Citation: Zheng Qian, Cao Yuehan, Huang Nanjian, Zhang Ruiyang, Zhou Ying. Selective Exposure of BiOI Oxygen-Rich {110} Facet Induced by BN Nanosheets for Enhanced Photocatalytic Oxidation Performance[J]. Acta Physico-Chimica Sinica, ;2021, 37(8): 200906. doi: 10.3866/PKU.WHXB202009063 shu

Selective Exposure of BiOI Oxygen-Rich {110} Facet Induced by BN Nanosheets for Enhanced Photocatalytic Oxidation Performance

  • Corresponding author: Zhou Ying, yzhou@swpu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 21 September 2020
    Revised Date: 22 October 2020
    Accepted Date: 23 October 2020
    Available Online: 2 November 2020

    Fund Project: This project was supported by the National Natural Science Foundation of China (U1862111); Sichuan Science and Technology Program, China (2020ZDZX0008); International Collaboration Project of Chengdu City, China (2017-GH02-00014-HZ); College Students' Extracur-Ricular Open Experiment Project of SWPU, China (KSZ19516)Sichuan Science and Technology Program, China 2020ZDZX0008the National Natural Science Foundation of China U1862111International Collaboration Project of Chengdu City, China 2017-GH02-00014-HZCollege Students' Extracur-Ricular Open Experiment Project of SWPU, China KSZ19516

  • Photocatalytic oxidation is a promising technology for governing emission of environmental pollutants and managing energy crisis. Typically, the photocatalytic performance of photocatalysts is highly dependent on the type of exposed crystal surfaces. As a semiconductor oxide photocatalyst, the different exposed crystal surfaces of bismuth oxyiodide (BiOI) exhibit different photocatalytic oxidation performances. In this study, we chose BiOI as the model material and provided a novel method to improve the photocatalytic oxidation performance by regulating the main exposed crystal facets. Using boron nitride (BN) nanosheets as the templates, two-dimensional/two-dimensional (2D/2D) BiOI/BN nanocompounds were fabricated via an in situ growth method. Owing to the electrostatic interaction, the positively charged BiOI {001} facets prefer to contact the negatively charged BN {001} facet, thus inducing the exposure of BiOI {110} facets. This was identified via X-ray diffraction and transmission electron microscopy analyses. Compared with BiOI {001} facets, there were more lattice oxygen atoms in the BiOI {110} facets. Thus, the exposure of BiOI {110} facets would promote more surface lattice oxygen atoms exposed on the surface of BiOI, which was confirmed by X-ray photoelectron spectroscopy and density functional theory calculations. To evaluate the photocatalytic oxidation performance of BiOI/BN, the photocatalytic NO oxidation reaction was tested under visible light irradiation (λ > 420 nm). Among all the nanocompounds, the BiOI/BN-1.0:1.4 nanocompound exhibited the best NO oxidation ratio of 44.2%, which was almost 30 times higher than that of pristine BiOI (1.4%). The enhanced photocatalytic activity could be attributed to the following two aspects. One, the successful combination of BN effectively promoted the separation of photogenerated carriers, which was identified by steady-state and time-resolved fluorescence spectra, transient photocurrent responses, and electrochemical impedance spectra. Two, benefiting from the introduction of BN nanosheets, BiOI tends to mainly expose the oxygen-rich {110} facets. As a result, the content of O on the BiOI surface increased from 38.3% to 46.6%. Thus, NO preferred to adsorb on the {110} facets of BiOI nanosheets, which was confirmed by theoretical and experimental results. More importantly, the adsorbed NO spontaneously combined with the lattice oxygen atom of the BiOI (110) surface to form nitrogen dioxide (NO2). These findings can provide a novel strategy to tune exposed oxygen-rich facets by constructing 2D/2D photocatalysts for ensuring efficient photocatalytic oxidation performance.
  • 加载中
    1. [1]

      Huang, H. W.; Xiao, K.; He, Y.; Zhang, T. R.; Dong, F.; Du, X.; Zhang, Y. H. Appl. Catal. B 2016, 199, 75. doi: 10.1016/j.apcatb.2016.06.020  doi: 10.1016/j.apcatb.2016.06.020

    2. [2]

      He, R. G.; Cheng, K. Y.; Wei, Z. Y.; Zhang, S. Y.; Xu, D. F. Appl. Surf. Sci. 2019, 465, 964. doi: 10.1016/j.apsusc.2018.09.217  doi: 10.1016/j.apsusc.2018.09.217

    3. [3]

