Selective Exposure of BiOI Oxygen-Rich {110} Facet Induced by BN Nanosheets for Enhanced Photocatalytic Oxidation Performance
- Corresponding author: Zhou Ying, yzhou@swpu.edu.cn †These authors contributed equally to this work.
Citation:
Zheng Qian, Cao Yuehan, Huang Nanjian, Zhang Ruiyang, Zhou Ying. Selective Exposure of BiOI Oxygen-Rich {110} Facet Induced by BN Nanosheets for Enhanced Photocatalytic Oxidation Performance[J]. Acta Physico-Chimica Sinica,
;2021, 37(8): 200906.
doi:
10.3866/PKU.WHXB202009063
Huang, H. W.; Xiao, K.; He, Y.; Zhang, T. R.; Dong, F.; Du, X.; Zhang, Y. H. Appl. Catal. B 2016, 199, 75. doi: 10.1016/j.apcatb.2016.06.020
doi: 10.1016/j.apcatb.2016.06.020
He, R. G.; Cheng, K. Y.; Wei, Z. Y.; Zhang, S. Y.; Xu, D. F. Appl. Surf. Sci. 2019, 465, 964. doi: 10.1016/j.apsusc.2018.09.217
doi: 10.1016/j.apsusc.2018.09.217
Luo, S. Q.; Chen, J. W.; Huang, Z. H.; Liu, C.; Fang, M. H. ChemCatChem 2016, 8, 3780. doi: 10.1002/cctc.201601047
doi: 10.1002/cctc.201601047
Wang, Y. G.; Yang, X. F.; Li, J. Chin. J. Catal. 2016, 37, 193. doi: 10.1016/S1872-2067(15)60969-X
doi: 10.1016/S1872-2067(15)60969-X
Yang, Z. X.; Fu, Z. M.; Zhang, Y. N.; Wu, R. Q. Catal. Lett. 2010, 141, 78. doi: 10.1007/s10562-010-0446-5
doi: 10.1007/s10562-010-0446-5
Wei, Z. X.; Ding, B.; Dou, H.; Gascon, J.; Kong, X. J.; Xiong, Y. J.; Cai, B.; Zhang, R. Y.; Zhou, Y.; Long, M. C.; et al. Chin. Chem. Lett. 2019, 30, 2110. doi: 10.1016/j.cclet.2019.11.022
doi: 10.1016/j.cclet.2019.11.022
Zhu, G. M.; Qu, Z. B.; Zhuang, G. L.; Xie, Q.; Meng, Q. Q.; Wang, J. G. J. Phys. Chem. C 2011, 115, 14806. doi: 10.1021/jp2026175
doi: 10.1021/jp2026175
Yang, Y.; Banerjee, G.; Brudvig, G. W.; Kim, J. H.; Pignatello, J. J. Environ. Sci. Technol. 2018, 52, 5911. doi: 10.1021/acs.est.8b00735
doi: 10.1021/acs.est.8b00735
Huang, Y.; Zhu, D. D.; Zhang, Q.; Zhang, Y. F.; Cao, J. J.; Shen, Z. X.; Ho, W. K.; Lee, S. C. Appl. Catal. B 2018, 234, 70. doi: 10.1016/j.apcatb.2018.04.039
doi: 10.1016/j.apcatb.2018.04.039
Rasmussen, M. D.; Molina, L. M.; Hammer, B. J. Chem. Phys. 2004, 120, 988. doi: 10.1063/1.1631922
doi: 10.1063/1.1631922
Wang, S. G.; Temel, B.; Shen, J.; Jones, G.; Grabow, C. L.; Studt, F.; Bligaard, T.; Abild-Pedersen, F.; Christensen, C. H.; Norskov, J. K. Catal. Lett. 2011, 141, 370. doi; 10.1007/s10562-010-0477-y
Bai, S.; Wang, L. L.; Li, Z. Q.; Xiong, Y. J. Adv. Sci. 2016, 4, 1600216. doi: 10.1002/advs.201600216
doi: 10.1002/advs.201600216
Ye, L. Q.; Jin, X. L.; Ji, X. X.; Liu, C.; Su, Y. R.; Xie, H. Q.; Liu, C. Chem. Eng. J. 2016, 291, 39. doi: 10.1016/j.cej.2016.01.032
