Feng Ding, f.ding@unist.ac.kr Zhongfan Liu, zfliu@pku.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 2 December 2020
    Revised Date: 24 December 2020
    Accepted Date: 25 December 2020
    Available Online: 30 December 2020

    Fund Project: the National Key R & D Program of China 2016YFA0200101the National Natural Science Foundation of China 21773002the Beijing National Laboratory for Molecular Sciences, China BNLMS-CXTD-202001the Beijing Municipal Science & Technology Commission, China Z181100004818001the Beijing Municipal Science & Technology Commission, China Z191100000819005the Beijing Municipal Science & Technology Commission, China Z201100008720005

  • Graphene has attracted great attention owing to its excellent physical and chemical properties and potential applications. Presently, we can grow large-scale single-crystal graphene on transition metal substrates, especially Cu(111) or CuNi(111) surfaces, using the chemical vapor deposition (CVD) method. To optimize graphene synthesis for large-scale production, understanding the growth mechanism at the atomic scale is critical. Herein, we summarize the theoretical studies on the roles of the metal substrate in graphene CVD growth and the related mechanisms. Firstly, the metal substrate catalyzes the carbon feedstock decomposition. The dissociation of CH4, absorption, and diffusion of active carbon species on various metal surfaces are discussed. Secondly, the substrate facilitates graphene nucleation with controllable nucleation density. The dissociation and diffusion of carbon atoms on the CuNi alloy surface with different Ni compositions are revealed. The metal substrate also catalyzes the growth of graphene by incorporating C atoms from the substrate into the edge of graphene and repairing possible defects. On the most used Cu(111), each armchair site on the edge of graphene is intended to be passivated by a Cu atom and lowers the barrier of incorporating C atoms into the graphene edge. The potential route of healing the defects during graphene CVD growth is summarized. Moreover, the substrate controls the orientation of the epitaxial graphene. The graphene edge-catalyst interaction is strong and is responsible for the orientation determination of a small graphene island in the early nucleation stage. There are three modes for graphene growth on metal substrate, i.e. embedded mode, step-attached mode and on-terrace mode, and the preferred growth modes are not all alike but vary from metal to metal. On a soft metal like Cu(111), graphene tends to grow in step-attached or embedded modes and therefore has a fixed orientation relative to the metal crystal lattice. Finally, the formation of wrinkles and step bunches in graphene because of the difference in thermal expansion coefficients between graphene and the metal substrate is discussed. The large friction force and strong interaction between graphene and the substrate make it energetically unfavorable for the formation of wrinkles. Different from the formation of wrinkles, the main driving force behind metal surface step-bunching in CVD graphene growth, even in the absence of a compression strain is revealed. Although significant effort is still required to adequately understand graphene catalytic growth, these theoretical studies offer guidelines for experimental designs. Furthermore, we provide the key issues to be explored in the future.
  • 加载中
    1. [1]

      Chen, J. -H.; Jang, C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S. Nat. Nanotechnol. 2008, 3, 206. doi: 10.1038/nnano.2008.58  doi: 10.1038/nnano.2008.58

    2. [2]

      Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902. doi: 10.1021/nl0731872  doi: 10.1021/nl0731872

    3. [3]

      Cheng, T.; Lang, H. F.; Li, Z. Z.; Liu, Z. F.; Liu, Z. R. Phys. Chem. Chem. Phys. 2017, 19, 23942. doi: 10.1039/c7cp03736h  doi: 10.1039/c7cp03736h

    4. [4]

      Lin, L.; Deng, B.; Sun, J. Y.; Peng, H.; Liu, Z. Chem. Rev. 2018, 118, 9281. doi: 10.1021/acs.chemrev.8b00325  doi: 10.1021/acs.chemrev.8b00325

    5. [5]

      Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308. doi: 10.1126/science.1156965  doi: 10.1126/science.1156965

    6. [6]

      Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. doi: 10.1126/science.1157996  doi: 10.1126/science.1157996

    7. [7]

      Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. -H.; Kim, P.; Choi, J. -Y.; Hong, B. H. Nature 2009, 457, 706. doi: 10.1038/nature07719  doi: 10.1038/nature07719

    8. [8]

      Novoselov, K. S.; Falko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Nature 2012, 490, 192. doi: 10.1038/nature11458  doi: 10.1038/nature11458

    9. [9]

