Citation: Lü Peiliang, Gao Caiyun, Sun Xiuhong, Sun Mingliang, Shao Zhipeng, Pang Shuping. Synthesis of Cs-Rich CH(NH2)2)xCs1−xPbI3 Perovskite Films Using Additives with Low Sublimation Temperature[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200903. doi: 10.3866/PKU.WHXB202009036 shu

Synthesis of Cs-Rich CH(NH2)2)xCs1−xPbI3 Perovskite Films Using Additives with Low Sublimation Temperature

  • Corresponding author: Sun Mingliang, mlsun@ouc.edu.cn Shao Zhipeng, shaozp@qibebt.ac.cn Pang Shuping, pangsp@qibebt.ac.cn
  • Received Date: 9 September 2020
    Revised Date: 24 October 2020
    Accepted Date: 26 October 2020
    Available Online: 2 November 2020

    Fund Project: The project was supported by the Young Taishan Scholars (tsqn201812110) and the National Natural Science Foundation of China (51822209, 51902324)the Young Taishan Scholars tsqn201812110the National Natural Science Foundation of China 51822209the National Natural Science Foundation of China 51902324

  • Chemical components of perovskite layers play a key role in improving the efficiency and stability of perovskite solar cells. Pure inorganic perovskites exhibit good thermal and light stabilities; however, the smaller radius of Cs+ leads to a poor perovskite phase stability. In this case, the Cs-rich (CH(NH2)2)xCs1−xPbI3 ((CH(NH2)2+=FA+) perovskite seems more promising because it simultaneously offers the above-mentioned properties, while not forming an unstable perovskite phase. Thus far, the synthesis of Cs-rich FAxCs1−xPbI3 perovskite has been realized by introducing excess formamidinium iodide (FAI) as an additive. However, FAI sublimates at a high temperature and excessive FAI sublimation necessitates even greater temperatures. Therefore, it is difficult to precisely control the ratio of the sublimated FAI from the perovskite film. Herein, the precise synthesis of Cs-rich FAxCs1−xPbI3 perovskites at relatively low sublimation temperatures using amine additives, such as methylammonium iodide (MAI), dimethylamine iodide (DMAI), ethylamine iodide (EAI), ammonium iodide (NH4I), and formamidine acetate (FAAC), was studied. The reaction temperature was reduced when utilizing these additives. Moreover, the window period for the preparation has been widened, which is particularly important for the preparation of pure phase Cs-rich FAxCs1−xPbI3 perovskite films for large devices. In the experiment, perovskite FA0.15Cs0.85PbI3 was selected because of its good stability. The reaction process of the additive that assisted perovskite preparation was studied. Firstly, 0.85 mmol of MAI, DMAI, EAI, FAAC, and NH4I each were added to 1 mmol of FA0.15Cs0.85PbI3 solution. Then, the precursor solution was spin-coated and thermally annealed. The FA0.15Cs0.85PbI3 films were formed by sublimation of the additives during thermal annealing. The influence of different additives on the film formation process was traced using X-ray diffraction (XRD) measurements and UV-visible absorbance spectra (UV-Vis abs). The results showed that MAI and DMAI could be used as additives in the preparation of FA0.15Cs0.85PbI3 films. The strong intermolecular interaction between these additives and PbI2 could benefit the formation of Cs4PbI6 and prevent the formation of δ-CsPbI3. Cs+ is easier to migrate in Cs4PbI6 than in δ-CsPbI3, which provides a necessary condition for the ion exchange reaction. Simultaneously, the mild sublimation temperature of the additives ensured that the films maintain their perovskite phase. Finally, pure phase Cs-rich FAxCs1−xPbI3 perovskites were prepared using this method at a relatively lower temperature of 200 ℃. The XRD and UV-Vis absorption results confirmed the precise synthesis of FA0.15Cs0.85PbI3. The FA0.15Cs0.85 PbI3 solar cells synthesized with MAI and DMAI achieved the maximum power conversion efficiencies of 15.6% and 15.1%, respectively.
  • 加载中
    1. [1]

      Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643. doi: 10.1126/science.1228604  doi: 10.1126/science.1228604

    2. [2]

      Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341. doi: 10.1126/science.1243982  doi: 10.1126/science.1243982

    3. [3]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. doi: 10.1021/ja809598r  doi: 10.1021/ja809598r

    4. [4]

      NREL Research Cell Record Efficiency Chart NREL, 2019.

