Citation: Li Qian, Hu Jing, Zhou Yi, Wang Haiqiang, Wu Zhongbiao. La-Doped BiOI Microspheres for Efficient Photocatalytic Oxidation of NO under Visible Light Illumination[J]. Acta Physico-Chimica Sinica, ;2021, 37(8): 200910. doi: 10.3866/PKU.WHXB202009100 shu

La-Doped BiOI Microspheres for Efficient Photocatalytic Oxidation of NO under Visible Light Illumination

  • Corresponding author: Wang Haiqiang, haiqiangwang@zju.edu.cn
  • Received Date: 29 September 2020
    Revised Date: 29 October 2020
    Accepted Date: 4 November 2020
    Available Online: 11 November 2020

    Fund Project: the National Natural Science Foundation of China 51878598The project was supported by the National Natural Science Foundation of China (51878598, 51978603), Special Program for Social Development of Key Science and Technology Project of Zhejiang Province (2014C03025), Zhejiang Provincial "151" Talents Program, and the Program for Zhejiang Leading Team of S&T Innovation (2013TD07)Special Program for Social Development of Key Science and Technology Project of Zhejiang Province 2014C03025the Program for Zhejiang Leading Team of S&T Innovation 2013TD07the National Natural Science Foundation of China 51978603

  • Photocatalytic oxidation has been widely acknowledged as an economical and effective technology for the treatment of low-concentration NO. Three-dimensional (3D) BiOI microspheres, which are typical visible-light responsive semiconductor photocatalysts, often suffer from quick recombination of photogenerated carriers and unsatisfactory electrical conductivity when applied in NO photocatalytic oxidation reactions. However, owing to their micro-sized structures, they are usually difficult to couple with other semiconductors and co-catalysts because of their incompact interfaces that provide insufficient contact. In this study, a rare-earth metal (La) doping strategy was first adopted to modify BiOI microspheres via a simple one-step solvothermal method; subsequently, the photocatalytic NO oxidation performance under visible light illumination was systematically investigated. Further, the La precursors and doping contents were optimized. It was found that La(NO3)2 was the best precursor when compared to LaCl3 and La(AC)3. Moreover, 0.3%La/BiOI exhibited the best NO photocatalytic conversion efficiency of up to 74%, which was significantly higher than that of the pure BiOI benchmark (44%). It also exhibited excellent stability during the continuous 5-cycle experiments. Analysis of the physicochemical properties revealed that La doping facilitated the crystallization of BiOI without altering its morphology and structure. La3+ may enter the BiOI lattice by substituting Bi3+ or forming La2O3 nanoclusters that homogeneously scatter in the mesopores of BiOI microspheres. The analysis of the underlying mechanism further revealed that La doping not only enhanced the light harvesting properties by decreasing the bandgaps of BiOI and accelerating the charge separation and transfer dynamics, but also introduced more oxygen vacancies and facilitated the formation of more OH radicals by dissociating the water molecules. All these factors co-contributed to the promotion of NO photocatalytic oxidation activities. Furthermore, NO was mainly oxidized to NO2 over La/BiOI, and the formed NO2 tended to desorb from the catalyst surface, which not only maintained the intactness of active sites and facilitated the sustainable occurrence of NO photocatalytic oxidation reactions, but also prevented the photocatalysts from frequent washing-regeneration; therefore, these factors account for the superior photocatalytic stability of La/BiOI and its long-term operation. The formed NO2 could be easily and totally absorbed by the tail alkaline liquid, thereby effectively avoiding secondary pollution. Therefore, this study elucidates that doping is indeed a feasible and effective approach for the modification of 3D BiOI microspheres, while providing inspiration for the rational design and modification of other 3D semiconductor materials for various photocatalytic applications.
  • 加载中
    1. [1]

      Zhao, B.; Wang, S. X.; Liu, H.; Xu, J. Y.; Fu, K.; Klimont, Z.; Hao, J. M.; He, K. B.; Cofala, J.; Amann, M. Atmos. Chem. Phys. 2013, 13, 9869. doi: 10.5194/acp-13-9869-2013  doi: 10.5194/acp-13-9869-2013

    2. [2]

      He, H.; Wang, Y.; Ma, Q.; Ma, J.; Chu, B.; Ji, D.; Tang, G.; Liu, C.; Zhang, H.; Hao, J. Sci. Rep. 2014, 4, 4172. doi: 10.1038/srep06092  doi: 10.1038/srep06092

    3. [3]

      Li, G.; Zhang, D.; Yu, J. C.; Leung, M. K. H. Environ. Sci. Technol. 2010, 44, 4276. doi: 10.1021/es100084a  doi: 10.1021/es100084a