      Chen, X. D.; Chen, Z. L.; Sun, J. Y.; Zhang, Y. F.; Liu, Z. F. Acta Phys. -Chim. Sin. 2016, 32, 14.  doi: 10.3866/PKU.WHXB201511133

    10. [10]

      Chen, Z. L.; Gao, P.; Liu, Z. F. Acta Phys. -Chim. Sin. 2020, 36, 1907004.  doi: 10.3866/PKU.WHXB201907004

    11. [11]

      Deng, B.; Liu, Z.; Peng, H. Adv. Mater. 2019, 31, e1800996. doi: 10.1002/adma.201800996  doi: 10.1002/adma.201800996

    12. [12]

      Jia, K. C.; Zhang, J. C.; Lin, L.; Li, Z.; Gao, J.; Sun, L.; Xue, R.; Li, J.; Kang, N.; Luo, Z.; et al. J. Am. Chem. Soc. 2019, 141, 7670. doi: 10.1021/jacs.9b02068  doi: 10.1021/jacs.9b02068

    13. [13]

      Lin, L.; Zhang, J. C.; Su, H. S.; Li, J. Y.; Sun, L. Z.; Wang, Z. H.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y. H.; et al. Nat. Commun. 2019, 10, 1912. doi: 10.1038/s41467-019-09565-4  doi: 10.1038/s41467-019-09565-4

    14. [14]

      Sun, L. Z.; Lin, L.; Wang, Z. H.; Rui, D.; Yu, Z.; Zhang, J.; Li, Y.; Liu, X.; Jia, K.; Wang, K.; et al. Adv. Mater. 2019, 31, 1902978. doi: 10.1002/adma.201902978  doi: 10.1002/adma.201902978

    15. [15]

      Zhang, J. C.; Jia, K. C.; Lin, L.; Zhao, W.; Huy Ta, Q.; Sun, L.; Li, T.; Li, Z.; Liu, X.; Zheng, L.; et al. Angew. Chem. Int. Ed. 2019, 58, 14446. doi: 10.1002/anie.201905672  doi: 10.1002/anie.201905672

    16. [16]

      Jia, K. C.; Ci, H. N.; Zhang, J. C.; Sun, Z.; Ma, Z.; Zhu, Y.; Liu, S.; Liu, J.; Sun, L.; Liu, X.; et al. Angew. Chem. Int. Ed. 2020, 59, 17214. doi: 10.1002/anie.202005406  doi: 10.1002/anie.202005406

    17. [17]

      Jacobberger, R. M.; Arnold, M. S. Chem. Mater. 2013, 25, 871. doi: 10.1021/cm303445s  doi: 10.1021/cm303445s

    18. [18]

      Meng, L.; Wu, R. T.; Zhang, L. Z.; Li, L. F.; Du, S. X.; Wang, Y. L.; Gao, H. -J. J. Phys. : Condens. Matter 2012, 24, 314214. doi: 10.1088/0953-8984/24/31/314214  doi: 10.1088/0953-8984/24/31/314214

    19. [19]

      Zhang, Y. F.; Gao, T.; Zhang, Y.; Liu, Z. F. Acta Phys. -Chim. Sin. 2012, 28, 2456.  doi: 10.3866/PKU.WHXB201209062

    20. [20]

      Dai, B. Y.; Fu, L.; Zou, Z. Y.; Wang, M.; Xu, H. T.; Wang, S.; Liu, Z. F. Nat. Commun. 2011, 2, 522. doi: 10.1038/ncomms1539  doi: 10.1038/ncomms1539

    21. [21]

      Ma, T.; Ren, W. C.; Zhang, X. Y.; Liu, Z.; Gao, Y.; Yin, L. -C.; Ma, X. -L.; Ding, F.; Cheng, H. -M. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 20386. doi: 10.1073/pnas.1312802110  doi: 10.1073/pnas.1312802110

    22. [22]

      Xu, X. Z.; Zhang, Z. H.; Dong, J. C.; Yi, D.; Niu, J.; Wu, M.; Lin, L.; Yin, R.; Li, M.; Zhou, J.; et al. Sci. Bull. 2017, 62, 1074. doi: 10.1016/j.scib.2017.07.005  doi: 10.1016/j.scib.2017.07.005

    23. [23]

      Deng, B.; Xin, Z. W.; Xue, R. W.; Zhang, S. Q.; Xu, X. Z.; Gao, J.; Tang, J. L.; Qi, Y.; Wang, Y. N.; Zhao, Y.; et al. Sci. Bull. 2019, 64, 659. doi: 10.1016/j.scib.2019.04.030  doi: 10.1016/j.scib.2019.04.030