doi: 10.1016/j.cej.2016.01.032
Liu, G.; Yu, J. C.; Lu, G. Q.; Cheng, H. M. Chem. Commun. 2011, 47, 6763. doi: 10.1039/c1cc10665a
doi: 10.1039/c1cc10665a
Lykaki, M.; Stefa, S.; Carabineiro, S. A. C.; Pandis, P. K.; Stathopoulos, V. N.; Konsolakis, M. Catalysts 2019, 9, 371. doi: 10.3390/catal9040371
doi: 10.3390/catal9040371
Yang, J.; Xie, T. P.; Zhu, Q. X.; Wang, J. K.; Xu, L. J.; Liu, C. L. J. Mater. Chem. C 2020, 8, 2579. doi: 10.1039/c9tc05752h
doi: 10.1039/c9tc05752h
Bai, Y.; Shi, X.; Wang, P. Q.; Wang, L.; Zhang, K.; Zhou, Y.; Xie, H. Q.; Wang, J. N.; Ye, L. Q. Chem. Eng. J. 2019, 356, 34. doi: /10.1016/j.cej.2018.09.006
Nie, L.; Mei, D.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; Delariva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L.; et al. Science 2017, 358, 1419. doi: 10.1126/science.aao2109
doi: 10.1126/science.aao2109
Jin, Y. K.; Sun, G. H.; Xiong, F.; Ding, L. B.; Huang, W. X. J. Phys. Chem. C 2016, 120, 9845. doi: 10.1021/acs.jpcc.6b02256
doi: 10.1021/acs.jpcc.6b02256
Cheng, W. M.; Xia, W. S.; Wan, H. L. Chem. J. Chin. Univ. 2019, 40 (5), 940.
doi: 10.7503/cjcu20190063
Dong, F.; Xiong, T.; Sun, Y. J.; Zhang, Y. X.; Zhou, Y. Chem. Commun. 2015, 51, 8249. doi: 10.1039/c5cc01993a
doi: 10.1039/c5cc01993a
Sun, X. M.; Wu, J.; Liu, Q. Z; Tian, F. G. Appl. Surf. Sci. 2018, 455, 864. doi: 10.1016/j.apsusc.2018.06.049
doi: 10.1016/j.apsusc.2018.06.049
Fan, Z.; Zhao, Y. B.; Zhai, W.; Qiu, L.; Li, H.; Hoffmann, M. R. RSC Adv. 2016, 6, 2028. doi: 10.1039/C5RA18768K
doi: 10.1039/C5RA18768K
Peng, Y.; Xu, J.; Liu, T.; Mao, Y. G. CrystEngComm 2017, 19, 6473. doi: 10.1039/c7ce01452j
doi: 10.1039/c7ce01452j
Bai, J. W.; Sun, J. Y.; Zhu, X. H.; Liu, J. D.; Zhang, H. J.; Yin, X. B.; Liu, L. Small 2020, 16 (5), 1904783. doi: 10.1002/smll.201904783
doi: 10.1002/smll.201904783
Zheng, Q.; Cao, Y. H.; Huang, N. J.; Dong, F.; Zhou, Y. J. Inorg. Mater. 2020, 35, 1255.
doi: 10.15541/jim20200024
Hou, H. L.; Zeng, X. K.; Zhang, X. W. Sci. Chin. Mater. 2020, doi: 10.1007/s40843-019-1256-0
doi: 10.1007/s40843-019-1256-0
Wang, Z. Y.; Huang, Y.; Chen, L.; Chen, M. J.; Cao, J. J.; Ho, W. K.; Lee, S. C. J. Mater. Chem. A 2018, 6, 972. doi: 10.1039/C7TA09132J
doi: 10.1039/C7TA09132J
Li, J.; Zhang, L. Z.; Li, Y. J.; Yu, Y. Nanoscale 2014, 6, 167. doi: 10.1039/c3nr05246j
doi: 10.1039/c3nr05246j
Yang, X. Q.; Yang, H. L.; Lu, H.; Ding, H. X.; Tong, Y. X.; Rao, F.; Zhang, X.; Shen, Q.; Gao, J. Z.; Zhu, G. Q. Acta Phys. -Chim. Sin. 2021, 37, 2005008.
