Citation: Tao Liang, Bin Wang. Interlayer Covalently Enhanced Graphene Materials: Construction, Properties, and Applications[J]. Acta Physico-Chimica Sinica, ;2022, 38(1): 201105. doi: 10.3866/PKU.WHXB202011059 shu

Interlayer Covalently Enhanced Graphene Materials: Construction, Properties, and Applications

  • Corresponding author: Bin Wang, wangb@nanoctr.cn
  • Received Date: 23 November 2020
    Revised Date: 11 December 2020
    Accepted Date: 14 December 2020
    Available Online: 21 December 2020

  • The development of large-scale and controlled graphene production lays the foundation for macroscopic assembly. Among the diverse assembly strategies, modulating the interlayer interaction of graphene nanosheets is of vital importance because it determines the mechanical, electrical, thermal, and permeation properties of the macroscopic objects. Depending on the nature and strength of the interlayer interaction, covalent and noncovalent bondings, such as hydrogen bonding, ionic interaction, π-π interaction, and van der Waals force, are classified as two main types of interlayer connection methods, which solely or synergistically link the individual graphene nanosheets for practical macroscopic materials. Among them, the covalent bonding within the interlayer space renders graphene assembly adjusted interlayer distance, strong interlayer interaction, a rich diversity of functionalities, and potential atomic configuration reconstruction, which has attracted considerable research attention. Compared with other noncovalent assembly methods, covalent connections are stronger and thus more stable; however, there are some issues that remain. First, the covalent modification of the graphene surface depends on the defects and/or functional groups, which becomes difficult for graphene films free of surface imperfections. Second, the covalent connection partly alters the sp2 hybrid carbon atoms to sp3, resulting in a deteriorated electrical conductivity. Thus, the electrical properties of the macroscopic assembly are far inferior to those of the constituent nanosheets, thereby restricting their applications. Lastly, covalent bonding is naturally rigid, rendering high modulus and strength to the graphene assembly while impairing the toughness. As in certain applications, both high strength and toughness are required; thus, a balanced covalent and noncovalent interaction is required. In this review, we discuss the recent progress in the construction method, properties, and applications of the interlayer covalently connected graphene materials. In the construction method, graphene is classified according to the synthesis method as oxidation-reduction and chemical vapor deposition method, wherein the latter represents graphene without abundant surface bonding sites and is hard to be covalently connected. For the former graphene produced by the oxidation-reduction method, the paper and fiber assembly forms are discussed. Then, the influence of covalent bonding on the mechanical and electrical properties is studied. Note that both the enhancement and potential impairments caused by covalent bonding are addressed. Finally, the applications in electrical devices, energy storage, and ion separation are summarized. The interlayer covalently connected macroscopic graphene material unifies the exceptional properties of graphene and the advantages of assembly strategy and will find applications in related fields. Moreover, it will also inspire the assembly of other graphene-like two-dimensional materials for a richer diversity of applications.
  • 加载中
    1. [1]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    2. [2]

      Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 382. doi: 10.1126/science.1156211  doi: 10.1126/science.1156211

    3. [3]

      Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Lett. 2008, 8, 3498. doi: 10.1021/nl802558y  doi: 10.1021/nl802558y

    4. [4]

      Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902. doi: 10.1021/nl0731872  doi: 10.1021/nl0731872

    5. [5]

      Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017  doi: 10.1021/ja01539a017

    6. [6]

      Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O'Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P.; et al. Nature Mater. 2014, 13, 624. doi: 10.1038/nmat3944  doi: 10.1038/nmat3944

    7. [7]

      Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Science 2009, 324, 1312. doi: 10.1126/science.1171245  doi: 10.1126/science.1171245

    8. [8]

      Liang, T.; Kong, Y.; Chen, H.; Xu, M. Chin. J. Chem. 2016, 34, 32. doi: 10.1002/cjoc.201500429  doi: 10.1002/cjoc.201500429

    9. [9]