    24. [24]

      Liu, N.; Fu, L.; Dai, B.; Yan, K.; Liu, X.; Zhao, R.; Zhang, Y.; Liu, Z. Nano Lett. 2011, 11, 297. doi: 10.1021/nl103962a  doi: 10.1021/nl103962a

    25. [25]

      Ma, W.; Chen, M. -L.; Yin, L.; Liu, Z.; Li, H.; Xu, C.; Xin, X.; Sun, D. -M.; Cheng, H. -M.; Ren, W. Nat. Commun. 2019, 10, 2809. doi: 10.1038/s41467-019-10691-2  doi: 10.1038/s41467-019-10691-2

    26. [26]

      Huang, M.; Bakharev, P. V.; Wang, Z. -J.; Biswal, M.; Yang, Z.; Jin, S.; Wang, B.; Park, H. J.; Li, Y.; Qu, D.; et al. Nat. Nanotechnol. 2020, 15, 289. doi: 10.1038/s41565-019-0622-8  doi: 10.1038/s41565-019-0622-8

    27. [27]

      Van Luan, N.; Dinh Loc, D.; Lee, S. H.; Avila, J.; Han, G.; Kim, Y. -M.; Asensio, M. C.; Jeong, S. -Y.; Lee, Y. H. Nat. Nanotechnol. 2020, 15, 861. doi: 10.1038/s41565-020-0743-0  doi: 10.1038/s41565-020-0743-0

    28. [28]

      Zhang, J. C.; Sun, L. Z.; Jia, K. C.; Liu, X. T.; Cheng, T.; Peng, H.; Lin, L.; Liu, Z. ACS Nano 2020, 14, 10796. doi: 10.1021/acsnano.0c06141  doi: 10.1021/acsnano.0c06141

    29. [29]

      Mattevi, C.; Kim, H.; Chhowalla, M. J. Mater. Chem. 2011, 21, 3324. doi: 10.1039/c0jm02126a  doi: 10.1039/c0jm02126a

    30. [30]

      Earnshaw, A.; Harrington, T. J. Inorganic Chemistry of the Transition Elements, 6th ed.; Oxford University Press: Oxford, UK, 1972; pp. 210–394.

    31. [31]

      Qi, Y.; Meng, C. X.; Xu, X. Z.; Deng, B.; Han, N.; Liu, M.; Hong, M.; Ning, Y.; Liu, K.; Zhao, J.; et al. J. Am. Chem. Soc. 2017, 139, 17574. doi: 10.1021/jacs.7b09755  doi: 10.1021/jacs.7b09755

    32. [32]

      Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Nano Lett. 2009, 9, 4268. doi: 10.1021/nl902515k  doi: 10.1021/nl902515k

    33. [33]

      Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Nano Res. 2009, 2, 509. doi: 10.1007/s12274-009-9059-y  doi: 10.1007/s12274-009-9059-y

    34. [34]

      Geng, D. C.; Wu, B.; Guo, Y. L.; Huang, L. P.; Xue, Y. Z.; Chen, J. Y.; Yu, G.; Jiang, L.; Hu, W. P.; Liu, Y. Q. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 7992. doi: 10.1073/pnas.1200339109  doi: 10.1073/pnas.1200339109

    35. [35]

      Li, Y.; Sun, L.; Liu, H.; Wang, Y.; Liu, Z. Inorg. Chem. Front. 2021, 8, 182. doi: 10.1039/D0QI00923G  doi: 10.1039/D0QI00923G

    36. [36]

      Zhao, C.; Liu, F. N.; Kong, X.; Yan, T.; Ding, F. Int. J. Smart Nano Mater. 2020, 11, 277. doi: 10.1080/19475411.2020.1820621  doi: 10.1080/19475411.2020.1820621

    37. [37]

      Zhang, J. C.; Lin, L.; Jia, K. C.; Sun, L. Z.; Peng, H. L.; Liu, Z. F. Adv. Mater. 2020, 32, 1903266. doi: 10.1002/adma.201903266  doi: 10.1002/adma.201903266

    38. [38]

      Cheng, H. M. Nat. Nanotechnol. 2014, 9, 726. doi: 10.1038/nnano.2014.229  doi: 10.1038/nnano.2014.229

    39. [39]

