Citation: Li Yan, Hu Xingsheng, Huang Jingwei, Wang Lei, She Houde, Wang Qizhao. Development of Iron-Based Heterogeneous Cocatalysts for Photoelectrochemical Water Oxidation[J]. Acta Physico-Chimica Sinica, ;2021, 37(8): 200902. doi: 10.3866/PKU.WHXB202009022 shu

Development of Iron-Based Heterogeneous Cocatalysts for Photoelectrochemical Water Oxidation



  • Author Bio:

    Jingwei Huang is currently an associate professor in the school of chemistry and chemical engineering of Northwest Normal University. He obtained Ph.D. degree from Lanzhou University in 2017. Now he is mainly engaged in photoelectrocatalytic and electrocatalytic water splitting to produce hydrogen, and CO2 reduction


    Prof. Qizhao Wang obtained his Ph.D. degree in engineering from Shanghai Jiaotong University. Now he is mainly engaged in the research of new energy materials (hydrogen production by photolysis of water, photoelectric conversion, electrocatalysis, CO2 photoelectric catalytic reduction), environmental catalysis and water treatment
  • Corresponding author: Huang Jingwei, huangjingwei2009@163.com Wang Qizhao, wangqizhao@163.com; qizhaosjtu@gmail.com
  • Received Date: 7 September 2020
    Revised Date: 30 September 2020
    Accepted Date: 22 October 2020
    Available Online: 28 October 2020

    Fund Project: the National Natural Science Foundation of China 21808189This work was financially supported by the National Natural Science Foundation of China (21663027, 21808189, 21962018), and the Young Teachers'Research Ability Improvement Project of Northwest Normal University (NWNU-LKQN2020-01)the Young Teachers'Research Ability Improvement Project of Northwest Normal University NWNU-LKQN2020-0the National Natural Science Foundation of China 21962018the National Natural Science Foundation of China 21663027

  • The use of fossil fuels has caused serious environmental problems such as air pollution and the greenhouse effect. Moreover, because fossil fuels are a non-renewable energy source, they cannot meet the continuously increasing demand for energy. Therefore, the development of clean and renewable energy sources is necessitated. Hydrogen energy is a clean, non-polluting renewable energy source that can ease the energy pressure of the whole society. The sunlight received by the Earth is 1.7× 1014 J in 1 s, which far exceeds the total energy consumption of humans in one year. Therefore, conversion of solar energy to valuable hydrogen energy is of significance for reducing the dependence on fossil fuels. Since Fujishima and Honda first reported on TiO2 in 1972, it has been discovered that semiconductors can generate clean, pollution-free hydrogen through water splitting driven by electricity or light. Hydrogen generated through this approach can not only replace fossil fuels but also provide environmentally friendly renewable hydrogen energy, which has attracted considerable attention. Photoelectrochemical (PEC) water splitting can use solar energy to produce clean, sustainable hydrogen energy. Because the oxygen evolution reaction (OER) over a photoanode is sluggish, the overall energy conversion efficiency is considerably low, limiting the practical application of PEC water splitting. A cocatalyst is, thus, necessary to improve PEC water splitting performance. So far, the synthesis of first-row transition-metal-based (e.g., Fe, Co, Ni, and Mn) cocatalysts has been intensively studied. Iron is earth-abundant and less toxic than other transition metals, making it a good cocatalyst. In addition, iron-based compounds exhibit the properties of a semiconductor/metal and have unique electronic structures, which can improve electrical conductivity and water adsorption. Various iron-based catalysts with high activity have been designed to improve the efficiency of PEC water oxidation. This article briefly summarizes the research progress related to the structure, synthesis, and application of iron oxyhydroxides, iron-based layered double hydroxides, and iron-based perovskites and discusses the evaluation of the performance of these cocatalysts toward photoelectrochemical water oxidation.
  • 加载中
    1. [1]

      Shao, Y. B.; Zheng, M. Y.; Cai, M. M.; He, L.; Xu, C. L. Electrochim. Acta 2017, 257, 1. doi: 10.1016/j.electacta.2017.09.093  doi: 10.1016/j.electacta.2017.09.093

    2. [2]

      Wang, J. Y.; Li, S. M.; Lin, R. B.; Tu, G. M.; Wang, J.; Li, Z. Q. Electrochim. Acta 2019, 301, 258. doi: 10.1016/j.electacta.2019.01.157  doi: 10.1016/j.electacta.2019.01.157

    3. [3]

      Sun, S.; Zhang, X.; Liu, X.; Pan, L.; Zhang, X.; Zou, J. Acta Phys. -Chim. Sin. 2020, 36 (3), 1905007.  doi: 10.3866/PKU.WHXB201905007

    4. [4]

      Kong, D.; Zheng, Y.; Kobielusz, M.; Wang, Y.; Bai, Z.; Macyk, W.; Wang, X.; Tang, J. Mater. Today 2018, 21 (8), 897. doi: 10.1016/j.mattod.2018.04.009  doi: 10.1016/j.mattod.2018.04.009

    5. [5]

      Osterloh, F. E. Chem. Soc. Rev. 2013, 42 (6), 2294. doi: 10.1039/C2CS35266D  doi: 10.1039/C2CS35266D

    6. [6]

      Qiu, W. T.; Huang, Y. C.; Wang, Z. L.; Xiao, S.; Ji, H. B.; Tong, Y. X. Acta Phys. -Chim. Sin. 2017, 33 (1), 80.  doi: 10.3866/PKU.WHXB201607293

    7. [7]