doi: 10.3866/PKU.WHXB202005008
Tian, N.; Huang, H. W.; Wang, S. B.; Zhang, T. R.; Du, X.; Zhang, Y. H. Appl. Catal. B 2020, 267, 118697. doi: 10.1016/j.apcatb.2020.118697
doi: 10.1016/j.apcatb.2020.118697
Pan, M. L.; Zhang, H. J.; Gao, G. D.; Liu, L.; Chen, W. Environ. Sci. Technol. 2015, 49, 6240. doi: 10.1021/acs.est.5b00626
doi: 10.1021/acs.est.5b00626
Liu, D.; Jiang, Z. F.; Zhu, C. Z.; Qian, K.; Wu, Z. Y.; Xie, J. M. Dalton Trans. 2016, 45, 2505. doi: 10.1039/c5dt03408f
doi: 10.1039/c5dt03408f
Ji, M. X.; Xia, J. X.; Di, J.; Liu, Y. L.; Chen, R.; Chen, Z. G.; Yin, S.; Li, H. M. Chem. Eng. J. 2018, 331, 355 doi: 10.1016/j.cej.2017.08.100
doi: 10.1016/j.cej.2017.08.100
He, W. H.; Wang, Y. W.; Fan, C. M.; Wang, Y. F.; Zhang, X. C.; Liu, J. X.; Li, R. RSC Adv. 2019, 9, 14286. doi: 10.1039/c9ra01639b
doi: 10.1039/c9ra01639b
Huang, H.; Xiao, K.; Du, X.; Zhang, Y. ACS Sustainable Chem. Eng. 2017, 5, 5253. doi: 10.1021/acssuschemeng.7b00599
doi: 10.1021/acssuschemeng.7b00599
Cao, Y. H.; Zhang, R. Y.; Zheng, Q.; Cui, W.; Liu, Y.; Zheng, K. B.; Dong, F.; Zhou, Y. ACS Appl. Mater. Interfaces 2020, 12, 34432. doi: 10.1021/acsami.0c09216
doi: 10.1021/acsami.0c09216
Zhang, W. D.; Dong, F.; Xiong, T.; Zhang, Q. Ceram. Int. 2014, 40, 9003. doi: 10.1016/j.ceramint.2014.01.112
doi: 10.1016/j.ceramint.2014.01.112
Segall, M. D.; Lindan, P. J. D.; Probert, M. I. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys.: Condens Matter 2002, 14, 2717. doi: 10.1088/0953-8984/14/11/301
doi: 10.1088/0953-8984/14/11/301
Shan, L. W.; Bi, J. J.; Liu, Y. T. J. Nanopart. Res. 2018, 20, 170. doi: 10.1007/s11051-018-4272-9
doi: 10.1007/s11051-018-4272-9
Wu, X. L.; Ng, Y. H.; Wang, L.; Du, Y.; Dou, S. X.; Amal, R.; Scott, J. J. Mater. Chem. A 2017, 5, 8117. doi: 10.1039/c6ta10964k
doi: 10.1039/c6ta10964k
Li, M.; Zhang, Y. H.; Li, X. W.; Yu, S. X.; Du, X.; Guo, Y. X.; Huang, H. W. J. Colloid Interface Sci. 2017, 508, 174. doi: 10.1016/j.jcis.2017.08.042
doi: 10.1016/j.jcis.2017.08.042
Li, W. B.; Liu, Y. L.; Di, J.; Ji, M. X.; Xia, J. X.; Li, H. M. Phys. Status Solidi A 2018, 215 (18), 1800146. doi: 10.1002/pssa.201800146
doi: 10.1002/pssa.201800146
Zhang, X.; Zhang, L. Z.; Xie, T. F.; Wang, D. J. J. Phys. Chem. C 2009, 113, 7371. doi: 10.1021/jp900812d
doi: 10.1021/jp900812d
Cao, Y. H.; Zhang, R. Y.; Zhou, T. L.; Jin, S. M.; Huang, J. D.; Ye, L. Q.; Huang, Z. A.; Wang, F.; Zhou, Y. ACS Appl. Mater. Interfaces 2020, 12, 9935. doi: 10.1021/acsami.9b21157
doi: 10.1021/acsami.9b21157
Xiang, Q. J.; Lang, D.; Shen, T. T.; Liu, F. Appl. Catal. B 2015, 162, 196. doi: 10.1016/j.apcatb.2014.06.051
doi: 10.1016/j.apcatb.2014.06.051
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345
Chupeng Luo , Keying Su , Shan Yang , Yujia Liang , Yawen Tang , Xiaoyu Qiu . Ultrathin NiS2 nanocages with hierarchical-flexible walls and rich grain boundaries for efficient oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(5): 109940-. doi: 10.1016/j.cclet.2024.109940
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Wenhao Yan , Shuaiya Xue , Xuerui Zhao , Wei Zhang , Jian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
Shenghui Tu , Anru Liu , Hongxiang Zhang , Lu Sun , Minghui Luo , Shan Huang , Ting Huang , Honggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
Jincheng Zhang , Mengjie Sun , Jiali Ren , Rui Zhang , Min Ma , Qingzhong Xue , Jian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Ruru Li , Qian Liu , Hui Li , Fengbin Sun , Zhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210