Citation: Zihui Mei, Guohong Wang, Suding Yan, Juan Wang. Rapid Microwave-Assisted Synthesis of 2D/1D ZnIn2S4/TiO2 S-Scheme Heterojunction for Catalyzing Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica, ;2021, 37(6): 200909. doi: 10.3866/PKU.WHXB202009097 shu

Rapid Microwave-Assisted Synthesis of 2D/1D ZnIn2S4/TiO2 S-Scheme Heterojunction for Catalyzing Photocatalytic Hydrogen Evolution

  • Corresponding author: Guohong Wang, wanggh2003@163.com
  • Received Date: 29 September 2020
    Revised Date: 21 October 2020
    Accepted Date: 31 October 2020
    Available Online: 10 November 2020

    Fund Project: the National Natural Science Foundation of China 22075072the National Natural Science Foundation of China 52003079Hubei Provincial Natural Science Foundation of China 2019CFB568

  • The threat and global concern of energy crises have significantly increased over the last two decades. Because solar light and water are abundant on earth, photocatalytic hydrogen evolution through water splitting has been considered as a promising route to produce green energy. Therefore, semiconductor photocatalysts play a key role in transforming sunlight and water to hydrogen energy. To date, various photocatalysts have been studied. Among them, TiO2 has been extensively investigated because of its non-toxicity, high chemical stability, controllable morphology, and high photocatalytic activity. In particular, 1D TiO2 nanofibers (NFs) have attracted increasing attention as effective photocatalysts because of their unique 1D electron transfer pathway, high adsorption capacity, and high photoinduced electron–hole pair transfer capability. However, TiO2 NFs are considered as an inefficient photocatalyst for the hydrogen evolution reaction (HER) because of their disadvantages such as a large band gap (~3.2 eV) and fast recombination of photoinduced electron–hole pairs. Therefore, the development of a high-performance TiO2 NF photocatalyst is required for efficient solar light conversion. In recent years, several strategies have been explored to improve the photocatalytic activity of TiO2 NFs, including coupling with narrow-bandgap semiconductors (such as ZnIn2S4). Recently, microwave (MW)-assisted synthesis has been considered as an important strategy for the preparation of photocatalyst semiconductors because of its low cost, environment-friendliness, simplicity, and high reaction rate. Herein, to overcome the above-mentioned limiting properties of TiO2 NFs, we report a 2D/1D ZnIn2S4/TiO2 S-scheme heterojunction synthesized through a microwave (MW)-assisted process. Herein, the 2D/1D ZnIn2S4/TiO2 S-scheme heterojunction was constructed rapidly by using in situ 2D ZnIn2S4nanosheets decorated on 1D TiO2 NFs. The loading of ZnIn2S4 nanoplates on the TiO2 NFs could be easily controlled by adjusting the molar ratios of ZnIn2S4 precursors to TiO2 NFs. The photocatalytic activity of the as-prepared samples for water splitting under simulated solar light irradiation was assessed. The experimental results showed that the photocatalytic performance of the ZnIn2S4/TiO2 composites was significantly improved, and the obtained ZnIn2S4/TiO2 composites showed increased optical absorption. Under optimal conditions, the highest HER rate of the ZT-0.5 (molar ratio of ZnIn2S4/TiO2= 0.5) sample was 8774 μmol·g-1·h-1, which is considerably higher than those of pure TiO2 NFs (3312 μmol·g-1·h-1) and ZnIn2S4nanoplates (3114 μmol·g-1·h-1) by factors of 2.7 and 2.8, respectively. Based on the experimental data and Mott-Schottky analysis, a possible mechanism for the formation of the S-scheme heterojunction between ZnIn2S4 and TiO2 was proposed to interpret the enhanced HER activity of the ZnIn2S4/TiO2heterojunctionphotocatalysts.
  • 加载中
    1. [1]

      Zhang, T. M.; Wan, Y. Y.; Xie, H. Y.; Mu, Y.; Du, P. W.; Wang, D.; Wu, X. J.; Ji, H. X.; Wan, L. J. J. Am. Chem. Soc. 2018, 140 (24), 7561. doi: 10.1021/jacs.8b02156  doi: 10.1021/jacs.8b02156

    2. [2]

      Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Adv. Mater. 2019, 31 (30), 1807660. doi: 10.1002/adma.201807660  doi: 10.1002/adma.201807660

    3. [3]

      Di, T. M.; Xu, Q. L.; Ho, W. K.; Tang, H.; Xiang, Q. J.; Yu, J. G. ChemCatChem 2019, 11 (5), 1394. doi: 10.1002/cctc.201802024  doi: 10.1002/cctc.201802024