      Chen, S.; Thind, S. S.; Chen, A. Electrochem. Commun. 2016, 63, 10. doi: 10.1016/j.elecom.2015.12.003  doi: 10.1016/j.elecom.2015.12.003

    8. [8]

      Das, D. V. T. N. Int. J. Hydrog. Energy 2001, 26, 13. doi: 10.1016/S0360-3199(00)00058-6  doi: 10.1016/S0360-3199(00)00058-6

    9. [9]

      She, H.; Jiang, M.; Yue, P.; Huang, J.; Wang, L.; Li, J.; Zhu, G.; Wang, Q. J. Colloid Interface Sci. 2019, 549, 80. doi: 10.1016/j.jcis.2019.04.038  doi: 10.1016/j.jcis.2019.04.038

    10. [10]

      Fujishima, A. H. K. Nature 1972, 238 (5358), 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    11. [11]

      Wang, Y. Q.; Shen, S. H. Acta Phys. -Chim. Sin. 2020, 36 (3), 1905080.  doi: 10.3866/PKU.WHXB201905080

    12. [12]

      Jiang, C. X.; Hu, Y. X.; Dong, W.; Zheng, F. G.; Su, X. D.; Fang, L.; Shen, M. R. Acta Phys. -Chim. Sin. 2014, 30 (10), 1867.  doi: 10.3866/PKU.WHXB201407221

    13. [13]

      Wang, Y.; Ni, Y. Y.; Liu, B.; Shang, S. X.; Yang, S.; Cao, M. H.; Hu, C. W. Electrochim. Acta 2017, 257, 356. doi: 10.1016/j.electacta.2017.10.011  doi: 10.1016/j.electacta.2017.10.011

    14. [14]

      Zhang, J.; Zhu, G.; Liu, W.; Xi, Y.; Golosov, D. A.; Zavadski, S. М.; Melnikov, S. N. J. Alloy. Compd. 2020, 834, 154992. doi: 10.1016/j.jallcom.2020.154992  doi: 10.1016/j.jallcom.2020.154992

    15. [15]

      Li, N. B.; Wei, S. T.; Xu, Y. X.; Liu, J.; Wu, J. D.; Jia, G. R.; Cui, X. Q. Electrochim. Acta 2018, 290, 364. doi: 10.1016/j.electacta.2018.09.098  doi: 10.1016/j.electacta.2018.09.098

    16. [16]

      Liao, A. Z.; He, H. C.; Tang, L. Q.; Li, Y. C.; Zhang, J. J.; Chen, J. N.; Chen, L.; Zhang, C. F.; Zhou, Y.; Zou, Z. G. ACS Appl. Mater. Interfaces 2018, 10 (12), 10141. doi: 10.1021/acsami.8b00367  doi: 10.1021/acsami.8b00367

    17. [17]

      Hu, Y. W.; Zhu, J. S.; Yang, H.; Lyu, S. S.; Chen, J. Inorg. Chem. Commun. 2020, 117. doi: 10.1016/j.inoche.2020.107971  doi: 10.1016/j.inoche.2020.107971

    18. [18]

      Niu, S. Q.; Sun, Y. C.; Sun, G. J.; Rakov, D.; Li, Y. Z.; Ma, Y.; Chu, J. Y.; Xu, P. ACS Appl. Energy Mater. 2019, 2 (5), 3927. doi: 10.1021/acsaem.9b00785  doi: 10.1021/acsaem.9b00785

    19. [19]

      Wang, Y.; Ni, Y. M.; Wang, X.; Zhang, N.; Li, P. H.; Dong, J.; Liu, B.; Liu, J. H.; Cao, M. H.; Hu, C. W. ACS Appl. Energy Mater. 2018, 5725. doi: 10.1021/acsaem.8b01289  doi: 10.1021/acsaem.8b01289

    20. [20]

      Chen, J. D.; Zheng, F.; Zhang, S. J.; Fisher, A.; Zhou, Y.; Wang, Z. Y.; Li, Y.Y.; Xu, B. B.; Li, J. T.; Sun, S. G. ACS Catal. 2018, 8 (12), 11342. doi: 10.1021/acscatal.8b03489  doi: 10.1021/acscatal.8b03489

    21. [21]

      Chemelewski, W. D.; Lee, H. C.; Lin, J. F.; Bard, A. J.; Mullins, C. B. J. Am. Chem. Soc. 2014, 136 (7), 2843. doi: 10.1021/ja411835a  doi: 10.1021/ja411835a

    22. [22]

      Lee, J. M.; Baek, J. H.; Gill, T. M.; Shi, X.; Lee, S.; Cho, I. S.; Jung, H. S.; Zheng, X. J. Mater. Chem. A 2019, 7 (15), 9019. doi: 10.1039/c9ta00205g  doi: 10.1039/c9ta00205g

    23. [23]

      Tolstoy, V. P.; Kuklo, L. I.; Gulina, L. B. J. Alloy. Compd. 2019, 786, 198. doi: 10.1016/j.jallcom.2019.01.324  doi: 10.1016/j.jallcom.2019.01.324

    24. [24]

      Zhang, X. F.; Zhang, B. Y.; Liub, S. S.; Kang, H. W.; Kong, W. Q.; Zhang, S. R.; Shen, Y.; Yang, B. C. Appl. Surf. Sci. 2018, 436, 974. doi: 10.1016/j.apsusc.2017.12.078  doi: 10.1016/j.apsusc.2017.12.078

    25. [25]

      Zhou, S. Q.; Chen, K. Y.; Huang, J. W.; Wang, L.; Zhang, M. Y.; Bai, B.; Wang, Q. Z. Appl. Catal. B 2020, 266, 118513. doi: 10.1016/j.apcatb.2019.118513  doi: 10.1016/j.apcatb.2019.118513