    4. [4]

      Yu, Y.; Li, Y.; Zhang, X.; Deng, H.; He, H.; Li, Y. Environ. Sci. Technol. 2015, 49, 481. doi: 10.1021/es5040574  doi: 10.1021/es5040574

    5. [5]

      Chen, L.; Li, J.; Ge, M. Environ. Sci. Technol. 2010, 44, 9590. doi: 10.1021/es102692b  doi: 10.1021/es102692b

    6. [6]

      Li, Y.; Gu, M.; Shi, T.; Cui, W.; Zhang, X.; Dong, F.; Cheng, J.; Fan, J.; Lv, K. Appl. Catal. B: Environ. 2020, 262, 118281. doi: 10.1016/j.apcatb.2019.118281  doi: 10.1016/j.apcatb.2019.118281

    7. [7]

      Zhang, L.; Yang, C.; Lv, K.; Lu, Y.; Li, Q.; Wu, X.; Li, Y.; Li, X.; Fan, J.; Li, M. Chin. J. Catal. 2019, 40, 755. doi: 10.1016/S1872-2067(19)63320-6  doi: 10.1016/S1872-2067(19)63320-6

    8. [8]

      Chen, Y.; Tian, G.; Shi, Y.; Xiao, Y.; Fu, H. Appl. Catal. B: Environ. 2015, 164, 40. doi: 10.1016/j.apcatb.2014.08.036  doi: 10.1016/j.apcatb.2014.08.036

    9. [9]

      Feng, X.; Zhang, W.; Deng, H.; Ni, Z.; Dong, F.; Zhang, Y. J. Hazard. Mater. 2017, 322, 223. doi: 10.1016/j.jhazmat.2016.05.007  doi: 10.1016/j.jhazmat.2016.05.007

    10. [10]

      Dong, G.; Ho, W.; Zhang, L. Appl. Catal. B: Environ. 2015, 168-169, 490. doi: 10.1016/j.apcatb.2015.01.014  doi: 10.1016/j.apcatb.2015.01.014

    11. [11]

      Liu, H.; Cao, W.; Su, Y.; Wang, Y.; Wang, X. Appl. Catal. B: Environ. 2012, 111–112, 271. doi: 10.1016/j.apcatb.2011.10.008  doi: 10.1016/j.apcatb.2011.10.008

    12. [12]

      Li, Q.; Gao, S.; Hu, J.; Wang, H.; Wu, Z. Catal. Sci. Technol. 2018, 8, 5270. doi: 10.1039/C8CY01466C  doi: 10.1039/C8CY01466C

    13. [13]

      Huang, Y.; Li, H.; Fan, W.; Zhao, F.; Qiu, W.; Ji, H.; Tong, Y. ACS Appl. Mater. Inter. 2016, 8, 27859. doi: 10.1021/acsami.6b10653  doi: 10.1021/acsami.6b10653

    14. [14]

      Pan, M.; Zhang, H.; Gao, G.; Liu, L.; Chen, W. Environ. Sci. Technol. 2015, 49, 6240. doi: 10.1021/acs.est.5b00626  doi: 10.1021/acs.est.5b00626

    15. [15]

      Huang, Y.; Li, H.; Balogun, M.; Liu, W.; Tong, Y.; Lu, X.; Ji, H. ACS Appl. Mater. Inter. 2014, 6, 22920. doi: 10.1021/am507641k  doi: 10.1021/am507641k

    16. [16]

      Jiang, J.; Zhang, X.; Sun, P.; Zhang, L. J. Phys. Chem. C 2011, 115, 20555. doi: 10.1021/jp205925z  doi: 10.1021/jp205925z

    17. [17]

      Di, J.; Xia, J.; Ji, M.; Xu, L.; Yin, S.; Zhang, Q.; Chen, Z.; Li, H. Carbon 2016, 98, 613. doi: 10.1016/j.carbon.2015.11.015  doi: 10.1016/j.carbon.2015.11.015

    18. [18]

      Peng, J.; Zhao, Y.; Ul Hassan, Q.; Li, H.; Liu, Y.; Ma, S.; Mao, D.; Li, H.; Meng, L.; Hojamberdiev, M. Adv. Powder Technol. 2018, 29, 1158. doi: 10.1016/j.apt.2018.02.007  doi: 10.1016/j.apt.2018.02.007

    19. [19]

      Li, H.; Yang, Z.; Zhang, J.; Huang, Y.; Ji, H.; Tong, Y. Appl. Surf. Sci. 2017, 423, 1188. doi: 10.1016/j.apsusc.2017.06.301  doi: 10.1016/j.apsusc.2017.06.301