      Luo, S. Q.; Chen, J. W.; Huang, Z. H.; Liu, C.; Fang, M. H. ChemCatChem 2016, 8, 3780. doi: 10.1002/cctc.201601047  doi: 10.1002/cctc.201601047

    4. [4]

      Wang, Y. G.; Yang, X. F.; Li, J. Chin. J. Catal. 2016, 37, 193. doi: 10.1016/S1872-2067(15)60969-X  doi: 10.1016/S1872-2067(15)60969-X

    5. [5]

      Yang, Z. X.; Fu, Z. M.; Zhang, Y. N.; Wu, R. Q. Catal. Lett. 2010, 141, 78. doi: 10.1007/s10562-010-0446-5  doi: 10.1007/s10562-010-0446-5

    6. [6]

      Wei, Z. X.; Ding, B.; Dou, H.; Gascon, J.; Kong, X. J.; Xiong, Y. J.; Cai, B.; Zhang, R. Y.; Zhou, Y.; Long, M. C.; et al. Chin. Chem. Lett. 2019, 30, 2110. doi: 10.1016/j.cclet.2019.11.022  doi: 10.1016/j.cclet.2019.11.022

    7. [7]

      Zhu, G. M.; Qu, Z. B.; Zhuang, G. L.; Xie, Q.; Meng, Q. Q.; Wang, J. G. J. Phys. Chem. C 2011, 115, 14806. doi: 10.1021/jp2026175  doi: 10.1021/jp2026175

    8. [8]

      Yang, Y.; Banerjee, G.; Brudvig, G. W.; Kim, J. H.; Pignatello, J. J. Environ. Sci. Technol. 2018, 52, 5911. doi: 10.1021/acs.est.8b00735  doi: 10.1021/acs.est.8b00735

    9. [9]

      Huang, Y.; Zhu, D. D.; Zhang, Q.; Zhang, Y. F.; Cao, J. J.; Shen, Z. X.; Ho, W. K.; Lee, S. C. Appl. Catal. B 2018, 234, 70. doi: 10.1016/j.apcatb.2018.04.039  doi: 10.1016/j.apcatb.2018.04.039

    10. [10]

      Rasmussen, M. D.; Molina, L. M.; Hammer, B. J. Chem. Phys. 2004, 120, 988. doi: 10.1063/1.1631922  doi: 10.1063/1.1631922

    11. [11]

      Wang, S. G.; Temel, B.; Shen, J.; Jones, G.; Grabow, C. L.; Studt, F.; Bligaard, T.; Abild-Pedersen, F.; Christensen, C. H.; Norskov, J. K. Catal. Lett. 2011, 141, 370. doi; 10.1007/s10562-010-0477-y

    12. [12]

      Bai, S.; Wang, L. L.; Li, Z. Q.; Xiong, Y. J. Adv. Sci. 2016, 4, 1600216. doi: 10.1002/advs.201600216  doi: 10.1002/advs.201600216

    13. [13]

      Ye, L. Q.; Jin, X. L.; Ji, X. X.; Liu, C.; Su, Y. R.; Xie, H. Q.; Liu, C. Chem. Eng. J. 2016, 291, 39. doi: 10.1016/j.cej.2016.01.032  doi: 10.1016/j.cej.2016.01.032

    14. [14]

      Liu, G.; Yu, J. C.; Lu, G. Q.; Cheng, H. M. Chem. Commun. 2011, 47, 6763. doi: 10.1039/c1cc10665a  doi: 10.1039/c1cc10665a

    15. [15]

      Lykaki, M.; Stefa, S.; Carabineiro, S. A. C.; Pandis, P. K.; Stathopoulos, V. N.; Konsolakis, M. Catalysts 2019, 9, 371. doi: 10.3390/catal9040371  doi: 10.3390/catal9040371

    16. [16]

      Yang, J.; Xie, T. P.; Zhu, Q. X.; Wang, J. K.; Xu, L. J.; Liu, C. L. J. Mater. Chem. C 2020, 8, 2579. doi: 10.1039/c9tc05752h  doi: 10.1039/c9tc05752h

    17. [17]

      Bai, Y.; Shi, X.; Wang, P. Q.; Wang, L.; Zhang, K.; Zhou, Y.; Xie, H. Q.; Wang, J. N.; Ye, L. Q. Chem. Eng. J. 2019, 356, 34. doi: /10.1016/j.cej.2018.09.006

    18. [18]