    26. [26]

      Yang, X. D.; Xu, B.; Zhang, S. T.; Zhao, Z. H.; Sun, Y. Q.; Liu, G. N.; Liu, Q. S.; Li, C. C. Int. J. Hydrog. Energy 2020, 45 (16), 9546. doi: 10.1016/j.ijhydene.2020.01.159  doi: 10.1016/j.ijhydene.2020.01.159

    27. [27]

      Zheng, M. Y.; Guo, K. L.; Jiang, W. J.; T, T.; Wang, X. Y.; Zhou, P. P.; Du, J.; Zhao, Y. Q.; Xua, C. L.; Hu, J. S. Appl. Catal. B: Environ. 2019, 244, 1004. doi: 10.1016/j.apcatb.2018.12.019  doi: 10.1016/j.apcatb.2018.12.019

    28. [28]

      Yin, J.; Jin, J.; Lin, H.; Yin, Z.; Li, J.; Lu, M.; Guo, L.; Xi, P.; Tang, Y.; Yan, C. H. Adv. Sci. 2020, 7 (10), 1903070. doi: 10.1002/advs.201903070  doi: 10.1002/advs.201903070

    29. [29]

      Newman, S. P.; Jones, W. New J. Chem. 1998, 22 (2), 105. doi: 10.1039/a708319j  doi: 10.1039/a708319j

    30. [30]

      Yan, L. T.; Cao, L.; Dai, P. C.; Gu, X.; Liu, D. D.; Li, L. J.; Wang, Y.; Zhao, X. B. Adv. Funct. Mater. 2017, 27 (40). doi: 10.1002/adfm.201703455  doi: 10.1002/adfm.201703455

    31. [31]

      Zhang, X. H.; Cockreham, C. B.; Yilmaz, E.; Li, G. N.; Li, N. L.; Ha, S.; Fu, L. J.; Qi, J. Q.; Xu, H. W.; Wu, D. J. Phys. Chem. Lett. 2020, 11 (9), 3745. doi: 10.1021/acs.jpclett.0c00865  doi: 10.1021/acs.jpclett.0c00865

    32. [32]

      Fang, X. Q.; Han, S. C.; Liu, D. K.; Zhu, Y. F. Chem. Phys. Lett. 2020, 746, 137282. doi: 10.1016/j.cplett.2020.137282  doi: 10.1016/j.cplett.2020.137282

    33. [33]

      Chen, X.; Wang, H.; Meng, R.; Xia, B.; Ma, Z. ACS Appl. Energy Mater. 2020, 3 (2), 1305. doi: 10.1021/acsaem.9b02352  doi: 10.1021/acsaem.9b02352

    34. [34]

      Zhang, J.; Si, C. H.; Kou, T. Y.; Wang, J. F.; Zhang, Z. H. Sustain. Energ. Fuels 2020, 4 (6), 2625. doi: 10.1039/c9se01312a  doi: 10.1039/c9se01312a

    35. [35]

      Hu, Y. W.; Yang, H.; Chen, J. J.; Xiong, T. Z.; Balogun, M. S. J. T.; Tong, Y. X. ACS Appl. Mater. Interfaces 2019, 11 (5), 5152. doi: 10.1021/acsami.8b20717  doi: 10.1021/acsami.8b20717

    36. [36]

      Lewis, N. S. Science 2016, 351 (6271), aad1920. doi: 10.1126/science.aad1920  doi: 10.1126/science.aad1920

    37. [37]

      Chen, D.; Liu, Z. F.; Zhou, M.; Wu, P. D.; Wei, J. D. J. Alloy. Compd. 2018, 742, 918. doi: 10.1016/j.jallcom.2018.01.334  doi: 10.1016/j.jallcom.2018.01.334

    38. [38]

      Malathi A.; Madhavan J.; Ashokkumar, M.; Arunachalam, P. Appl. Catal. A: Gen. 2018, 555, 47. doi: 10.1016/j.apcata.2018.02.010  doi: 10.1016/j.apcata.2018.02.010

    39. [39]

      Ye, S.; Ding, C.; Chen, R.; Fan, F.; Fu, P.; Yin, H.; Wang, X.; Wang, Z.; Du, P.; Li, C. J. Am. Chem. Soc. 2018, 140 (9), 3250. doi: 10.1021/jacs.7b10662  doi: 10.1021/jacs.7b10662

    40. [40]

      Wang, Q.; He, J.; Shi, Y.; Zhang, S.; Niu, T.; She, H.; Bi, Y.; Lei, Z. Appl. Catal. B 2017, 214, 158. doi: 10.1016/j.apcatb.2017.05.044  doi: 10.1016/j.apcatb.2017.05.044

    41. [41]

      Wu, P.; Liu, Z.; Chen, D.; Zhou, M.; Wei, J. Appl. Surf. Sci. 2018, 440, 1101. doi: 10.1016/j.apsusc.2018.01.292  doi: 10.1016/j.apsusc.2018.01.292

    42. [42]

      Huang, J.; Yue, P.; Wang, L.; She, H.; Wang, Q. Chin. J. Catal. 2019, 40 (10), 1408. doi: 10.1016/s1872-2067(19)63399-1  doi: 10.1016/s1872-2067(19)63399-1

    43. [43]

      Shen, L. J.; Cao, Y. N.; Du, Z. J.; Zhao, W. T.; Lin, K.; Jiang, L. L. Appl. Surf. Sci. 2017, 425, 212. doi: 10.1016/j.apsusc.2017.06.295  doi: 10.1016/j.apsusc.2017.06.295