      Wang, K. X.; Shi, L. R.; Wang, M. Z.; Yang, H.; Liu, Z. F.; Peng, H. L. Acta Phys. -Chim. Sin. 2019, 35, 1112.  doi: 10.3866/PKU.WHXB201805032

    40. [40]

      Xie, Y. D.; Cheng, T.; Liu, C.; Chen, Y.; Chen, Z. L.; Qiu, L.; Cui, G.; Yu, Y.; Cui, L. Z.; Zhang, M. T.; et al. ACS Nano 2019, 13, 10272. doi: 10.1021/acsnano.9b03596  doi: 10.1021/acsnano.9b03596

    41. [41]

      Chen, Z. L.; Chang, H. L.; Cheng, T.; Wei, T.; Wang, R.; Yang, S.; Dou, Z.; Liu, B.; Zhang, S.; Xie, Y.; et al. Adv. Funct. Mater. 2020, 30, 2001483. doi: 10.1002/adfm.202001483  doi: 10.1002/adfm.202001483

    42. [42]

      Cheng, Y.; Wang, K.; Qi, Y.; Liu, Z. F. Acta Phys. -Chim. Sin. 2021, 37, 2006046.  doi: 10.3866/PKU.WHXB202006046

    43. [43]

      Zhang, W.; Wu, P.; Li, Z.; Yang, J. J. Phys. Chem. C 2011, 115, 17782. doi: 10.1021/jp2006827  doi: 10.1021/jp2006827

    44. [44]

      Wang, L.; Gao, J. F.; Ding, F. Acta Chim. Sin. 2014, 72, 345.  doi: 10.6023/a13090984

    45. [45]

      Wu, P.; Zhang, W.; Li, Z.; Yang, J. Small 2014, 10, 2136. doi: 10.1002/smll.201303680  doi: 10.1002/smll.201303680

    46. [46]

      Li, P.; Li, Z.; Yang, J. J. Phys. Chem. C 2017, 121, 25949. doi: 0.1021/acs.jpcc.7b09622

    47. [47]

      Qiu, Z.; Li, P.; Li, Z.; Yang, J. Acc. Chem. Res. 2018, 51, 728. doi: 10.1021/acs.accounts.7b00592  doi: 10.1021/acs.accounts.7b00592

    48. [48]

      Dong, J. C.; Zhang, L. N.; Ding, F. Adv. Mater. 2019, 31, 1801583. doi: 10.1002/adma.201801583  doi: 10.1002/adma.201801583

    49. [49]

      Cheng, T.; Tan, C. W.; Zhang, S. Q.; Tu, T.; Peng, H.; Liu, Z. J. Phys. Chem. C 2018, 122, 19970. doi: 10.1021/acs.jpcc.8b05475  doi: 10.1021/acs.jpcc.8b05475

    50. [50]

      Cheng, T.; Liu, Z. F.; Liu, Z. R. J. Mater. Chem. C 2020, 8, 13819. doi: 10.1039/d0tc03253k  doi: 10.1039/d0tc03253k

    51. [51]

      Yuan, S.; Meng, L.; Wang, J. J. Phys. Chem. C 2013, 117, 14796. doi: 10.1021/jp400944c  doi: 10.1021/jp400944c

    52. [52]

      Wu, T. R.; Zhang, X. F.; Yuan, Q. H.; Xue, J. C.; Liu, Z. H.; Wang, H. S.; Wang, H. M.; Ding, F.; Yu, Q. K.; Xie, X. M.; et al. Nat. Mater. 2016, 15, 43. doi: 10.1038/nmat4477  doi: 10.1038/nmat4477

    53. [53]

      Wang, X. L.; Yuan, Q. L.; Li, J.; Ding, F. Nanoscale 2017, 9, 11584. doi: 10.1039/c7nr02743e  doi: 10.1039/c7nr02743e

    54. [54]

      Shu, H. B.; Tao, X. -M.; Ding, F. Nanoscale 2015, 7, 1627. doi: 10.1039/c4nr05590j  doi: 10.1039/c4nr05590j

    55. [55]

      Wu, P.; Zhang, Y.; Cui, P.; Li, Z. Y.; Yang, J. L.; Zhang, Z. Y. Phys. Rev. Lett. 2015, 114, 216102. doi: 10.1103/PhysRevLett.114.216102  doi: 10.1103/PhysRevLett.114.216102

    56. [56]

      Gao, J.; Yip, J.; Zhao, J.; Yakobson, B. I.; Ding, F. J. Am. Chem. Soc. 2011, 133, 5009. doi: 10.1021/ja110927p  doi: 10.1021/ja110927p