      Lin, Y. -M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H. -Y.; Grill, A.; Avouris, P. Science 2010, 327, 662. doi: 10.1126/science.1184289  doi: 10.1126/science.1184289

    10. [10]

      Zhang, Y.; Gong, S.; Zhang, Q.; Ming, P.; Wan, S.; Peng, J.; Jiang, L.; Cheng, Q. Chem. Soc. Rev. 2016, 45, 2378. doi: 10.1039/C5CS00258C  doi: 10.1039/C5CS00258C

    11. [11]

      Pan, L.; Liu, Y.; Zhong, M.; Xie, X. Small 2020, 16, 1902779. doi: 10.1002/smll.201902779  doi: 10.1002/smll.201902779

    12. [12]

      Rao, C. N. R.; Pramoda, K.; Kumar, R. Chem. Commun. 2017, 53, 10093. doi: 10.1039/C7CC05390H  doi: 10.1039/C7CC05390H

    13. [13]

      Shehzad, K.; Xu, Y.; Gao, C.; Duan, X. Chem. Soc. Rev. 2016, 45, 5541. doi: 10.1039/C6CS00218H  doi: 10.1039/C6CS00218H

    14. [14]

      Cong, H. -P.; Chen, J. -F.; Yu, S. -H. Chem. Soc. Rev. 2014, 43, 7295. doi: 10.1039/C4CS00181H  doi: 10.1039/C4CS00181H

    15. [15]

      Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; Zboril, R. Chem. Rev. 2016, 116, 5464. doi: 10.1021/acs.chemrev.5b00620  doi: 10.1021/acs.chemrev.5b00620

    16. [16]

      Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Nature 2007, 448, 457. doi: 10.1038/nature06016  doi: 10.1038/nature06016

    17. [17]

      Gao, Y.; Liu, L. -Q.; Zu, S. -Z.; Peng, K.; Zhou, D.; Han, B. -H.; Zhang, Z. ACS Nano 2011, 5, 2134. doi: 10.1021/nn103331x  doi: 10.1021/nn103331x

    18. [18]

      Cao, C.; Daly, M.; Chen, B.; Howe, J. Y.; Singh, C. V.; Filleter, T.; Sun, Y. Nano Lett. 2015, 15, 6528. doi: 10.1021/acs.nanolett.5b02173  doi: 10.1021/acs.nanolett.5b02173

    19. [19]

      Park, S.; Dikin, D. A.; Nguyen, S. T.; Ruoff, R. S. J. Phys. Chem. C 2009, 113, 15801. doi: 10.1021/jp907613s  doi: 10.1021/jp907613s

    20. [20]

      An, Z.; Compton, O. C.; Putz, K. W.; Brinson, L. C.; Nguyen, S. T. Adv. Mater. 2011, 23, 3842. doi: 10.1002/adma.201101544  doi: 10.1002/adma.201101544

    21. [21]

      Tian, Y.; Cao, Y.; Wang, Y.; Yang, W.; Feng, J. Adv. Mater. 2013, 25, 2980. doi: 10.1002/adma.201300118  doi: 10.1002/adma.201300118

    22. [22]

      Compton, O. C.; Dikin, D. A.; Putz, K. W.; Brinson, L. C.; Nguyen, S. T. Adv. Mater. 2010, 22, 892. doi: 10.1002/adma.200902069  doi: 10.1002/adma.200902069

    23. [23]

      Bourlinos, A. B.; Gournis, D.; Petridis, D.; Szabó, T.; Szeri, A.; Dékány, I. Langmuir 2003, 19, 6050. doi: 10.1021/la026525h  doi: 10.1021/la026525h

    24. [24]

      Matsuo, Y.; Watanabe, K.; Fukutsuka, T.; Sugie, Y. Carbon 2003, 41, 1545. doi: 10.1016/S0008-6223(03)00079-4  doi: 10.1016/S0008-6223(03)00079-4