    44. [44]

      Guo, Y. D.; Li, C. X.; Gong, Z. H.; Guo, Y. P.; Wang, X. G.; Gao, B.; Qin, W. J.; Wang, G. H. J. Hazard. Mater. 2020, 397, 122580. doi: 10.1016/j.jhazmat.2020.122580  doi: 10.1016/j.jhazmat.2020.122580

    45. [45]

      Fu, X. H.; Jia, L. C.; Wang, A. L.; Cao, H. J.; Ling, Z. C.; Liu, C. Q.; Shi, E.; Wu, Z. C.; Li, B.; Zhang, J. Icarus 2020, 336, 113435. doi: 10.1016/j.icarus.2019.113435  doi: 10.1016/j.icarus.2019.113435

    46. [46]

      Fan, J. Y.; Zhao, Z. W.; Ding, Z. X.; Liu, J. RSC Adv. 2018, 8 (13), 7269. doi: 10.1039/c7ra12615h  doi: 10.1039/c7ra12615h

    47. [47]

      Fracchia, M.; Visibile, A.; Ahlberg, E.; Vertova, A.; Minguzzi, A.; Ghigna, P.; Rondinini, S. ACS Appl. Energy Mater. 2018, 1 (4), 1716. doi: 10.1021/acsaem.8b00209  doi: 10.1021/acsaem.8b00209

    48. [48]

      Lima, A. L. D.; Batalha, D. C.; Fajardo, H. V.; Rodrigues, J. L.; Pereira, M. C.; Silva, A. C. Catal. Today 2020, 344, 118. doi: 10.1016/j.cattod.2018.10.035  doi: 10.1016/j.cattod.2018.10.035

    49. [49]

      Wan, C.; Jiao, Y.; Qiang, T.; Li, J. Carbohydr. Polym. 2017, 156, 427. doi: 10.1016/j.carbpol.2016.09.028  doi: 10.1016/j.carbpol.2016.09.028

    50. [50]

      Hien, V. X.; Hung, P. T. Mat. Sci. Semicon. Proc. 2020, 107, 104857. doi: 10.1016/j.mssp.2019.104857  doi: 10.1016/j.mssp.2019.104857

    51. [51]

      Sakamoto, Y.; Noda, Y.; Ohno, K.; Koike, K.; Fujii, K.; Suzuki, T. M.; Morikawa, T.; Nakamura, S. Phys. Chem. Chem. Phys. 2019, 21 (34), 18486. doi: 10.1039/c9cp00 157c  doi: 10.1039/c9cp00157c

    52. [52]

      Huang, Z. X.; Han, F. S.; Li, M. T.; Zhou, Z. H.; Guan, X. J.; Guo, L. J. Comp. Mater. Sci. 2019, 169, 109110. doi: 10.1016/j.commatsci.2019.109110  doi: 10.1016/j.commatsci.2019.109110

    53. [53]

      Dutrizac, J. E.; Soriano, C. Hydrometallurgy 2018, 176, 87. doi: 10.1016/j.hydromet.2018.01.015  doi: 10.1016/j.hydromet.2018.01.015

    54. [54]

      Fortunato, L. F.; Zubieta, C. E.; Fuente, S. A.; Belelli, P. G.; Ferullo, R. M. Appl. Surf. Sci. 2016, 387, 894. doi: 10.1016/j.apsusc.2016.07.011  doi: 10.1016/j.apsusc.2016.07.011

    55. [55]

      Yin, H.; Wu, Y. L.; Hou, J. T.; Yan, X. R.; Li, Z. H.; Zhu, C. W.; Zhang, J.; Feng, X. H.; Tan, W. F.; Liu, F. Chem. Geol. 2020, 532. doi: 10.1016/j.chemgeo.2019.119378  doi: 10.1016/j.chemgeo.2019.119378

    56. [56]

      Suzuki, T. M.; Nonaka, T.; Suda, A.; Suzuki, N.; Matsuoka, Y.; Arai, T.; Sato, S.; Morikawa, T. Sustain. Energ. Fuels 2017, 1 (3), 636. doi: 10.1039/c7se00043j  doi: 10.1039/c7se00043j

    57. [57]

      Snow, C. L.; Smith, S. J.; Lang, B. E.; Shi, Q.; Boerio-Goates, J.; Woodfield, B. F.; Navrotsky, A. J. Chem. Thermodyn. 2011, 43 (2), 190. doi: 10.1016/j.jct.2010.08.022  doi: 10.1016/j.jct.2010.08.022

    58. [58]

      Li, Z. Y.; Liu, G. G.; Su, Q.; Jin, X. Y.; Wen, X. Q.; Zhang, G. J.; Huang, R. Arab. J. Chem. 2018, 11 (6), 910. doi: 10.1016/j.arabjc.2018.02.005  doi: 10.1016/j.arabjc.2018.02.005

    59. [59]

      Yang, L. S.; Liu, Y.; Li, J. B.; Du, G. P. J. Alloy. Compd. 2018, 763, 134. doi: 10.1016/j.jallcom.2018.05.305  doi: 10.1016/j.jallcom.2018.05.305

    60. [60]

      Wang, Y. C.; Gu, Y.; Li, H. M.; Ye, M. X.; Qin, W. X.; Zhang, H. M.; Wang, G. Z.; Zhang, Y. X.; Zhao, H. J. Chem. Eng. J. 2020, 392. doi: 10.1016/j.cej.2019.123773  doi: 10.1016/j.cej.2019.123773