    5. [5]

      Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. Adv. Mater. 2014, 26, 1584. doi: 10.1002/adma.201305172  doi: 10.1002/adma.201305172

    6. [6]

      Huang, Y.; Sun, Q. D.; Xu, W.; He, Y.; Yin, W. J. Acta Phys. -Chim. Sin. 2017, 33, 1730.  doi: 10.3866/PKU.WHXB201705042

    7. [7]

      Yang, W. S.; Park, B. W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok, S. I. Science 2017, 356, 1376. doi: 10.1126/science.aan2301  doi: 10.1126/science.aan2301

    8. [8]

      Jung, E. H.; Jeon, N. J.; Park, E. Y.; Moon, C. S.; Shin. T. J.; Yang, T. Y.; Noh, J. H.; Seo, J. Nature 2019, 567, 511. doi: 10.1038/s41586-019-1036-3  doi: 10.1038/s41586-019-1036-3

    9. [9]

      Wang, J.; Zhang, J.; Zhou, Y.; Liu, H.; Xue, Q.; Li, X.; Chueh, C. C.; Yip, H. L.; Zhu, Z.; Jen, A. K. Y. Nat. Commun. 2020, 11, 177. doi: 10.1038/s41467-019-13909-5  doi: 10.1038/s41467-019-13909-5

    10. [10]

      Jena, A. K.; Kulkarni, A.; Miyasaka, T. Chem. Rev. 2019, 119, 3036. doi: 10.1021/acs.chemrev.8b00539  doi: 10.1021/acs.chemrev.8b00539

    11. [11]

      Zhou, W.; Zhao, Y.; Zhou, X.; Fu, R.; Li, Q.; Zhao, Y.; Liu, K.; Yu, D.; Zhao, Q. J. Phys. Chem. Lett. 2017, 8, 4122. doi: 10.1021/acs.jpclett.7b01851  doi: 10.1021/acs.jpclett.7b01851

    12. [12]

      Binek, A.; Hanusch, F. C.; Docampo, P.; Bein, T. J. Phys. Chem. Lett. 2015, 6, 1249. doi: 10.1021/acs.jpclett.5b00380  doi: 10.1021/acs.jpclett.5b00380

    13. [13]

      Chen, W.; Zhang, J.; Xu, G.; Xue, R.; Li, Y.; Zhou, Y.; Hou, J.; Li, Y. Adv. Mater. 2018, 30, e1800855. doi: 10.1002/adma.201800855  doi: 10.1002/adma.201800855

    14. [14]

      Liang, J.; Zhao, P, ; Wang, C.; Wang, Y.; Hu, Y.; Zhu, G.; Ma, L.; Liu, J.; Jin, Z. J. Am. Chem. Soc. 2017, 139, 14009. doi: 10.1021/jacs.7b07949.5156  doi: 10.1021/jacs.7b07949.5156

    15. [15]

      Saparov, B.; Mitzi, D, B. Chem. Rev. 2016, 116, 4558. doi: 10.1021/acs.chemrev.5b00715.516  doi: 10.1021/acs.chemrev.5b00715.516

    16. [16]

      Wei, D.; Ma, F.; Wang, R.; Dou, S.; Cui, P.; Huang, H.; Ji, J.; Jia, E.; Jia, X.; Sajid, S.; et al. Adv. Mater. 2018, 30, e1707583. doi: 10.1002/adma.201707583.315  doi: 10.1002/adma.201707583.315

    17. [17]

      Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019. doi: 10.1021/ic401215x  doi: 10.1021/ic401215x

    18. [18]

