Citation: Guoguang Xu, Qi Wang, Yi Su, Meinan Liu, Qingwen Li, Yuegang Zhang. Revealing Electrochemical Sodiation Mechanism of Orthogonal-Nb2O5 Nanosheets by In Situ Transmission Electron Microscopy[J]. Acta Physico-Chimica Sinica, ;2022, 38(8): 200907. doi: 10.3866/PKU.WHXB202009073 shu

Revealing Electrochemical Sodiation Mechanism of Orthogonal-Nb2O5 Nanosheets by In Situ Transmission Electron Microscopy

  • Corresponding author: Yuegang Zhang, yuegang.zhang@tsinghua.edu.cn
  • Received Date: 22 September 2020
    Revised Date: 22 October 2020
    Accepted Date: 26 October 2020
    Available Online: 2 November 2020

    Fund Project: the National Key R & D Program of China 2016YFB0100100the National Natural Science Foundation of China U1832218the National Natural Science Foundation of China 21433013

  • With the development of clean energy sources such as solar and wind power, large-scale energy storage technologies will play a significant role in the rational utilization of clean energy. Sodium ion batteries have garnered considerable attention for large-scale energy storage owing to their low cost and the presence of abundant sodium resources. It is particularly crucial to develop electrode materials for sodium battery with good rate capability and long cycle life. Orthogonal-phase niobium oxide (T-Nb2O5) exhibits good potential to be used as anode material for sodium-ion batteries owing to its high theoretical specific capacity (200 mAh·g−1) and high ionic diffusion coefficient. Furthermore, it demonstrates a better performance than that of graphite and exhibits a higher specific capacity than that of Li4TiO4 when used in sodium-ion batteries. However, its poor electrical conductivity has hindered its practical application. Recently, effective strategies such as coating with carbon materials or metal conductive particles have been developed to overcome this issue. Although the electrochemical performance of T-Nb2O5 has been improved, the sodiation mechanism of T-Nb2O5 is still unclear. It is considered to be similar to the lithium mechanism wherein lithium ions diffuse rapidly on the (001) planes, but exhibit difficulty in diffusing across the (001) planes. In this study, the electrochemical sodiation behaviors along the (001) lattice planes and the [001] direction of the T-Nb2O5 nanosheet are studied by in situ transmission electron microscopy (TEM). The results indicate that there are a large number of dislocations and domain boundaries in nanocrystals. Furthermore, it was observed that, sodium ions can diffuse across the (001) lattice planes through these defects, and then diffuse rapidly on the (001) planes. Meanwhile, we found a modulation structure in the [001] direction of the original nanosheet, in which alternating compressive and tensile strains were observed. These strain distributions can be regulated by the insertion of sodium ions, while the modulation structure is maintained. Moreover, the in situ TEM method used in this work can be applied to various energy materials.
  • 加载中
    1. [1]

      Sivaram, V.; Dabiri, J. O.; Hart, D. M. Joule 2018, 2, 1639. doi: 10.1016/j.joule.2018.07.025  doi: 10.1016/j.joule.2018.07.025

    2. [2]

      Bullich-Massagué, E.; Cifuentes-García, F. J.; Glenny-Crende, I.; Cheah-Mañé, M.; Aragüés-Peñalba, M.; Díaz-González, F.; Gomis-Bellmunt, O. Appl. Energy 2020, 274, 115213. doi: 10.1016/j.apenergy.2020.115213  doi: 10.1016/j.apenergy.2020.115213

    3. [3]

      Li, H.; Wu, C.; Wu, F.; Bai, Y. Acta Chim. Sin. 2014, 72, 21  doi: 10.6023/a13080830

    4. [4]

      Hirsh, H. S.; Li, Y.; Tan, D. H. S.; Zhang, M.; Zhao, E.; Meng, Y. S. Adv. Energy Mater. 2020, 10, 2001274. doi: 10.1002/aenm.202001274  doi: 10.1002/aenm.202001274

    5. [5]

      Xiang, X.; Lu, Y.; Chen, J. Acta Chim. Sin. 2017, 75, 154  doi: 10.6023/a16060275

    6. [6]

      Cao, B.; Li, X. F. Acta Phys. -Chim. Sin. 2020, 36, 1905003  doi: 10.3866/PKU.WHXB201905003

    7. [7]

      Song, W. X.; Hou, H. S.; Ji, X. B. Acta Phy. -Chim. Sin. 2017, 33, 103  doi: 10.3866/pku.whxb201608303