    25. [25]

      Matsuo, Y.; Miyabe, T.; Fukutsuka, T.; Sugie, Y. Carbon 2007, 45, 1005. doi: 10.1016/j.carbon.2006.12.023  doi: 10.1016/j.carbon.2006.12.023

    26. [26]

      Chen, H.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Adv. Mater. 2008, 20, 3557. doi: 10.1002/adma.200800757  doi: 10.1002/adma.200800757

    27. [27]

      Wan, S.; Li, Y.; Mu, J.; Aliev, A. E.; Fang, S.; Kotov, N. A.; Jiang, L.; Cheng, Q.; Baughman, R. H. Proc. Natl. Acad. Sci. 2018, 115, 5359. doi: 10.1073/pnas.1719111115  doi: 10.1073/pnas.1719111115

    28. [28]

      Xu, Z.; Gao, C. Nat. Commun. 2011, 2, 571. doi: 10.1038/ncomms1583  doi: 10.1038/ncomms1583

    29. [29]

      Xu, Z.; Sun, H.; Zhao, X.; Gao, C. Adv. Mater. 2013, 25, 188. doi: 10.1002/adma.201203448  doi: 10.1002/adma.201203448

    30. [30]

      Xu, Z.; Gao, C. Acc. Chem. Res. 2014, 47, 1267. doi: 10.1021/ar4002813  doi: 10.1021/ar4002813

    31. [31]

      Xu, Z.; Liu, Y.; Zhao, X.; Peng, L.; Sun, H.; Xu, Y.; Ren, X.; Jin, C.; Xu, P.; Wang, M.; et al. Adv. Mater. 2016, 28, 6449. doi: 10.1002/adma.201506426  doi: 10.1002/adma.201506426

    32. [32]

      Huang, G.; Hou, C.; Shao, Y.; Wang, H.; Zhang, Q.; Li, Y.; Zhu, M. Sci. Rep. 2015, 4, 4248. doi: 10.1038/srep04248  doi: 10.1038/srep04248

    33. [33]

      Xu, Z.; Liu, Z.; Sun, H.; Gao, C. Adv. Mater. 2013, 25, 3249. doi: 10.1002/adma.201300774  doi: 10.1002/adma.201300774

    34. [34]

      Kou, L.; Gao, C. Nanoscale 2013, 5, 4370. doi: 10.1039/c3nr00455d  doi: 10.1039/c3nr00455d

    35. [35]

      Liu, Z.; Xu, Z.; Hu, X.; Gao, C. Macromolecules 2013, 46, 6931. doi: 10.1021/ma400681v  doi: 10.1021/ma400681v

    36. [36]

      Zhao, X.; Xu, Z.; Zheng, B.; Gao, C. Sci. Rep. 2013, 3, 3164. doi: 10.1038/srep03164  doi: 10.1038/srep03164

    37. [37]

      Li, M.; Zhang, X.; Wang, X.; Ru, Y.; Qiao, J. Nano Lett. 2016, 16, 6511. doi: 10.1021/acs.nanolett.6b03108  doi: 10.1021/acs.nanolett.6b03108

    38. [38]

      Zhang, Y.; Li, Y.; Ming, P.; Zhang, Q.; Liu, T.; Jiang, L.; Cheng, Q. Adv. Mater. 2016, 28, 2834. doi: 10.1002/adma.201506074  doi: 10.1002/adma.201506074

    39. [39]

      Liang, T.; Luan, C.; Chen, H.; Xu, M. Nanoscale 2017, 9, 3719. doi: 10.1039/C7NR00188F  doi: 10.1039/C7NR00188F

    40. [40]

      Habib, M. R.; Liang, T.; Yu, X.; Pi, X.; Liu, Y.; Xu, M. Rep. Prog. Phys. 2018, 81, 036501. doi: 10.1088/1361-6633/aa9bbf  doi: 10.1088/1361-6633/aa9bbf

    41. [41]