      Jing, C. Q.; Wu, J. H, ; Cao, Y. Y.; Che, H. X.; Zhao, X. M.; Yue, M.; Liao, Y. Y.; Yue, C. Y.; Lei, X. W. Chem. Commun. 2020, 56, 5925. doi: 10.1039/d0cc01779e  doi: 10.1039/d0cc01779e

    19. [19]

      De Marco, N.; Zhou, H.; Chen, Q.; Sun, P.; Liu, Z.; Meng, L.; Yao, E. P.; Liu, Y.; Schiffer, A.; Yang, Y. Nano Lett. 2016, 16, 1009. doi: 10.1021/acs.nanolett.5b04060  doi: 10.1021/acs.nanolett.5b04060

    20. [20]

      Saliba, M.; Correa-Baena, J. P.; Grätzel, M.; Hagfeldt, A.; Abate, A. Angew. Chem. Int. Ed. 2018, 57, 2554. doi: 10.1002/anie.201703226.151  doi: 10.1002/anie.201703226.151

    21. [21]

      Marronnier, A.; Roma, G.; Boyer-Richard, S.; Pedesseau, L.; Jancu, J. M.; Bonnassieux, Y.; Katan, C.; Stoumpos, C. C.; Kanatzidis, M. G.; Even, J. ACS Nano 2018, 12, 3477. doi: 10.1021/acsnano.8b00267.1651  doi: 10.1021/acsnano.8b00267.1651

    22. [22]

      Ke, W.; Spanopoulos, I.; Stoumpos, C. C.; Kanatzidis, M. G. Nat. Commun. 2018, 9, 4785.doi: 10.1038/s41467-018-07204-y.5151  doi: 10.1038/s41467-018-07204-y.5151

    23. [23]

      Zhang, J.; Yang, L.; Zhong, Y.; Hao, H.; Yang, M.; Liu, R. Phys. Chem. Chem. Phys. 2019, 21, 11175. doi: 10.1039/c9cp01211g  doi: 10.1039/c9cp01211g

    24. [24]

      Pang, S.; Hu, H.; Zhang, J.; Lv, S.; Yu, Y.; Wei, F.; Qin, T.; Xu, H.; Liu, Z.; Cui, G. Chem. Mater. 2014, 26, 1485. doi: 10.1021/cm404006p  doi: 10.1021/cm404006p

    25. [25]

      Luo, P.; Zhou, S.; Zhou, Y.; Xia, W.; Sun, L.; Cheng, J.; Xu, C.; Lu, Y. ACS Appl. Mater. Interfaces. 2017, 9, 42708. doi: 10.1021/acsami.7b12939.3  doi: 10.1021/acsami.7b12939.3

    26. [26]

      Luo, P.; Xia, W.; Zhou, S.; Sun, L.; Cheng, J.; Xu, C.; Lu, Y. J. Phys. Chem. Lett. 2016, 7, 3603. doi: 10.1021/acs.jpclett.6b01576.2  doi: 10.1021/acs.jpclett.6b01576.2

    27. [27]

      Shao, Z.; Meng, H.; Du, X.; Sun, X.; Lv, P.; Gao, C.; Rao, Y.; Chen, C.; Li, Z.; Wang, X.; Cui, G.; Pang, S. Adv. Mater. 2020, e2001054. doi: 10.1002/adma.202001054  doi: 10.1002/adma.202001054

    28. [28]

      Li, Z.; Wang, L.; Liu, R.; Fan, Y.; Meng, H.; Shao, Z.; Cui, G.; Pang, S. Adv. Energy Mater. 2019, 9, 1902142. doi: 10.1002/aenm.201902142  doi: 10.1002/aenm.201902142

  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    3. [3]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    7. [7]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

    8. [8]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    9. [9]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    12. [12]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    13. [13]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    14. [14]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    15. [15]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    16. [16]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    17. [17]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    18. [18]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    19. [19]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    20. [20]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

Metrics
  • PDF Downloads(16)
  • Abstract views(984)
  • HTML views(179)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return