    57. [57]

      Xu, Z. W.; Yan, T. Y.; Liu, G. W.; Qiao, G.; Ding, F. Nanoscale 2016, 8, 921. doi: 10.1039/c5nr06016h  doi: 10.1039/c5nr06016h

    58. [58]

      Sun, L.; Lin, L.; Zhang, J.; Wang, H.; Peng, H.; Liu, Z. Nano Res. 2017, 10, 355. doi: 10.1007/s12274-016-1297-1  doi: 10.1007/s12274-016-1297-1

    59. [59]

      Liu, Y.; Wu, T.; Yin, Y.; Zhang, X.; Yu, Q.; Searles, D. J.; Ding, F.; Yuan, Q.; Xie, X. Adv. Sci. 2018, 5, 1700961. doi: 10.1002/advs.201700961  doi: 10.1002/advs.201700961

    60. [60]

      Zhang, X. Y.; Xu, Z. W.; Hui, L.; Xin, J.; Ding, F. J. Phys. Chem. Lett. 2012, 3, 2822. doi: 10.1021/jz301029g  doi: 10.1021/jz301029g

    61. [61]

      Yuan, Q. H.; Yakobson, B. I.; Ding, F. J. Phys. Chem. Lett. 2014, 5, 3093. doi: 10.1021/jz5015899  doi: 10.1021/jz5015899

    62. [62]

      Xu, Z. W.; Zhao, G. H.; Qiu, L.; Zhang, X. Y.; Ding, F. NPJ Comput. Mater. 2020, 6, 14. doi: 10.1038/s41524-020-0281-1  doi: 10.1038/s41524-020-0281-1

    63. [63]

      Li, Y.; Sun, L. Z.; Chang, Z. H.; Liu, H. Y.; Wang, Y. C.; Liang, Y.; Chen, B. H.; Ding, Q. J.; Zhao, Z. Y.; Wang, R. Y.; et al. Adv. Mater. 2020, 32, 2002034. doi: 10.1002/adma.202002034  doi: 10.1002/adma.202002034

    64. [64]

      Wu, M. H.; Zhang, Z. B.; Xu, X. Z.; Zhang, Z. H.; Dong, J. C.; Qiao, R. X.; You, S. F.; Wang, L.; Qi, J. J.; Zou, D. X.; et al. Nature 2020, 581, 406. doi: 10.1038/s41586-020-2298-5  doi: 10.1038/s41586-020-2298-5

    65. [65]

      Yang, P.; Zhang, S.; Pan, S.; Tang, B.; Liang, Y.; Zhao, X.; Zhang, Z.; Shi, J.; Huan, Y.; Shi, Y.; et al. ACS Nano 2020, 14, 5036. doi: 10.1021/acsnano.0c01478  doi: 10.1021/acsnano.0c01478

    66. [66]

      Shu, H. B.; Chen, X. S.; Tao, X. M.; Ding, F. ACS Nano 2012, 6, 3243. doi: 10.1021/nn300726r  doi: 10.1021/nn300726r

    67. [67]

      Li, P.; Li, Z.; Yang, J. J. Phys. Chem. C 2017, 121, 25949. doi: 10.1021/acs.jpcc.7b09622  doi: 10.1021/acs.jpcc.7b09622

    68. [68]

      Wu, P.; Jiang, H.; Zhang, W.; Li, Z.; Hou, Z.; Yang, J. J. Am. Chem. Soc. 2012, 134, 6045. doi: 10.1021/ja301791x  doi: 10.1021/ja301791x

    69. [69]

      Yazyev, O. V.; Chen, Y. P. Nat. Nanotechnol. 2014, 9, 755. doi: 10.1038/nnano.2014.166  doi: 10.1038/nnano.2014.166

    70. [70]

      Meng, L. J.; Jiang, J.; Wang, J. L.; Ding, F. J. Phys. Chem. C 2013, 118, 720. doi: 10.1021/jp409471a  doi: 10.1021/jp409471a

    71. [71]

      Wang, L.; Zhang, X. Y.; Chan, H. L. W.; Yan, F.; Ding, F. J. Am. Chem. Soc. 2013, 135, 4476. doi: 10.1021/ja312687a  doi: 10.1021/ja312687a

    72. [72]

      Yuan, Q.; Song, G.; Sun, D.; Ding, F. Sci. Rep. 2014, 4, 6541. doi: 10.1038/srep06541  doi: 10.1038/srep06541

