Citation: Zhou Yi, Ouyang Weilong, Wang Yuejun, Wang Haiqiang, Wu Zhongbiao. Core-Shell Structured NH2-UiO-66@TiO2 Photocatalyst for the Degradation of Toluene under Visible Light Irradiation[J]. Acta Physico-Chimica Sinica, ;2021, 37(8): 200904. doi: 10.3866/PKU.WHXB202009045 shu

Core-Shell Structured NH2-UiO-66@TiO2 Photocatalyst for the Degradation of Toluene under Visible Light Irradiation

  • Corresponding author: Wang Haiqiang, haiqiangwang@zju.edu.cn
  • Received Date: 14 September 2020
    Revised Date: 29 October 2020
    Accepted Date: 16 November 2020
    Available Online: 23 November 2020

    Fund Project: the National Natural Science Foundation of China 51878598the National Natural Science Foundation of China 51978603The project was supported by the National Natural Science Foundation of China (51878598, 51978603)

  • Metal-organic frameworks (MOFs) are of significant interest for photocatalysis using visible light, but they are typically limited by the instability and high recombination ratio of photoexcited pairs. Integrating MOFs into an inorganic semiconductor is one of the most widespread methods to promote their activity. In this study, a core-shell structured MOF@TiO2 (NH2-UiO-66@TiO2) was synthesized as an efficient photocatalyst for the degradation of toluene. Pristine NH2-UiO-66 was synthesized by a hydrothermal method as the core, which was then coated with an amorphous TiO2 shell. Compared with pristine NH2-UiO-66 and other samples prepared by the direct mixing of NH2-UiO-66 and TiO2, NH2-UiO-66@TiO2 exhibited a higher degradation rate of toluene. Using NH2-UiO-66@TiO2 as a catalyst, the degradation efficiency of toluene reached 76.7% within 3 h, which is 1.48 times higher than that of NH2-UiO-66. The degradation performance was also stable in four repeated reuse experiments, and the slight deactivation was reactivated after washing with ethanol. A series of characterization methods were used to determine the physicochemical properties of NH2-UiO-66@TiO2, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Using the measured physicochemical properties, the photocatalytic mechanism of NH2-UiO-66@TiO2 was explored. NH2-UiO-66 is an ideal photocatalyst, with visible-light response and a huge specific surface area (914.9 m2·g-1), which is favorable for the utilization of sunlight as well as the absorption of pollutants in indoor air. In addition, a new interface formed between the two components (NH2-UiO-66 and TiO2), which efficiently broaden the light absorption area and enhanced the utilization of photogenerated species. The photogenerated holes and electrons could transfer through the interlayer as soon as they were formed. It is speculated that holes would transfer to the HOMO of NH2-UiO-66, and then combine with H2O molecules to form hydroxyl radicals (·OH). At the same time, more electrons tended to combine with oxygen molecules in the conduction band of TiO2 rather than recombine with holes. Consequently, the recombination rate of electrons and holes decreased, while the quantity of oxygen radicals and hydroxyl radicals increased. Toluene was efficiently oxidized by these two types of radicals. Owing to the outstanding properties mentioned above, the strategy of constructing NH2-UiO-66@TiO2 is considered to be an effective approach. This work may provide new insights into the design of core-shell structured MOF@photocatalysts for the photocatalytic degradation of indoor air pollutants.
  • 加载中
    1. [1]

      Wang, S. B.; Ang, H. M.; Tade, M. O. Environ. Int. 2007, 33, 694. doi: 10.1016/j.envint.2007.02.011  doi: 10.1016/j.envint.2007.02.011

    2. [2]

      Guieysse, B.; Hort, C.; Platel, V.; Munoz, R.; Ondarts, M.; Revah, S. Biotechnol. Adv. 2008, 26, 398. doi: 10.1016/j.biotechadv.2008.03.005  doi: 10.1016/j.biotechadv.2008.03.005

    3. [3]

      Fei, X. Q.; Cao, S.; Ouyang, W. L.; Wen, Y. X.; Wang, H. Q.; Wu, Z. B. Chem. Eng. J. 2020, 387, 11. doi: 10.1016/j.cej.2019.123411  doi: 10.1016/j.cej.2019.123411

    4. [4]

      Mamaghani, A. H.; Haghighat, F.; Lee, C. -S. Appl. Catal. B-Environ. 2017, 203, 247. doi: 10.1016/j.apcatb.2016.10.037  doi: 10.1016/j.apcatb.2016.10.037