    20. [20]

      Luo, J.; Zhou, X.; Ma, L.; Xu, X. J. Mol. Catal. A: Chem. 2015, 410, 168. doi: 10.1016/j.molcata.2015.09.019  doi: 10.1016/j.molcata.2015.09.019

    21. [21]

      Yu, X.; Yang, J.; Ye, K.; Fu, X.; Zhu, Y.; Zhang, Y. Inorg. Chem. Commun. 2016, 71, 45. doi: 10.1016/j.inoche.2016.06.034  doi: 10.1016/j.inoche.2016.06.034

    22. [22]

      Liang, J.; Deng, J.; Li, M.; Xu, T.; Tong, M. Colloids Surf. B Biointerfaces 2016, 147, 307. doi: 10.1016/j.colsurfb.2016.08.016  doi: 10.1016/j.colsurfb.2016.08.016

    23. [23]

      Thi, V. H.; Lee, B. Mater. Res. Bull. 2017, 96, 171. doi: 10.1016/j.materresbull.2017.04.028  doi: 10.1016/j.materresbull.2017.04.028

    24. [24]

      Xie, Y. P.; Wang, G. S. J. Colloid Interface Sci. 2014, 430, 1. doi: 10.1016/j.jcis.2014.05.020  doi: 10.1016/j.jcis.2014.05.020

    25. [25]

      Nie, J.; Hassan, Q.; Jia, Y.; Gao, J.; Peng, J.; Lu, J.; Zhang, F.; Zhu, G.; Wang, Q. Inorg. Chem. Front. 2020, 7, 356. doi: 10.1039/C9QI01152H  doi: 10.1039/C9QI01152H

    26. [26]

      Hu, J.; Weng, S.; Zheng, Z.; Pei, Z.; Huang, M.; Liu, P. J. Hazard. Mater. 2014, 264, 293. doi: 10.1016/j.jhazmat.2013.11.027  doi: 10.1016/j.jhazmat.2013.11.027

    27. [27]

      Yin, S.; Fan, W.; Di, J.; Wu, T.; Yan, J.; He, M.; Xia, J.; Li, H. Colloid Surf. A-Physicochem. Eng. Asp. 2017, 513, 160. doi: 10.1016/j.colsurfa.2016.10.012  doi: 10.1016/j.colsurfa.2016.10.012

    28. [28]

      Reddy, B. M.; Katta, L.; Thrimurthulu, G. Chem. Mater. 2010, 22, 467. doi: 10.1021/cm903282w  doi: 10.1021/cm903282w

    29. [29]

      Rao, F.; Zhu, G.; Hojamberdiev, M.; Zhang, W.; Li, S.; Gao, J.; Zhang, F.; Huang, Y.; Huang, Y. J. Phys. Chem. C 2019, 123, 16268. doi: 10.1021/acs.jpcc.9b03961  doi: 10.1021/acs.jpcc.9b03961

    30. [30]

      Ji, M.; Xia, J.; Di, J.; Liu, Y.; Chen, R.; Chen, Z.; Yin, S.; Li, H. Chem. Eng. J. 2018, 331, 355. doi: 10.1016/j.cej.2017.08.100  doi: 10.1016/j.cej.2017.08.100

    31. [31]

      Liu, C.; Wang, X. J. Dalton Trans. 2016, 45, 7720. doi: 10.1039/C6DT00530F  doi: 10.1039/C6DT00530F

    32. [32]

      He, R.; Cao, S.; Yu, J.; Yang, Y. Catal. Today 2016, 264, 221. doi: 10.1016/j.cattod.2015.07.029  doi: 10.1016/j.cattod.2015.07.029

    33. [33]

      Li, Q.; Sun, Z.; Wang, H.; Wu, Z. J. CO2 Util. 2018, 28, 126. doi: 10.1016/j.jcou.2018.09.019  doi: 10.1016/j.jcou.2018.09.019

    34. [34]

      Zhou, M. H.; Yu, J. G.; Cheng, B.; Yu, H. G. Mater. Chem. Phys. 2005, 93, 159. doi: 10.1016/j.photoemphys.2005.03.007  doi: 10.1016/j.photoemphys.2005.03.007

    35. [35]

      Zhou, M.; Yu, J.; Cheng, B. J. Hazard. Mater. 2006, 137, 1838. doi: 10.1016/j.jhazmat.2006.05.028  doi: 10.1016/j.jhazmat.2006.05.028

    36. [36]