      Nie, L.; Mei, D.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; Delariva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L.; et al. Science 2017, 358, 1419. doi: 10.1126/science.aao2109  doi: 10.1126/science.aao2109

    19. [19]

      Jin, Y. K.; Sun, G. H.; Xiong, F.; Ding, L. B.; Huang, W. X. J. Phys. Chem. C 2016, 120, 9845. doi: 10.1021/acs.jpcc.6b02256  doi: 10.1021/acs.jpcc.6b02256

    20. [20]

      Cheng, W. M.; Xia, W. S.; Wan, H. L. Chem. J. Chin. Univ. 2019, 40 (5), 940.  doi: 10.7503/cjcu20190063

    21. [21]

      Dong, F.; Xiong, T.; Sun, Y. J.; Zhang, Y. X.; Zhou, Y. Chem. Commun. 2015, 51, 8249. doi: 10.1039/c5cc01993a  doi: 10.1039/c5cc01993a

    22. [22]

      Sun, X. M.; Wu, J.; Liu, Q. Z; Tian, F. G. Appl. Surf. Sci. 2018, 455, 864. doi: 10.1016/j.apsusc.2018.06.049  doi: 10.1016/j.apsusc.2018.06.049

    23. [23]

      Fan, Z.; Zhao, Y. B.; Zhai, W.; Qiu, L.; Li, H.; Hoffmann, M. R. RSC Adv. 2016, 6, 2028. doi: 10.1039/C5RA18768K  doi: 10.1039/C5RA18768K

    24. [24]

      Peng, Y.; Xu, J.; Liu, T.; Mao, Y. G. CrystEngComm 2017, 19, 6473. doi: 10.1039/c7ce01452j  doi: 10.1039/c7ce01452j

    25. [25]

      Bai, J. W.; Sun, J. Y.; Zhu, X. H.; Liu, J. D.; Zhang, H. J.; Yin, X. B.; Liu, L. Small 2020, 16 (5), 1904783. doi: 10.1002/smll.201904783  doi: 10.1002/smll.201904783

    26. [26]

      Zheng, Q.; Cao, Y. H.; Huang, N. J.; Dong, F.; Zhou, Y. J. Inorg. Mater. 2020, 35, 1255.  doi: 10.15541/jim20200024

    27. [27]

      Hou, H. L.; Zeng, X. K.; Zhang, X. W. Sci. Chin. Mater. 2020, doi: 10.1007/s40843-019-1256-0  doi: 10.1007/s40843-019-1256-0

    28. [28]

      Wang, Z. Y.; Huang, Y.; Chen, L.; Chen, M. J.; Cao, J. J.; Ho, W. K.; Lee, S. C. J. Mater. Chem. A 2018, 6, 972. doi: 10.1039/C7TA09132J  doi: 10.1039/C7TA09132J

    29. [29]

      Li, J.; Zhang, L. Z.; Li, Y. J.; Yu, Y. Nanoscale 2014, 6, 167. doi: 10.1039/c3nr05246j  doi: 10.1039/c3nr05246j

    30. [30]

      Yang, X. Q.; Yang, H. L.; Lu, H.; Ding, H. X.; Tong, Y. X.; Rao, F.; Zhang, X.; Shen, Q.; Gao, J. Z.; Zhu, G. Q. Acta Phys. -Chim. Sin. 2021, 37, 2005008.  doi: 10.3866/PKU.WHXB202005008

    31. [31]

      Tian, N.; Huang, H. W.; Wang, S. B.; Zhang, T. R.; Du, X.; Zhang, Y. H. Appl. Catal. B 2020, 267, 118697. doi: 10.1016/j.apcatb.2020.118697  doi: 10.1016/j.apcatb.2020.118697

    32. [32]

      Pan, M. L.; Zhang, H. J.; Gao, G. D.; Liu, L.; Chen, W. Environ. Sci. Technol. 2015, 49, 6240. doi: 10.1021/acs.est.5b00626  doi: 10.1021/acs.est.5b00626

    33. [33]

      Liu, D.; Jiang, Z. F.; Zhu, C. Z.; Qian, K.; Wu, Z. Y.; Xie, J. M. Dalton Trans. 2016, 45, 2505. doi: 10.1039/c5dt03408f  doi: 10.1039/c5dt03408f

    34. [34]

      Ji, M. X.; Xia, J. X.; Di, J.; Liu, Y. L.; Chen, R.; Chen, Z. G.; Yin, S.; Li, H. M. Chem. Eng. J. 2018, 331, 355 doi: 10.1016/j.cej.2017.08.100  doi: 10.1016/j.cej.2017.08.100