    61. [61]

      Ma, P.; Luo, S.; Luo, Y.; Huang, X.; Yang, M.; Zhao, Z.; Yuan, F.; Chen, M.; Ma, J. J. Colloid Interface Sci. 2020, 574, 241. doi: 10.1016/j.jcis.2020.04.058  doi: 10.1016/j.jcis.2020.04.058

    62. [62]

      Chowdhury, D. R.; Spiccia, L.; Amritphale, S. S.; Paul, A.; Singh, A. J. Mater. Chem. A 2016, 4 (10), 3655. doi: 10.1039/c6ta00313c  doi: 10.1039/c6ta00313c

    63. [63]

      Lee, J.; Lee, H.; Lim, B. J. Ind. Eng. Chem. 2018, 58, 100. doi: 10.1016/j.jiec.2017.09.013  doi: 10.1016/j.jiec.2017.09.013

    64. [64]

      Yaw, C. S.; Tang, J.; Soh, A. K.; Chong, M. N. Chem. Eng. J. 2020, 380. doi: 10.1016/j.cej.2019.122501  doi: 10.1016/j.cej.2019.122501

    65. [65]

      Wang, L.; Nguyen, N. T.; Zhang, Y.; Bi, Y.; Schmuki, P. ChemSusChem 2017, 10 (13), 2720. doi: 10.1002/cssc.201700522  doi: 10.1002/cssc.201700522

    66. [66]

      Kanan, M. W.; Nocera, D. G. Science 2008, 321 (5892), 1072. doi: 10.1126/science.1162018  doi: 10.1126/science.1162018

    67. [67]

      Shi, X. J.; Zhang, K.; Park, J. H. Int. J. Hydrog. Energy 2013, 38 (29), 12725. doi: 10.1016/j.ijhydene.2013.07.057  doi: 10.1016/j.ijhydene.2013.07.057

    68. [68]

      Ponomarev, E. A.; Peter, L. M. J. Electroanal. Chem. 1995, 396 (1-2), 219. doi: 10.1016/0022-0728(95)04115-5  doi: 10.1016/0022-0728(95)04115-5

    69. [69]

      Zhan, F. Q.; Yang, Y. H.; Liu, W. H.; Wang, K. K.; Li, W. Z.; Li, J. ACS Sustain. Chem. Eng. 2018, 6 (6), 7789. doi: 10.1021/acssuschemeng.8b00776  doi: 10.1021/acssuschemeng.8b00776

    70. [70]

      Xiao, J. R.; Fan, L. L.; Huang, Z. L.; Zhong, J.; Zhao, F. G.; Xu, K. J.; Zhou, S. F.; Zhan, G. W. Chin. J. Catal. 2020, 41 (11), 1761. doi: 10.1016/s1872-2067(20)63618-x  doi: 10.1016/s1872-2067(20)63618-x

    71. [71]

      Jian, J. X.; Shi, Y. C.; Syväjärvi, M.; Yakimova, R.; Sun, J. W. Sol. RRL 2019, 4 (1), 1900364. doi: 10.1002/solr.201900364  doi: 10.1002/solr.201900364

    72. [72]

      Zhang, B.; Wang, L.; Zhang, Y.; Ding, Y.; Bi, Y. Angew. Chem. Int. Ed. 2018, 57 (8), 2248. doi: 10.1002/anie.201712499  doi: 10.1002/anie.201712499

    73. [73]

      She, H.D.; Yue, P. F.; Huang, J. W; Wang, L.; Wang, Q. Z. Chem. Eng. J. 2020, 392. doi: 10.1016/j.cej.2019.123703  doi: 10.1016/j.cej.2019.123703

    74. [74]

      Wang, L.; Yang, Y.; Zhang, Y. J.; Rui, Q.; Zhang, B. B.; Shen, Z. Q.; Bi, Y. P. J. Mater. Chem. A 2017, 5 (32), 17056. doi: 10.1039/c7ta05318e  doi: 10.1039/c7ta05318e

    75. [75]

      Bazri, B.; Kowsari, E.; Seifvand, N.; Naseri, N. J. Electroanal. Chem. 2019, 843, 1. doi: 10.1016/j.jelechem.2019.04.069  doi: 10.1016/j.jelechem.2019.04.069

    76. [76]

      Zhang, X. F.; Li, H.; Kong, W. Q.; Liu, H. L.; Fan, H. B.; Wang, M. K. Electrochim. Acta 2019, 300, 77. doi: 10.1016/j.electacta.2019.01.073  doi: 10.1016/j.electacta.2019.01.073

    77. [77]

      Singh, A. P.; Saini, N.; Mehta, B. R.; Hellman, A.; Iandolo, B.; Wickman, B. Catal. Today 2019, 321-322, 87. doi: 10.1016/j.cattod.2018.03.041  doi: 10.1016/j.cattod.2018.03.041

    78. [78]

      Zhou, M.; Liu, Z. H.; Li, X. F.; Liu, Z. F. Ind. Eng. Chem. Res. 2018, 57 (18), 6210. doi: 10.1021/acs.iecr.8b00358  doi: 10.1021/acs.iecr.8b00358

    79. [79]

      Chen, D.; Liu, Z.; Zhang, S. Appl. Catal. B: Environ. 2020, 265. doi: 10.1016/j.apcatb.2019.118580  doi: 10.1016/j.apcatb.2019.118580

    80. [80]

      Abel, A. J.; Patel, A. M.; Smolin, S. Y.; Opasanont, B.; Baxter, J. B. J. Mater. Chem. A 2016, 4 (17), 6495. doi: 10.1039/c6ta01862a  doi: 10.1039/c6ta01862a