      Liang, T.; Habib, M. R.; Kong, Y.; Cai, Y.; Chen, H.; Fujita, D.; Lin, C. -T.; Liu, Y.; Yu, C.; Su, H.; et al. Carbon 2019, 147, 120. doi: 10.1016/j.carbon.2019.02.075  doi: 10.1016/j.carbon.2019.02.075

    42. [42]

      Odkhuu, D.; Shin, D.; Ruoff, R. S.; Park, N. Sci. Rep. 2013, 3, 3276. doi: 10.1038/srep03276  doi: 10.1038/srep03276

    43. [43]

      Barboza, A. P. M.; Guimaraes, M. H. D.; Massote, D. V. P.; Campos, L. C.; Barbosa Neto, N. M.; Cancado, L. G.; Lacerda, R. G.; Chacham, H.; Mazzoni, M. S. C.; Neves, B. R. A. Adv. Mater. 2011, 23, 3014. doi: 10.1002/adma.201101061  doi: 10.1002/adma.201101061

    44. [44]

      Martins, L. G. P.; Matos, M. J. S.; Paschoal, A. R.; Freire, P. T. C.; Andrade, N. F.; Aguiar, A. L.; Kong, J.; Neves, B. R. A.; de Oliveira, A. B.; Mazzoni, M. S. C.; et al. Nat. Commun. 2017, 8, 96. doi: 10.1038/s41467-017-00149-8  doi: 10.1038/s41467-017-00149-8

    45. [45]

      Chernozatonskii, L. A.; Sorokin, P. B.; Kvashnin, A. G.; Kvashnin, D. G. JEPT Lett. 2009, 90, 134. doi: 10.1134/S0021364009140112  doi: 10.1134/S0021364009140112

    46. [46]

      Kvashnin, A. G.; Chernozatonskii, L. A.; Yakobson, B. I.; Sorokin, P. B. Nano Lett. 2014, 14, 676. doi: 10.1021/nl403938g  doi: 10.1021/nl403938g

    47. [47]

      Luo, Z.; Yu, T.; Kim, K.; Ni, Z.; You, Y.; Lim, S.; Shen, Z.; Wang, S.; Lin, J. ACS Nano 2009, 3, 1781. doi: 10.1021/nn900371t  doi: 10.1021/nn900371t

    48. [48]

      Ke, F.; Zhang, L.; Chen, Y.; Yin, K.; Wang, C.; Tzeng, Y. -K.; Lin, Y.; Dong, H.; Liu, Z.; Tse, J. S.; et al. Nano Lett. 2020, 20, 5916. doi: 10.1021/acs.nanolett.0c01872  doi: 10.1021/acs.nanolett.0c01872

    49. [49]

      Tao, Z.; Du, J.; Qi, Z.; Ni, K.; Jiang, S.; Zhu, Y. Appl. Phys. Lett. 2020, 116, 133101. doi: 10.1063/1.5135027  doi: 10.1063/1.5135027

    50. [50]

      Gao, Y.; Cao, T.; Cellini, F.; Berger, C.; de Heer, W. A.; Tosatti, E.; Riedo, E.; Bongiorno, A. Nat. Nanotechnol. 2018, 13, 133. doi: 10.1038/s41565-017-0023-9  doi: 10.1038/s41565-017-0023-9

    51. [51]

      Rajasekaran, S.; Abild-Pedersen, F.; Ogasawara, H.; Nilsson, A.; Kaya, S. Phys. Rev. Lett. 2013, 111, 085503. doi: 10.1103/PhysRevLett.111.085503  doi: 10.1103/PhysRevLett.111.085503

    52. [52]

      Bakharev, P. V.; Huang, M.; Saxena, M.; Lee, S. W.; Joo, S. H.; Park, S. O.; Dong, J.; Camacho-Mojica, D. C.; Jin, S.; Kwon, Y.; et al. Nat. Nanotechnol. 2020, 15, 59. doi: 10.1038/s41565-019-0582-z  doi: 10.1038/s41565-019-0582-z