    5. [5]

      Dong, F.; Zhang, Y. X.; Zhang, S. Front. Chem. 2019, 7, 3. doi: 10.3389/fchem.2019.00303  doi: 10.3389/fchem.2019.00303

    6. [6]

      Tang, Q. J.; Sun, Z. X.; Wang, P. L.; Li, Q.; Wang, H. Q.; Wu, Z. B. Appl. Surf. Sci. 2019, 463, 456. doi: 10.1016/j.apsusc.2018.08.245  doi: 10.1016/j.apsusc.2018.08.245

    7. [7]

      Cui, H. Q.; Jing, L. Q.; Xie, M. Z.; Li, Z, J. Acta Phys. -Chim. Sin. 2014, 30, 1903.  doi: 10.3866/PKU.WHXB201407173

    8. [8]

      Shayegan, Z.; Lee, C. -S.; Haghighat, F. Chem. Eng. J. 2018, 334, 2408. doi: 10.1016/j.cej.2017.09.153  doi: 10.1016/j.cej.2017.09.153

    9. [9]

      Chen, R. F.; Yao, Z. X.; Han, N.; Ma, X. C.; Li, L. Q.; Liu, S. M.; Sun, H. Q.; Wang, S. B. ACS Omega 2020, 5, 15402. doi: 10.1021/acsomega.0c01504  doi: 10.1021/acsomega.0c01504

    10. [10]

      Cui, L. X.; Zou, X. H.; Liu, Y. N.; Li, X.; Jiang, L. C.; Li, C. Y.; Yang, L. Q.; Yu, M. J.; Wang, Y. G. J. Colloid Interface Sci. 2020, 577, 233. doi: 10.1016/j.jcis.2020.05.023  doi: 10.1016/j.jcis.2020.05.023

    11. [11]

      Wang, X. J.; Zhao, X. L.; Zhang, D. Q.; Li, G. S.; Li, H. X. Appl. Catal. B-Environ. 2018, 228, 47. doi: 10.1016/j.apcatb.2018.01.066  doi: 10.1016/j.apcatb.2018.01.066

    12. [12]

      Wan, S. P.; Ou, M.; Zhong, Q.; Wang, X. M. Chem. Eng. J. 2019, 358, 1287. doi: 10.1016/j.cej.2018.10.120  doi: 10.1016/j.cej.2018.10.120

    13. [13]

      Shen, L. J.; Liang, S. J.; Wu, W. M.; Liang, R. W.; Wu, L. J. Mater. Chem. A 2013, 1, 11473. doi: 10.1039/c3ta12645e  doi: 10.1039/c3ta12645e

    14. [14]

      Chen, X. L.; Cai, Y.; Liang, R.; Tao, Y.; Wang, W. C.; Zhao, J. J.; Chen, X. F.; Li, H. X.; Zhang, D. Q. Appl. Catal. B-Environ. 2020, 267. doi: 10.1016/j.apcatb.2020.118687  doi: 10.1016/j.apcatb.2020.118687

    15. [15]

      Bai, Y. R.; Dong, J. P.; Hou, Y. Q.; Guo, Y. P.; Liu, Y. J.; Li, Y. L.; Han, X. J.; Huang, Z. G. Chem. Eng. J. 2019, 361, 703. doi: 10.1016/j.cej.2018.12.109  doi: 10.1016/j.cej.2018.12.109

    16. [16]

      Gao, S.; Cen, W. L.; Li, Q.; Li, J. Y.; Lu, Y. F.; Wang, H. Q.; Wu, Z. B. Appl. Catal. B-Environ. 2018, 227, 190. doi: 10.1016/j.apcatb.2018.01.007  doi: 10.1016/j.apcatb.2018.01.007

    17. [17]

      Wang, H. M.; Yu, T.; Tan, X.; Zhang, H. B.; Li, P.; Liu, H. M.; Shi, L.; Li, X. L.; Ye, J. H. Ind. Eng. Chem. Res. 2016, 55, 8096. doi: 10.1021/acs.iecr.6b01400  doi: 10.1021/acs.iecr.6b01400

    18. [18]

      Li, X. Y.; Pi, Y. H.; Hou, Q. Q.; Yu, H.; Li, Z.; Li, Y. W.; Xiao, J. Chem. Commun. 2018, 54, 1917. doi: 10.1039/c7cc09072b  doi: 10.1039/c7cc09072b

    19. [19]

      Zhang, J. H.; Hu, Y.; Qin, J. X.; Yang, Z. X.; Fu, M. L. Chem. Eng. J. 2020, 385, 123814. doi: 10.1016/j.cej.2019.123814  doi: 10.1016/j.cej.2019.123814

    20. [20]

      Cao. S. The Research on Catalytic Combustion Performance of CH2Cl2 over Ceria-Titania-Based Complex Metal Oxides. Ph. D. Dissertation, Zhejiang University, Hangzhou, 2016.