    81. [81]

      Li, Z. H.; Feng, S. L.; Liu, S. Y.; Li, X.; Wang, L.; Lu, W. Q. Nanoscale 2015, 7 (45), 19178. doi: 10.1039/c5nr06212h  doi: 10.1039/c5nr06212h

    82. [82]

      Deng, J. J.; Zhang, Q. Z.; Feng, K.; Lan, H. W.; Zhong, J.; Chaker, M.; Ma, D. ChemSusChem 2018, 11 (21), 3783. doi: 10.1002/cssc.201801751  doi: 10.1002/cssc.201801751

    83. [83]

      Huang, J. W.; Ding, Y.; Luo, X.; Feng, Y. Y. J. Catal. 2016, 333, 200. doi: 10.1016/j.jcat.2015.11.003  doi: 10.1016/j.jcat.2015.11.003

    84. [84]

      Yan, J. Q.; Li, P.; Ji, Y. J.; Bian, H.; Li, Y. Y.; Liu, S. Z. J. Catal. 2017, 5 (40), 21478. doi: 10.1039/c7ta07208b  doi: 10.1039/c7ta07208b

    85. [85]

      Ma, Z. Z.; Hou, H. L.; Song, K.; Fang, Z.; Wang, L.; Gao, F. M.; Yang, Z. B.; Tang, B.; Yang, W. Y. ChemElectroChem 2018, 5 (23), 3660. doi: 10.1002/celc.201801233  doi: 10.1002/celc.201801233

    86. [86]

      Shi, Q.; Liu, Q.; Ma, Y.; Fang, Z.; Liang, Z.; Shao, G.; Tang, B.; Yang, W.; Qin, L.; Fang, X. Adv. Energy Mater. 2020, 10 (10). doi: 10.1002/aenm.201903854  doi: 10.1002/aenm.201903854

    87. [87]

      Zeng, G. H.; Hou, L. Q.; Zhang, J.; Zhu, J. Q.; Yu, X.; Fu, X. H.; Zhu, Y.; Zhang, Y. M. ChemCatChem 2020, 12, 3769. doi: 10.1002/cctc.202000382  doi: 10.1002/cctc.202000382

    88. [88]

      Kim, J. Y.; Youn, D. H.; Kang, K.; Lee, J. S. Angew. Chem. Int. Ed. 2016, 55 (36), 10854. doi: 10.1002/anie.201605924  doi: 10.1002/anie.201605924

    89. [89]

      Rosenberg, S. P.; Armstrong, L. Light Metals 2016, 1, 235. doi: 10.1007/978-3-319-48176-0_31  doi: 10.1007/978-3-319-48176-0_31

    90. [90]

      She, H. D.; Yue, P. F.; Ma, X. Y.; Huang, J. W.; Wang, L.; Wang, Q. Z. Appl. Catal. B. 2020, 263, 118280. doi: 10.1016/j.apcatb.2019.118280  doi: 10.1016/j.apcatb.2019.118280

    91. [91]

      Reichle, W. T. Solid State Ion 1986, 22 (1), 135. doi: 10.1016/0167-2738(86)90067-6  doi: 10.1016/0167-2738(86)90067-6

    92. [92]

      Vanderlaan, R. K.; White, J. L.; Hem, S. L. J. Pharm. Sci. 1982, 71 (7), 780. doi: 10.1002/jps.2600710715  doi: 10.1002/jps.2600710715

    93. [93]

      Allmann, R. J. H. P. Neues Jahrb. Miner. Monatsh. 1969, 12, 544. doi: 10.1016/0927-7757(96)03542-X  doi: 10.1016/0927-7757(96)03542-X

    94. [94]

      Taylor, H. F. W. Mineral. Mag. 1969, 37, 338. doi: 10.1107/S0567740870002443  doi: 10.1107/S0567740870002443

    95. [95]

      Pachayappan, L.; Nagendran, S.; Kamath, P. V. Cryst. Growth Des. 2017, 17 (5), 2536. doi: 10.1021/acs.cgd.7b00071  doi: 10.1021/acs.cgd.7b00071

    96. [96]

      Dewangan, N.; Hui, W. M.; Jayaprakash, S.; Bawah, A.-R.; Poerjoto, A. J.; Jie, T.; Jangam, A.; Hidajat, K.; Kawi, S. Catal. Today 2020, 356, 490. doi: 10.1016/j.cattod.2020.06.020  doi: 10.1016/j.cattod.2020.06.020

    97. [97]

      Guo, J.; Yang, X.; Bai, S.; Xiang, X.; Luo, R.; He, J.; Chen, A. J. Colloid Interface Sci. 2019, 540, 9. doi: 10.1016/j.jcis.2018.12.069  doi: 10.1016/j.jcis.2018.12.069

    98. [98]

      Fan, G.; Li, F.; Evans, D. G.; Duan, X. Chem. Soc. Rev. 2014, 43 (20), 7040. doi: 10.1039/c4cs00160e  doi: 10.1039/c4cs00160e

    99. [99]

      Gao, R.; Yan, D. Adv. Energy Mater. 2019, 10 (11). doi: 10.1002/aenm.201900954  doi: 10.1002/aenm.201900954

    100. [100]

      Wang, Q.; O'Hare, D. Chem. Rev. 2012, 112 (7), 4124. doi: 10.1021/cr200434v  doi: 10.1021/cr200434v

    101. [101]