    73. [73]

      Dong, J.; Zhang, L.; Dai, X.; Ding, F. Nat. Commun. 2020, 11, 5862. doi: 10.1038/s41467-020-19752-3  doi: 10.1038/s41467-020-19752-3

    74. [74]

      Artyukhov, V. I.; Hao, Y. F.; Ruoff, R. S.; Yakobson, B. I. Phys. Rev. Lett. 2015, 114, 115502. doi: 0.1103/PhysRevLett.114.115502

    75. [75]

      Wang, C.; Liu, Y.; Li, L.; Tan, H. Nanoscale 2014, 6, 5703. doi: 10.1039/c4nr00423j  doi: 10.1039/c4nr00423j

    76. [76]

      Bronsgeest, M. S.; Bendiab, N.; Mathur, S.; Kimouche, A.; Johnson, H. T.; Coraux, J.; Pochet, P. Nano Lett. 2015, 15, 5098. doi: 10.1021/acs.nanolett.5b01246  doi: 10.1021/acs.nanolett.5b01246

    77. [77]

      de Lima, A. L.; Mussnich, L. A.; Manhabosco, T. M.; Chacham, H.; Batista, R. J.; de Oliveira, A. B. Nanotechnology 2015, 26, 045707. doi: 10.1088/0957-4484/26/4/045707  doi: 10.1088/0957-4484/26/4/045707

    78. [78]

      Shaina, P. R.; George, L.; Yadav, V.; Jaiswal, M. J. Phys. -Condes. Matter 2016, 28, 085301. doi: 10.1088/0953-8984/28/8/085301  doi: 10.1088/0953-8984/28/8/085301

    79. [79]

      Deng, B.; Wu, J.; Zhang, S.; Qi, Y.; Zheng, L.; Yang, H.; Tang, J.; Tong, L.; Zhang, J.; Liu, Z.; et al. Small 2018, 14, 1800725. doi: 10.1002/smll.201800725  doi: 10.1002/smll.201800725

    80. [80]

      Zhu, W.; Low, T.; Perebeinos, V.; Bol, A. A.; Zhu, Y.; Yan, H.; Tersoff, J.; Avouris, P. Nano Lett. 2012, 12, 3431. doi: 10.1021/nl300563h  doi: 10.1021/nl300563h

    81. [81]

      Nicholl, R. J. T.; Conley, H. J.; Lavrik, N. V.; Vlassiouk, I.; Puzyrev, Y. S.; Sreenivas, V. P.; Pantelides, S. T.; Bolotin, K. I. Nat. Commun. 2015, 6. doi: 10.1038/ncomms9789  doi: 10.1038/ncomms9789

    82. [82]

      Deng, B.; Pang, Z. Q.; Chen, S. L.; Li, X.; Meng, C.; Li, J.; Liu, M.; Wu, J.; Qi, Y.; Dang, W.; et al. ACS Nano 2017, 11, 12337. doi: 10.1021/acsnano.7b06196  doi: 10.1021/acsnano.7b06196

    83. [83]

      Li, B. -W.; Luo, D.; Zhu, L. Y.; Zhang, X.; Jin, S.; Huang, M.; Ding, F.; Ruoff, R. S. Adv. Mater. 2018, 30, 1706504. doi: 10.1002/adma.201706504  doi: 10.1002/adma.201706504

    84. [84]

      Pang, Z. Q.; Deng, B.; Liu, Z. F.; Peng, H.; Wei, Y. Carbon 2019, 143, 736. doi: 10.1016/j.carbon.2018.11.059  doi: 10.1016/j.carbon.2018.11.059

    85. [85]

      Yi, D.; Luo, D.; Wang, Z. -J.; Dong, J. C.; Zhang, X.; Willinger, M. G.; Ruoff, R. S.; Ding, F. Phys. Rev. Lett. 2018, 120, 246101. doi: 10.1103/PhysRevLett.120.246101  doi: 10.1103/PhysRevLett.120.246101

  • 加载中
    1. [1]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    4. [4]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    5. [5]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    6. [6]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    7. [7]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    8. [8]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    9. [9]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    12. [12]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    13. [13]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    14. [14]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    15. [15]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    16. [16]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    17. [17]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    18. [18]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    19. [19]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    20. [20]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

Metrics
  • PDF Downloads(42)
  • Abstract views(1593)
  • HTML views(479)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return