    53. [53]

      Cheng, T.; Liu, Z.; Liu, Z. J. Mater. Chem. C 2020, 8, 13819. doi: 10.1039/D0TC03253K  doi: 10.1039/D0TC03253K

    54. [54]

      Suk, J. W.; Piner, R. D.; An, J.; Ruoff, R. S. ACS Nano 2010, 4, 6557. doi: 10.1021/nn101781v  doi: 10.1021/nn101781v

    55. [55]

      Cao, C.; Daly, M.; Singh, C. V.; Sun, Y.; Filleter, T. Carbon 2015, 81, 497. doi: 10.1016/j.carbon.2014.09.082  doi: 10.1016/j.carbon.2014.09.082

    56. [56]

      Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Prog. Mater. Sci. 2017, 90, 75. doi: 10.1016/j.pmatsci.2017.07.004  doi: 10.1016/j.pmatsci.2017.07.004

    57. [57]

      Márquez-Lamas, U.; Martínez-Guerra, E.; Toxqui-Terán, A.; Aguirre-Tostado, F. S.; Lara-Ceniceros, T. E.; Bonilla-Cruz, J. J. Phys. Chem. C 2017, 121, 852. doi: 10.1021/acs.jpcc.6b09961  doi: 10.1021/acs.jpcc.6b09961

    58. [58]

      Lee, W.; Lee, J. U.; Jung, B. M.; Byun, J. -H.; Yi, J. -W.; Lee, S. -B.; Kim, B. -S. Carbon 2013, 65, 296. doi: 10.1016/j.carbon.2013.08.029  doi: 10.1016/j.carbon.2013.08.029

    59. [59]

      Ma, T.; Gao, H. -L.; Cong, H. -P.; Yao, H. -B.; Wu, L.; Yu, Z. -Y.; Chen, S. -M.; Yu, S. -H. Adv. Mater. 2018, 30, 1706435. doi: 10.1002/adma.201706435  doi: 10.1002/adma.201706435

    60. [60]

      Jia, Z.; Wang, Y. J. Mater. Chem. A 2015, 3, 4405. doi: 10.1039/C4TA06193D  doi: 10.1039/C4TA06193D

    61. [61]

      Nam, Y. T.; Choi, J.; Kang, K. M.; Kim, D. W.; Jung, H. -T. ACS Appl. Mater. Interfaces 2016, 8, 27376. doi: 10.1021/acsami.6b09912  doi: 10.1021/acsami.6b09912

    62. [62]

      Lim, M. -Y.; Choi, Y. -S.; Kim, J.; Kim, K.; Shin, H.; Kim, J. -J.; Shin, D. M.; Lee, J. -C. J. Membr. Sci. 2017, 521, 1. doi: 10.1016/j.memsci.2016.08.067  doi: 10.1016/j.memsci.2016.08.067

    63. [63]

      Yoon, S. S.; Lee, K. E.; Cha, H. -J.; Seong, D. G.; Um, M. -K.; Byun, J. -H.; Oh, Y.; Oh, J. H.; Lee, W.; Lee, J. U. Sci. Rep. 2015, 5, 16366. doi: 10.1038/srep16366  doi: 10.1038/srep16366

    64. [64]

      Gao, H.; Xiao, F.; Ching, C. B.; Duan, H. ACS Appl. Mater. Interfaces 2012, 4, 7020. doi: 10.1021/am302280b  doi: 10.1021/am302280b

    65. [65]

      Ma, Y.; Zheng, Y.; Zhu, Y. Sci. China Mater. 2020, 63, 9. doi: 10.1007/s40843-019-9462-9  doi: 10.1007/s40843-019-9462-9

    66. [66]

      Zhu, Y.; Ji, H.; Cheng, H. -M.; Ruoff, R. S. Natl. Sci. Rev. 2018, 5, 90. doi: 10.1093/nsr/nwx055  doi: 10.1093/nsr/nwx055