    4. [4]

      Xu, Q. L.; Ma, D. K.; Yang, S. B.; Tian, Z. F.; Cheng, B.; Fan, J. J. Appl. Surf. Sci. 2019, 495, 143555. doi: 10.1016/j.apsusc.2019.143555  doi: 10.1016/j.apsusc.2019.143555

    5. [5]

      Sadowski, R.; Wach, A.; Buchalska, M.; Kuśtrowski, P.; Macyk, W. Appl. Surf. Sci. 2019, 475, 710. doi: 10.1016/j.apsusc.2018.12.286  doi: 10.1016/j.apsusc.2018.12.286

    6. [6]

      Zhang, C.; Wu, Z. J.; Liu, J. J.; Piao, L. Y. Acta Phys. -Chim. Sin. 2017, 33, 1492.  doi: 10.3866/PKU.WHXB201704141

    7. [7]

      Ji, Y. C.; Yang, R. Q.; Wang, L. W.; Song, G. X.; Wang, A. Z.; Lv, Y. W.; Gao, M. M.; Zhang, J.; Yu, X. Chem. Eng. J. 2020, 40, 126226. doi: 10.1016/j.cej.2020.126226  doi: 10.1016/j.cej.2020.126226

    8. [8]

      Xu, F. Y.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Xu, J. S. Adv. Opt. Mater. 2018, 6 (23), 180911. doi: 10.1002/adom.201800911  doi: 10.1002/adom.201800911

    9. [9]

      Wu, J.; Liu, J.; Xia, W.; Ren, Y. Y.; Wang, F. Acta Phys. -Chim. Sin. 2021, 37, 2008043.  doi: 10.3866/PKU.WHXB202008043

    10. [10]

      Liu, G.; Wang, G. H.; Hu, Z. H.; Su, Y. R.; Zhao, L. Appl. Surf. Sci. 2019, 465, 902. doi: 10.1016/j.apsusc.2018.09.216  doi: 10.1016/j.apsusc.2018.09.216

    11. [11]

      Chu, Z. D.; Qiu, L. L.; Chen, Y.; Zhuang, Z. S.; Du, P. F.; Xiong, J. J. Phys. Chem. Solids. 2020, 136, 109138. doi: 10.1016/j.jpcs.2019.109138  doi: 10.1016/j.jpcs.2019.109138

    12. [12]

      Liu, Y.; Hao, X. Q.; Hu, H, Q.; Ging, Z. L. Acta Phys. -Chim. Sin. 2021, 37, 2008030.  doi: 10.3866/PKU.WHXB202008030

    13. [13]

      Li, X. Z.; Yan, X. Y.; Lu, X. W.; Zuo, S. X.; Li, Z. Y.; Yao, C.; Ni, C. Y. J. Catal. 2018, 357, 59. doi: 10.1016/j.jcat.2017.10.024  doi: 10.1016/j.jcat.2017.10.024

    14. [14]

      Li, H. F.; Yu, H. T.; Quan, X.; Chen, S.; Zhang, Y. B. ACS Appl. Mater. Interface 2016, 8 (3), 2111. doi: 10.1021/acsami.5b10613  doi: 10.1021/acsami.5b10613

    15. [15]

      Shen, J.; Wang, R.; Liu, Q. Q.; Yang, X. F.; Tang, H.; Yang, J. Chin. J. Catal. 2019, 40 (3), 380. doi: 10.1016/S1872-2067(18)63166-3  doi: 10.1016/S1872-2067(18)63166-3

    16. [16]

      Pan, J. B.; Shen, S.; Zhou, W.; Tang, J.; Ding, H. Z.; Wang, J. B.; Chen, L.; Au, C. T.; Yin, S. F. Acta Phys. -Chim. Sin. 2020, 36, 1905068.  doi: 10.3866/PKU.WHXB201905068

    17. [17]

      Huang, J. J.; Du, J. M.; Du, H. W.; Xu, G. S.; Yuan, Y. P. Acta Phys. -Chim. Sin. 2020, 36, 1905056.  doi: 10.3866/PKU.WHXB201905056

    18. [18]

      Xia, P. F.; Cao, S. W.; Zhu, B. C.; Liu, M. J.; Shi, M. S.; Yu, J. G.; Zhang, Y. F. Angew. Chem. Int. Ed. 2020, 59 (13), 5218. doi: 10.1002/ange.201916012  doi: 10.1002/ange.201916012