    8. [8]

      Wang, Y.; Yu, X.; Xu, S.; Bai, J.; Xiao, R.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L.; Huang, X. Nat. Commun. 2013, 4, 2365. doi: 10.1038/ncomms3365  doi: 10.1038/ncomms3365

    9. [9]

      Ding, H.; Song, Z.; Zhang, H.; Zhang, H.; Li, X. Mater. Today Nano 2020, 11, 100082. doi: 10.1016/j.mtnano.2020.100082  doi: 10.1016/j.mtnano.2020.100082

    10. [10]

      Deng, Q.; Fu, Y.; Zhu, C.; Yu, Y. Small 2019, 15, e1804884. doi: 10.1002/smll.201804884  doi: 10.1002/smll.201804884

    11. [11]

      Yang, H.; Xu, R.; Gong, Y.; Yao, Y.; Gu, L.; Yu, Y. Nano Energy 2018, 48, 448. doi: 10.1016/j.nanoen.2018.04.006  doi: 10.1016/j.nanoen.2018.04.006

    12. [12]

      Chen, D.; Wang, J. H.; Chou, T. F.; Zhao, B.; El-Sayed, M. A.; Liu, M. J. Am. Chem. Soc. 2017, 139, 7071. doi: 10.1021/jacs.7b03141  doi: 10.1021/jacs.7b03141

    13. [13]

      Kumagai, N.; Koishikawa, Y.; Komaba, S.; Koshibab, N. J. Electrochem. Soc. 1999, 156, 3203. doi: 10.1149/1.1392455  doi: 10.1149/1.1392455

    14. [14]

      Lubimtsev, A. A.; Kent, P. R. C.; Sumpter, B. G.; Ganesh, P. J. Mater. Chem. A 2013, 1, 14951. doi: 10.1039/c3ta13316h  doi: 10.1039/c3ta13316h

    15. [15]

      Meng, J.; He, Q.; Xu, L.; Zhang, X.; Liu, F.; Wang, X.; Li, Q.; Xu, X.; Zhang, G.; Niu, C.; et al. Adv. Energy Mater. 2019, 9, 1802695. doi: 10.1002/aenm.201802695  doi: 10.1002/aenm.201802695

    16. [16]

      Come, J.; Augustyn, V.; Kim, J. W.; Rozier, P.; Taberna, P. L.; Gogotsi, P.; Long, J. W.; Dunn, B.; Simon, P. J. Electrochem. Soc. 2014, 161, A718. doi: 10.1149/2.040405jes  doi: 10.1149/2.040405jes

    17. [17]

      Kim, H.; Lim, E.; Jo, C.; Yoon, G.; Hwang, J.; Jeong, S.; Lee, J.; Kang, K. Nano Energy 2015, 16, 62. doi: 10.1016/j.nanoen.2015.05.015  doi: 10.1016/j.nanoen.2015.05.015

    18. [18]

      Li, H.; Zhu, Y.; Dong, S.; Shen, L.; Chen, Z.; Zhang, X.; Yu, G. Chem. Mater. 2016, 28, 5753. doi: 10.1021/acs.chemmater.6b01988  doi: 10.1021/acs.chemmater.6b01988

    19. [19]

      Han, X.; Russo, P. A.; Goubard-Bretesché, N.; Patanè, S.; Santangelo, S.; Zhang, R.; Pinna, N. Adv. Energy Mater. 2019, 9, 1902813. doi: 10.1002/aenm.201902813  doi: 10.1002/aenm.201902813

    20. [20]

      Han, X.; Russo, P. A.; Triolo, C.; Santangelo, S.; Goubard-Bretesché, N.; Pinna, N. ChemElectroChem 2020, 7, 1689. doi: 10.1002/celc.202000181  doi: 10.1002/celc.202000181

    21. [21]

      Yan, L.; Chen, G.; Sarker, S.; Richins, S.; Wang, H.; Xu, W.; Rui, X.; Luo, H. ACS Appl. Mater. Inter. 2016, 8, 22213. doi: 10.1021/acsami.6b06516  doi: 10.1021/acsami.6b06516

    22. [22]

      Wang, L.; Bi, X.; Yang, S. Adv. Mater. 2016, 28, 7672. doi: 10.1002/adma.201601723  doi: 10.1002/adma.201601723

    23. [23]