      Xie, F.; Mao, X.; Fan, C.; Wang, Y. Mat. Sci. Semicon. Proc. 2014, 27, 380. doi: 10.1016/j.mssp.2014.07.020  doi: 10.1016/j.mssp.2014.07.020

    37. [37]

      Xu, K.; Fu, X.; Peng, Z. Mater. Res. Bull. 2018, 98, 103. doi: 10.1016/j.materresbull. 2017.10.013  doi: 10.1016/j.materresbull.2017.10.013

    38. [38]

      Chai, B.; Wang, X. RSC Adv. 2015, 5, 7589. doi: 10.1039/c4ra10999f  doi: 10.1039/c4ra10999f

    39. [39]

      Barama, S.; Davidson, A.; Barama, A.; Boukhlouf, H.; Casale, S.; Calers, C.; Brouri, D.; Domingos, C.; Djadoun, A. Compte. Rendus Chim. 2017, 20, 7. doi: 10.1016/j.crci.2016.05.017  doi: 10.1016/j.crci.2016.05.017

    40. [40]

      Rong, X.; Qiu, F.; Rong, J.; Yan, J.; Zhao, H.; Zhu, X.; Yang, D. J. Solid State Chem. 2015, 230, 126. doi: 10.1016/j.jssc.2015.07.003  doi: 10.1016/j.jssc.2015.07.003

    41. [41]

      Ueno. K.; Misawa H. J. Photochem. Photobiol. A: Chem. 2011, 221, 2. doi: 10.1016/j.jphotochem.2011.04.014  doi: 10.1016/j.jphotochem.2011.04.014

    42. [42]

      Long, M.; Cai, W.; Kisch, H. J. Phys. Chem. C 2008, 112, 548. doi: 10.1021/jp075605x  doi: 10.1021/jp075605x

    43. [43]

      Szaciłowski, K.; Macyk, W.; Stochel, G. J. Mater. Chem. 2006, 16, 4603. doi: 10.1039/B606402G  doi: 10.1039/B606402G

    44. [44]

      Di, J.; Xia, J.; Ji, M.; Wang, B.; Yin, S.; Xu, H.; Chen, Z.; Li, H. Langmuir 2016, 32, 2075. doi: 10.1021/acs.langmuir.5b04308  doi: 10.1021/acs.langmuir.5b04308

    45. [45]

      Hou, D.; Hu, X.; Hu, P.; Zhang, W.; Zhang, M.; Huang, Y. Nanoscale 2013, 5, 9764. doi: 10.1039/C3NR02458J  doi: 10.1039/C3NR02458J

    46. [46]

      Hu, Z.; Li, K.; Wu, X.; Wang, N.; Li, X.; Li, Q.; Li, L.; Lv, K. Appl. Catal. B: Environ. 2019, 256, 117860. doi: 10.1016/j.apcatb.2019.117860  doi: 10.1016/j.apcatb.2019.117860

    47. [47]

      Hu, Z.; Yang, C.; Lv, K.; Li, X.; Li, Q.; Fan, J. Chem. Commun. 2020, 56, 1745. doi: 10.1039/C9CC08578E  doi: 10.1039/C9CC08578E

  • 加载中
    1. [1]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    2. [2]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    4. [4]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    5. [5]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    6. [6]

      Qinwei LuJinjie LuJuying LeiXubiao LuoYanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017

    7. [7]

      Jia-Ru LiNing LiLi-Ling HeJun He . Fluorine-functionalized zirconium-organic cages for efficient photocatalytic oxidation of thioanisole. Chinese Chemical Letters, 2025, 36(1): 109934-. doi: 10.1016/j.cclet.2024.109934

    8. [8]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    9. [9]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    10. [10]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    11. [11]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    14. [14]

      Pengyu ChenBeibei ChenMan HeYuxi ZhouLei LeiJian HanBingsheng ZhouLigang HuBin Hu . Nanoplastics and nano-ZnO facilitate Cd accumulation in zebrafish larvae via a distinct pathway: Revelation by LA-ICP-MS imaging. Chinese Chemical Letters, 2025, 36(2): 109908-. doi: 10.1016/j.cclet.2024.109908

    15. [15]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    16. [16]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    17. [17]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    18. [18]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    19. [19]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    20. [20]

      Ajay Piriya Vijaya Kumar Saroja Yuhan Wu Yang Xu . Improving the electrocatalysts for conversion-type anodes of alkali-ion batteries. Chinese Journal of Structural Chemistry, 2025, 44(1): 100408-100408. doi: 10.1016/j.cjsc.2024.100408

Metrics
  • PDF Downloads(7)
  • Abstract views(474)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return