    19. [19]

      Li, Z. J.; Wang, X. H.; Tian, W. L.; Meng, A. L.; Yang, L. N. ACS Sustain. Chem. Eng. 2019, 7 (24), 20190. doi: 10.1021/acssuschemeng.9b06430  doi: 10.1021/acssuschemeng.9b06430

    20. [20]

      He, F.; Meng, A. Y.; Cheng, B.; Ho, W. K.; Yu, J. G. Chin. J. Catal. 2020, 41 (1), 9. doi: 10.1016/S1872-2067(19)63382-6  doi: 10.1016/S1872-2067(19)63382-6

    21. [21]

      Luo, J. H.; Lin, Z. X.; Zhao, Y.; Jiang, S. J.; Song, S. Q. Chin. J. Catal. 2020, 41 (1), 122. doi: 10.1016/S1872-2067(19)63490-X  doi: 10.1016/S1872-2067(19)63490-X

    22. [22]

      Wang, J.; Wang, G. H.; Cheng, B.; Yu, J. G.; Fan, J. J. Chin. J. Catal. 2021, 42 (1), 56. doi: 10.1016/S1872-2067(20)63634-8  doi: 10.1016/S1872-2067(20)63634-8

    23. [23]

      Wei, J. X.; Chen, Y. W.; Zhang, H. Y.; Zhuang, Z. Y.; Yu, Y. Chin. J. Catal. 2021, 42 (1), 78. doi: 10.1016/S1872-2067(20)63661-0  doi: 10.1016/S1872-2067(20)63661-0

    24. [24]

      Peng, J. J.; Shen, J.; Yu, X. H.; Tang, H.; Zulfiqar; Liu, Q. Q. Chin. J. Catal. 2021, 42 (1), 87. doi: 10.1016/S1872-2067(20)63595-1  doi: 10.1016/S1872-2067(20)63595-1

    25. [25]

      Wang, Z. L.; Chen, Y. F.; Zhang, L. Y.; Cheng, B.; Yu, J. G.; Fan, J. J. J. Mater. Sci. Technol. 2020, 56, 143. doi: 10.1016/j.jmst.2020.02.062  doi: 10.1016/j.jmst.2020.02.062

    26. [26]

      Li, Z. F.; Wu, Z. H.; He, R. A.; Wan, L.; Zhang, S. Y. J. Mater. Sci. Technol. 2020, 56, 151. doi: 10.1016/j.jmst.2020.02.061  doi: 10.1016/j.jmst.2020.02.061

    27. [27]

      Wang, Y. Y.; Wang, K.; Wang, J. L.; Wu, X. Y.; Zhang, G. K. J. Mater. Sci. Technol. 2020, 56, 236. doi: 10.1016/j.jmst.2020.03.039  doi: 10.1016/j.jmst.2020.03.039

    28. [28]

      Liu, H.; Yu, D.Q.; Sun, T. B.; Du, H. Y.; Jiang, W. T.; Yaseen, M.; Huang, L. Appl. Surf. Sci. 2019, 473, 855. doi: 10.1016/j.apsusc.2018.12.162  doi: 10.1016/j.apsusc.2018.12.162

    29. [29]

      Nasr, M.; Eid, C.; Habchi, R.; Miele, P.; Bechelany, M. ChemSusChem 2018, 11 (18), 3023. doi: 10.1002/cssc.201800874  doi: 10.1002/cssc.201800874

    30. [30]

      Chen, W.; Liu, T. Y.; Huang, T.; Liu, X. H.; Yang, X. J. Nanoscale 2016, 8 (6), 3711. doi: 10.1039/c5nr07695a  doi: 10.1039/c5nr07695a

    31. [31]

      Xia, Y.; Li, Q.; Lv, K. L.; Li, M. Appl. Surf. Sci. 2017, 398, 81. doi: 10.1016/j.apsusc.2016.12.006  doi: 10.1016/j.apsusc.2016.12.006

    32. [32]

      Wei, N.; Wu, Y. H.; Wang, M. L.; Sun, W. X.; Li, Z. K.; Ding, L.; Cui, H. Z. Nanotechnology 2018, 30 (4), 045701. doi: 10.1088/1361-6528/aaecc6  doi: 10.1088/1361-6528/aaecc6

    33. [33]

      Zhu, Y. J.; Chen, F. Chem. Rev. 2014, 114 (12), 6462. doi: 10.1021/cr400366s  doi: 10.1021/cr400366s

    34. [34]