    35. [35]

      He, W. H.; Wang, Y. W.; Fan, C. M.; Wang, Y. F.; Zhang, X. C.; Liu, J. X.; Li, R. RSC Adv. 2019, 9, 14286. doi: 10.1039/c9ra01639b  doi: 10.1039/c9ra01639b

    36. [36]

      Huang, H.; Xiao, K.; Du, X.; Zhang, Y. ACS Sustainable Chem. Eng. 2017, 5, 5253. doi: 10.1021/acssuschemeng.7b00599  doi: 10.1021/acssuschemeng.7b00599

    37. [37]

      Cao, Y. H.; Zhang, R. Y.; Zheng, Q.; Cui, W.; Liu, Y.; Zheng, K. B.; Dong, F.; Zhou, Y. ACS Appl. Mater. Interfaces 2020, 12, 34432. doi: 10.1021/acsami.0c09216  doi: 10.1021/acsami.0c09216

    38. [38]

      Zhang, W. D.; Dong, F.; Xiong, T.; Zhang, Q. Ceram. Int. 2014, 40, 9003. doi: 10.1016/j.ceramint.2014.01.112  doi: 10.1016/j.ceramint.2014.01.112

    39. [39]

      Segall, M. D.; Lindan, P. J. D.; Probert, M. I. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys.: Condens Matter 2002, 14, 2717. doi: 10.1088/0953-8984/14/11/301  doi: 10.1088/0953-8984/14/11/301

    40. [40]

      Shan, L. W.; Bi, J. J.; Liu, Y. T. J. Nanopart. Res. 2018, 20, 170. doi: 10.1007/s11051-018-4272-9  doi: 10.1007/s11051-018-4272-9

    41. [41]

      Wu, X. L.; Ng, Y. H.; Wang, L.; Du, Y.; Dou, S. X.; Amal, R.; Scott, J. J. Mater. Chem. A 2017, 5, 8117. doi: 10.1039/c6ta10964k  doi: 10.1039/c6ta10964k

    42. [42]

      Li, M.; Zhang, Y. H.; Li, X. W.; Yu, S. X.; Du, X.; Guo, Y. X.; Huang, H. W. J. Colloid Interface Sci. 2017, 508, 174. doi: 10.1016/j.jcis.2017.08.042  doi: 10.1016/j.jcis.2017.08.042

    43. [43]

      Li, W. B.; Liu, Y. L.; Di, J.; Ji, M. X.; Xia, J. X.; Li, H. M. Phys. Status Solidi A 2018, 215 (18), 1800146. doi: 10.1002/pssa.201800146  doi: 10.1002/pssa.201800146

    44. [44]

      Zhang, X.; Zhang, L. Z.; Xie, T. F.; Wang, D. J. J. Phys. Chem. C 2009, 113, 7371. doi: 10.1021/jp900812d  doi: 10.1021/jp900812d

    45. [45]

      Cao, Y. H.; Zhang, R. Y.; Zhou, T. L.; Jin, S. M.; Huang, J. D.; Ye, L. Q.; Huang, Z. A.; Wang, F.; Zhou, Y. ACS Appl. Mater. Interfaces 2020, 12, 9935. doi: 10.1021/acsami.9b21157  doi: 10.1021/acsami.9b21157

    46. [46]

      Xiang, Q. J.; Lang, D.; Shen, T. T.; Liu, F. Appl. Catal. B 2015, 162, 196. doi: 10.1016/j.apcatb.2014.06.051  doi: 10.1016/j.apcatb.2014.06.051

  • 加载中
    1. [1]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    2. [2]

      Chupeng LuoKeying SuShan YangYujia LiangYawen TangXiaoyu Qiu . Ultrathin NiS2 nanocages with hierarchical-flexible walls and rich grain boundaries for efficient oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(5): 109940-. doi: 10.1016/j.cclet.2024.109940

    3. [3]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    4. [4]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    5. [5]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    6. [6]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    7. [7]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    8. [8]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    9. [9]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    10. [10]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    11. [11]

      Jincheng ZhangMengjie SunJiali RenRui ZhangMin MaQingzhong XueJian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491

    12. [12]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    13. [13]

      Ruru LiQian LiuHui LiFengbin SunZhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679

    14. [14]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    15. [15]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    16. [16]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    17. [17]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    18. [18]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    19. [19]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    20. [20]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

Metrics
  • PDF Downloads(4)
  • Abstract views(378)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return