      Hÿtcha, M. J.; Snoeckb, E.; Kilaasc, R. Ultramicroscopy 1998, 74, 131. doi: 10.1016/S0304-3991(98)00035-7  doi: 10.1016/S0304-3991(98)00035-7

    24. [24]

      Liu, Z.; Dong, W.; Wang, J.; Dong, C.; Lin, Y.; Chen, I. W.; Huang, F. iScience 2020, 23, 100767. doi: 10.1016/j.isci.2019.100767  doi: 10.1016/j.isci.2019.100767

    25. [25]

      Daniels, P.; Tamazyan, R.; Kuntscher, C. A.; Dressel, M.; Lichtenbergc, F.; Smaalen, S. V. Acta Cryst. 2002, B58, 970. doi: 10.1107/s010876810201741x  doi: 10.1107/s010876810201741x

    26. [26]

      Kruk, I.; Zajdel, P.; van Beek, W.; Bakaimi, I.; Lappas, A.; Stock, C.; Green, M. A. J. Am. Chem. Soc. 2011, 133, 13950. doi: 10.1021/ja109707q  doi: 10.1021/ja109707q

    27. [27]

      Kodama, R.; Terada, Y.; Nakai, I.; Komaba, S.; Kumagai, N. J. Electrochem. Soc. 2006, 153, A583. doi: 10.1149/1.2163788  doi: 10.1149/1.2163788

    28. [28]

      Xu, G.; Zhang, X.; Liu, M.; Li, H.; Zhao, M.; Li, Q.; Zhang, J.; Zhang, Y. Small 2020, 16, 1906499. doi: 10.1002/smll.201906499  doi: 10.1002/smll.201906499

    29. [29]

      Benedek, P.; Forslund, O. K.; Nocerino, E.; Yazdani, N.; Matsubara, N.; Sassa, Y.; Juranyi, F.; Medarde, M.; Telling, M.; Mansson, M.; et al. ACS Appl. Mater. Inter. 2020, 12, 16243. doi: 10.1021/acsami.9b21470  doi: 10.1021/acsami.9b21470

    30. [30]

      Zhang, W.; Yu, H. C.; Wu, L.; Liu, H.; Abdellah, A.; Qiu, B.; Bai, J.; Orvananos, B.; Strobridge, F. C.; Zhou, X.; et al. Sci. Adv. 2018, 4, eaao2608. doi: 10.1126/sciadv.aao2608  doi: 10.1126/sciadv.aao2608

    31. [31]

      Zhang, N.; Zhu, Y.; Li, D.; Pan, D.; Tang, Y.; Han, M.; Ma, J.; Wu, B.; Zhang, Z.; Ma, X. ACS Appl. Mater. Inter. 2018, 10, 38230. doi: 10.1021/acsami.8b13674  doi: 10.1021/acsami.8b13674

    32. [32]

      Wang, L.; Xu, Z.; Wang, W.; Bai, X. J. Am. Chem. Soc. 2014, 136, 6693. doi: 10.1021/ja501686w  doi: 10.1021/ja501686w

    33. [33]

      Navickas, E.; Chen, Y.; Lu, Q.; Wallisch, W.; Huber, T. M.; Bernardi, J.; Stoger-Pollach, M.; Friedbacher, G.; Hutter, H.; Yildiz, B.; Fleig, J. ACS Nano 2017, 11, 11475. doi: 10.1021/acsnano.7b06228  doi: 10.1021/acsnano.7b06228

    34. [34]

      Yang, S.; Yan, B.; Lu, L.; Zeng, K. RSC Adv. 2016, 6, 94000. doi: 10.1039/c6ra17681j  doi: 10.1039/c6ra17681j

  • 加载中
    1. [1]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    2. [2]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    3. [3]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    4. [4]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    5. [5]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    6. [6]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    7. [7]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    8. [8]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    9. [9]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    10. [10]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    11. [11]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    12. [12]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    13. [13]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    14. [14]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    16. [16]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    17. [17]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    18. [18]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    19. [19]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    20. [20]

      Runzi CaoHeng ShaoXinjie WangJian WangEnxiang ShangYang Li . Photocatalytic production of high-value-added fuels from biodegradable PBAT by Nb2O5/GCN heterojunction catalyst: Performance and mechanism. Chinese Chemical Letters, 2025, 36(7): 111029-. doi: 10.1016/j.cclet.2025.111029

Metrics
  • PDF Downloads(21)
  • Abstract views(1130)
  • HTML views(244)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return