      Lin, B.; Li, H.; An, H.; Hao, W. B.; Wei, J. J.; Dai, Y. Z.; Ma, C. S.; Yang, G. D. Appl. Catal. B-Environ. 2018, 220, 542. doi: 10.1016/j.apcatb.2017.08.071  doi: 10.1016/j.apcatb.2017.08.071

    35. [35]

      Sing, K. S. Pure Appl. Chem. 1985, 57 (4), 603. doi: 10.1351/pac198254112201  doi: 10.1351/pac198254112201

    36. [36]

      Wang, J.; Wang, G. H.; Wang, X.; Su, Y. R.; Tang, H. Carbon 2019, 149, 618. doi: 10.1016/j.carbon.2019.04.088  doi: 10.1016/j.carbon.2019.04.088

    37. [37]

      Zhou, X. J.; Shao, C. L.; Li, X. H.; Wang, X. X.; Guo, X. H.; Liu, Y. C. J. Hazard. Mater. 2018, 344, 113. doi: 10.1016/j.jhazmat.2017.10.006  doi: 10.1016/j.jhazmat.2017.10.006

    38. [38]

      Cao, S. W.; Shen, B. J.; Tong, T.; Fu, J. W.; Yu, J. G. Adv. Funct. Mater. 2018, 28 (21), 1800136. doi: 10.1002/adfm.201800136  doi: 10.1002/adfm.201800136

    39. [39]

      Liu, J. J. J. Phys. Chem. C 2015, 119 (51), 28417. doi: 10.1021/acs.jpcc.5b09092  doi: 10.1021/acs.jpcc.5b09092

    40. [40]

      Gao, D. D.; Yuan, R. R.; Fan, J. J.; Hong, X. K.; Yu, H. G. J. Mater. Sci. Technol. 2020, 56, 122. doi: 10.1016/j.jmst.2020.02.031  doi: 10.1016/j.jmst.2020.02.031

    41. [41]

      He, R. G.; Liu, H. J.; Liu, H. M.; Xu, D. F.; Zhang, L. Y. J. Mater. Sci. Technol. 2020, 52, 145. doi: 10.1016/j.jmst.2020.03.027  doi: 10.1016/j.jmst.2020.03.027

    42. [42]

      Xu, F. Y.; Zhang, J. J.; Zhu, B. C.; Yu, J. G.; Xu, J. S. Appl. Catal. B-Environ. 2018, 230, 194. doi: 10.1016/j.apcatb.2018.02.042  doi: 10.1016/j.apcatb.2018.02.042

    43. [43]

      Xu, Q. L.; Zhang, L. Y.; Yu, J. G.; Wageh, S.; Al-Ghamdi, A. A.; Jaroniec, M. Mater. Today 2018, 21 (10), 1042. doi: 10.1016/j.mattod.2018.04.008  doi: 10.1016/j.mattod.2018.04.008

    44. [44]

      Xia, Y.; Tian, Z. H.; Heil, T.; Meng, A. Y.; Cheng, B.; Cao, S. W.; Yu, J. G.; Antonietti, M. Joule 2019, 3 (11), 2792. doi: 10.1016/j.joule.2019.08.011  doi: 10.1016/j.joule.2019.08.011

    45. [45]

      Ge, H. N.; Xu, F. Y.; Cheng, B.; Yu, J. G.; Ho, W. K. ChemCatChem 2019, 11 (24), 6301. doi: 10.1002/cctc.201901486  doi: 10.1002/cctc.201901486

    46. [46]

      Zhang, T.; Low, J. X.; Yu, J. G.; Tyryshkin, A. M.; Mikmekova, E.; Asefa, T. Angew. Chem. Int. Ed. 2020, 59 (35), 15000. doi: 10.1002/anie.202005143  doi: 10.1002/anie.202005143

    47. [47]

      Xu, F. Y.; Meng, K.; Cheng, B.; Wang, S. Y.; Xu, J. S.; Yu, J. G. Nat. Commun. 2020, 11, 4613. doi: 10.1038/s41467-020-18350-7  doi: 10.1038/s41467-020-18350-7

    48. [48]

      Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. Chem 2020, 6 (7), 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

  • 加载中
    1. [1]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    2. [2]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    3. [3]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    4. [4]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    6. [6]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    8. [8]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    9. [9]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    10. [10]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    11. [11]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    12. [12]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    13. [13]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    14. [14]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    15. [15]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    16. [16]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    17. [17]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    18. [18]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    19. [19]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    20. [20]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(47)
  • Abstract views(2210)
  • HTML views(520)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return