    21. [21]

      Wang, Y.; Li, L. J.; Dai, P. C.; Yan, L. T.; Cao, L.; Gu, X.; Zhao, X. B. J. Mater. Chem. A 2017, 5, 22372. doi: 10.1039/c7ta06060b  doi: 10.1039/c7ta06060b

    22. [22]

      Li, X. Y.; Pi, Y. H.; Xia, Q. B.; Li, Z.; Xiao, J. Appl. Catal. B-Environ. 2016, 191, 192. doi: 10.1016/j.apcatb.2016.03.034  doi: 10.1016/j.apcatb.2016.03.034

    23. [23]

      Xie, T. P.; Liu, Y.; Wang, H. Q.; Wu, Z. B. Appl. Surf. Sci. 2018, 444, 320. doi: 10.1016/j.apsusc.2018.03.072  doi: 10.1016/j.apsusc.2018.03.072

    24. [24]

      Liu, Y. Q.; Zhou, Y.; Tang, Q. J.; Li, Q.; Chen, S.; Sun, Z. X.; Wang, H. Q. RSC Adv. 2020, 10, 1757. doi: 10.1039/c9ra09270f  doi: 10.1039/c9ra09270f

    25. [25]

      Zhao, W. R.; Shi, Q. M.; Liu, Y. Acta Phys. -Chim. Sin. 2014, 30 (7), 1318.  doi: 10.3866/PKU.WHXB201404222

    26. [26]

      Xie, T. P.; Zhang, Y. Y.; Yao, W. Y.; Liu, Y.; Wang, H. Q.; Wu, Z. B. Catal. Sci. Technol. 2019, 9, 1178. doi: 10.1039/c8cy02344a  doi: 10.1039/c8cy02344a

    27. [27]

      Huo, W. C.; Cao, T.; Xu, W. N.; Guo, Z. Y.; Liu, X. Y.; Yao, H. C.; Zhang, Y. X. Chin. J. Catal. 2020, 41, 268. doi: 10.1016/s1872-2067(19)63460-1  doi: 10.1016/s1872-2067(19)63460-1

    28. [28]

      Guan, Z. J.; Xu, Z. Q.; Li, Q. Y.; Wang, P.; Li, G. Q.; Yang, J. J. Appl. Catal. B-Environ. 2018, 227, 512. doi: 10.1016/j.apcatb.2018.01.068  doi: 10.1016/j.apcatb.2018.01.068

    29. [29]

      Huang, H. W.; He, Y.; Li, X. W.; Li, M.; Zeng, C.; Dong, F.; Du, X.; Zhang, T. R.; Zhang, Y. H. J. Mater. Chem. A 2015, 3, 24547. doi: 10.1039/c5ta07655b  doi: 10.1039/c5ta07655b

    30. [30]

      Zhao, Q.; Wang, J. L.; Li, Z. P.; Guo, Y.; Wang, J.; Tang, B.; Kansha, Y.; Yoshida, A.; Abudula, A.; Guan, G. Q. J. Photochem. Photobiol. A: Chem. 2020, 399, 112625. doi: 10.1016/j.jphotochem.2020.112625  doi: 10.1016/j.jphotochem.2020.112625

    31. [31]

      Zhao, W. R.; Xi, H. P.; Liao, Q. W. Acta Phys. -Chim. Sin. 2013, 29 (10), 2232.  doi: 10.3866/PKU.WHXB201308291

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    4. [4]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    5. [5]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    6. [6]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    7. [7]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    8. [8]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    9. [9]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    10. [10]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    11. [11]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    12. [12]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    13. [13]

      Xinyue HanYunhan YangJiayin LuYuxiang LinDongxue ZhangLing LinLiang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    18. [18]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    19. [19]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ- shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(17)
  • Abstract views(1007)
  • HTML views(312)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return