    67. [67]

      Shen, B.; Zhai, W.; Zheng, W. Adv. Funct. Mater. 2014, 24, 4542. doi: 10.1002/adfm.201400079  doi: 10.1002/adfm.201400079

    68. [68]

      Wang, N.; Samani, M. K.; Li, H.; Dong, L.; Zhang, Z.; Su, P.; Chen, S.; Chen, J.; Huang, S.; Yuan, G.; et al. Small 2018, 14, 1801346. doi: 10.1002/smll.201801346  doi: 10.1002/smll.201801346

    69. [69]

      Han, H.; Zhang, Y.; Wang, N.; Samani, M. K.; Ni, Y.; Mijbil, Z. Y.; Edwards, M.; Xiong, S.; Sääskilahti, K.; Murugesan, M.; et al. Nat. Commun. 2016, 7, 11281. doi: 10.1038/ncomms11281  doi: 10.1038/ncomms11281

    70. [70]

      Jia, Z.; Wang, Y.; Shi, W.; Wang, J. J. Membr. Sci. 2016, 520, 139. doi: 10.1016/j.memsci.2016.07.042  doi: 10.1016/j.memsci.2016.07.042

    71. [71]

      Cao, M. -S.; Wang, X. -X.; Cao, W. -Q.; Yuan, J. J. Mater. Chem. C 2015, 3, 6589. doi: 10.1039/C5TC01354B  doi: 10.1039/C5TC01354B

    72. [72]

      Song, W. -L.; Fan, L. -Z.; Cao, M. -S.; Lu, M. -M.; Wang, C. -Y.; Wang, J.; Chen, T. -T.; Li, Y.; Hou, Z. -L.; Liu, J.; et al. J. Mater. Chem. C 2014, 2, 5057. doi: 10.1039/C4TC00517A  doi: 10.1039/C4TC00517A

    73. [73]

      Liu, Y.; Liang, H.; Xu, Z.; Xi, J.; Chen, G.; Gao, W.; Xue, M.; Gao, C. ACS Nano 2017, 11, 4301. doi: 10.1021/acsnano.7b01491  doi: 10.1021/acsnano.7b01491

    74. [74]

      Zhang, M.; Huang, L.; Chen, J.; Li, C.; Shi, G. Adv. Mater. 2014, 26, 7588. doi: 10.1002/adma.201403322  doi: 10.1002/adma.201403322

    75. [75]

      Lin, X.; Shen, X.; Zheng, Q.; Yousefi, N.; Ye, L.; Mai, Y. -W.; Kim, J. -K. ACS Nano 2012, 6, 10708. doi: 10.1021/nn303904z  doi: 10.1021/nn303904z

    76. [76]

      Cheng, Q.; Wu, M.; Li, M.; Jiang, L.; Tang, Z. Angew. Chem. 2013, 125, 3838. doi: 10.1002/ange.201210166  doi: 10.1002/ange.201210166

    77. [77]

      Cui, W.; Li, M.; Liu, J.; Wang, B.; Zhang, C.; Jiang, L.; Cheng, Q. ACS Nano 2014, 8, 9511. doi: 10.1021/nn503755c  doi: 10.1021/nn503755c

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    3. [3]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    4. [4]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    5. [5]

      Shunliu Deng Haifeng Su Yaxian Zhu Yuzhi Wang Yuhua Weng Zhaobin Chen Shunü Peng Yinyun Lü Xinyi Hong Yiru Wang Xiaozhen Huang Zhimin Lin Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002

    6. [6]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    9. [9]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    10. [10]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    11. [11]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    12. [12]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    15. [15]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    16. [16]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    17. [17]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    18. [18]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    19. [19]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    20. [20]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

Metrics
  • PDF Downloads(10)
  • Abstract views(1337)
  • HTML views(298)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return