      Zhou, W.; Jiang, T.; Zhao, Y.; Xu, C.; Pei, C.; Xue, H. J. Colloid Interface Sci. 2019, 549, 42. doi: 10.1016/j.jcis.2019.04.026  doi: 10.1016/j.jcis.2019.04.026

    102. [102]

      Youn, D. H.; Park, Y. B.; Kim, J. Y.; Magesh, G.; Jang, Y. J.; Lee, J. S. J. Power Sources 2015, 294, 437. doi: 10.1016/j.jpowsour.2015.06.098  doi: 10.1016/j.jpowsour.2015.06.098

    103. [103]

      Wang, Q.; Niu, T.; Wang, L.; Huang, J.; She, H. Chin. J. Catal. 2018, 39 (4), 613. doi: 10.1016/s1872-2067(17) 62987-5  doi: 10.1016/s1872-2067(17)62987-5

    104. [104]

      Lv, X. W.; Xiao, X.; Cao, M. L.; Bu, Y.; Wang, C. Q.; Wang, M. K.; Shen, Y. Appl. Surf. Sci. 2018, 439, 1065. doi: 10.1016/j.apsusc.2017.12.182  doi: 10.1016/j.apsusc.2017.12.182

    105. [105]

      Zhu, Y.; Ren, J.; Yang, X.; Chang, G.; Bu, Y.; Wei, G.; Han, W.; Yang, D. J. Mater. Chem. A 2017, 5 (20), 9952. doi: 10.1039/c7ta02179h  doi: 10.1039/c7ta02179h

    106. [106]

      Bai, S.; Yang, X.; Liu, C.; Xiang, X.; Luo, R.; He, J.; Chen, A. ACS Sustain. Chem. Eng. 2018, 6 (10), 12906. doi: 10.1021/acssuschemeng.8b02267  doi: 10.1021/acssuschemeng.8b02267

    107. [107]

      Chen, H.; Wang, S.; Wu, J.; Zhang, X.; Zhang, J.; Lyu, M.; Luo, B.; Qian, G.; Wang, L. J. Mater. Chem. A 2020, 8 (26), 13231. doi: 10.1039/d0ta04572a  doi: 10.1039/d0ta04572a

    108. [108]

      Ning, F.; Shao, M.; Xu, S.; Fu, Y.; Zhang, R.; Wei, M.; Evans, D. G.; Duan, X. Energy Environ. Sci. 2016, 9 (8), 2633. doi: 10.1039/c6ee01092j  doi: 10.1039/c6ee01092j

    109. [109]

      Guo, J.; Mao, C. Y.; Zhang, R. K.; Shao, M. F.; Wei, M.; Feng, P. Y. J. Mater. Chem. A 2017, 5 (22), 11016. doi: 10.1039/c7ta00770a  doi: 10.1039/c7ta00770a

    110. [110]

      Sayed, R. A.; Abd El Hafiz, S. E.; Gamal, N.; GadelHak, Y.; El Rouby, W. M. A. J. Alloy. Compd. 2017, 728, 1171. doi: 10.1016/j.jallcom.2017.09.083  doi: 10.1016/j.jallcom.2017.09.083

    111. [111]

      Arif, M.; Yasin, G.; Shakeel, M.; Mushtaq, M. A.; Ye, W.; Fang, X.; Ji, S.; Yan, D. Mater. Chem. Front. 2019, 3 (3), 520. doi: 10.1039/c8qm00677f  doi: 10.1039/c8qm00677f

    112. [112]

      Cui, W. C.; Bai, H. Y.; Shang, J. P.; Wang, F. G.; Xu, D. B.; Ding, J. R.; Fan, W. Q.; Shi, W. D. Electrochim. Acta 2020, 349, 136383. doi: 10.1016/j.electacta.2020.136383  doi: 10.1016/j.electacta.2020.136383

    113. [113]

      Zhu, Y.; Zhao, X.; Li, J.; Zhang, H.; Chen, S.; Han, W.; Yang, D. J. Alloy. Compd. 2018, 764, 341. doi: 10.1016/j.jallcom.2018.06.064  doi: 10.1016/j.jallcom.2018.06.064

    114. [114]

      Huang, J. W.; Hu, G. W; Ding, Y.; Pang, M. C.; Ma, B. C. J. Catal. 2016, 340, 261. doi: 10.1016/j.jcat.2016.05.007  doi: 10.1016/j.jcat.2016.05.007

    115. [115]

      AlSalka, Y.; Granone, L. I.; Ramadan, W.; Hakki, A.; Dillert, R.; Bahnemann, D. W. Appl. Catal. B: Environ. 2019, 244, 1065. doi: 10.1016/j.apcatb.2018.12.014  doi: 10.1016/j.apcatb.2018.12.014

    116. [116]

      Singh, D.; Tabari, T.; Ebadi, M.; Trochowski, M.; Baris Yagci, M.; Macyk, W. Appl. Surf. Sci. 2019, 471, 1017. doi: 10.1016/j.apsusc. 2018.12.082  doi: 10.1016/j.apsusc.2018.12.082

    117. [117]

      Lam, S. M.; Sin, J. C.; Mohamed, A. R. Mater. Res. Bull. 2017, 90, 15. doi: 10.1016/j.materresbull.2016.12.052  doi: 10.1016/j.materresbull.2016.12.052

    118. [118]

      McDonnell, K. A.; Wadnerkar, N.; English, N. J.; Rahman, M.; Dowling, D. Chem. Phys. Lett. 2013, 572, 78. doi: 10.1016/j.cplett. 2013.04.024  doi: 10.1016/j.cplett.2013.04.024

    119. [119]

      Chen, G.; Zhu, Y.; Chen, H. M.; Hu, Z.; Hung, S. F.; Ma, N.; Dai, J.; Lin, H. J.; Chen, C. T.; Zhou, W.; et al. Adv Mater. 2019, 31 (28), 1900883. doi: 10.1002/adma.201900883  doi: 10.1002/adma.201900883

    120. [120]

      Wang, W.; Xu, M. G.; Xu, X. M.; Zhou, W.; Shao, Z. P. Angew. Chem. Int. Ed. 2020, 59 (1), 136. doi: 10.1002/anie.201900292  doi: 10.1002/anie.201900292

    121. [121]

      Huang, Y.; Liu, J.; Deng, Y.; Qian, Y.; Jia, X.; Ma, M.; Yang, C.; Liu, K.; Wang, Z.; Qu, S.; et al. J. Semicond. 2020, 41 (1), 011701. doi: 10.1088/1674-4926/41/1/011701  doi: 10.1088/1674-4926/41/1/011701

    122. [122]

      Han, B.; Grimaud, A.; Giordano, L.; Hong, W. T.; Diaz-Morales, O.; Yueh-Lin, L.; Hwang, J.; Charles, N.; Stoerzinger, K. A.; Yang, W.; et al. J. Phys. Chem. C 2018, 122 (15), 8445. doi: 10.1021/acs.jpcc.8b01397  doi: 10.1021/acs.jpcc.8b01397

    123. [123]

      Wang, Z.; Tan, S. P.; Xiong, Y. P.; Wei, J. H. Prog. Nat. Sci. Mater. 2018, 28 (4), 399. doi: 10.1016/j.pnsc.2018.03.002  doi: 10.1016/j.pnsc.2018.03.002

    124. [124]

      Khan, R.; Mehran, M. T.; Naqvi, S. R.; Khoja, A. H.; Mahmood, K.; Shahzad, F.; Hussain, S. Int. J. Energy Res. 2020, 44 (12), 9714. doi: 10.1002/er.5635  doi: 10.1002/er.5635

    125. [125]

      Hu, C.; Bai, Y.; Xiao, S.; Zhang, T.; Meng, X.; Ng, W. K.; Yang, Y.; Wong, K. S.; Chen, H.; Yang, S. J. Mater. Chem. A 2017, 5 (41), 21858. doi: 10.1039/C7TA07139F  doi: 10.1039/C7TA07139F

    126. [126]

      Wu, X.; Li, H.; Wang, X.; Jiang, L.; Xi, J.; Du, G.; Ji, Z. J. Alloy. Compd. 2019, 783, 643. doi: 10.1016/j.jallcom.2018.12.345  doi: 10.1016/j.jallcom.2018.12.345

    127. [127]

      Xie, J. L.; Guo, C. X.; Yang, P. P.; Wang, X. D.; Liu, D. Y.; Li, C. M. Nano Energy 2017, 31, 28. doi: 10.1016/j.nanoen.2016.10.048  doi: 10.1016/j.nanoen.2016.10.048

    128. [128]

      Khoomortezaei, S.; Abdizadeh, H.; Golobostanfard, M. R. ACS Appl. Energy Mater. 2019, 2 (9), 6439. doi: 10.1021/acsaem.9b01041  doi: 10.1021/acsaem.9b01041

  • 加载中
    1. [1]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    2. [2]

      Shuai Liu Wen Wu Peili Zhang Yunxuan Ding Chang Liu Yu Shan Ke Fan Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535

    3. [3]

      Hailang DengAbebe Reda WolduAbdul QayumZanling HuangWeiwei ZhuXiang PengPaul K. ChuLiangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892

    4. [4]

      Jiawei GeXian WangHeyuan TianHao WanWei MaJiangying QuJunjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906

    5. [5]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    6. [6]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    7. [7]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    8. [8]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    9. [9]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    10. [10]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    11. [11]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    12. [12]

      Genxiang WangLinfeng FanPeng WangJunfeng WangFen QiaoZhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498

    13. [13]

      Chupeng LuoKeying SuShan YangYujia LiangYawen TangXiaoyu Qiu . Ultrathin NiS2 nanocages with hierarchical-flexible walls and rich grain boundaries for efficient oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(5): 109940-. doi: 10.1016/j.cclet.2024.109940

    14. [14]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    15. [15]

      Qing LiYumei FengYingjie YuYazhou ChenYuhua XieFang LuoZehui Yang . Engineering eg filling of RuO2 enables a robust and stable acidic water oxidation. Chinese Chemical Letters, 2025, 36(3): 110612-. doi: 10.1016/j.cclet.2024.110612

    16. [16]

      Bin ZhaoHeping LuoJiaqing LiuSha ChenHan XuYu LiaoXue Feng LuYan QingYiqiang Wu . S-doped carbonized wood fiber decorated with sulfide heterojunction-embedded S, N-doped carbon microleaf arrays for efficient high-current-density oxygen evolution. Chinese Chemical Letters, 2025, 36(5): 109919-. doi: 10.1016/j.cclet.2024.109919

    17. [17]

      Yanjie LiChaoqun QuSiqi MengJiaqi HuZe GaoHongji XuRui GaoMing Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872

    18. [18]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    19. [19]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    20. [20]

      Yunlong LiXinyu ZhangShuang LiuChunsheng LiQiang WangJin YeYong LuJiating Xu . Engineered iron-based metal-organic frameworks nanoplatforms for cancer theranostics: A mini review. Chinese Chemical Letters, 2025, 36(2): 110501-. doi: 10.1016/j.cclet.2024.110501

Metrics
  • PDF Downloads(8)
  • Abstract views(401)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return