Citation: Qiu Xiaoguang, Liu Wei, Liu Jiuding, Li Junzhi, Zhang Kai, Cheng Fangyi. Nucleation Mechanism and Substrate Modification of Lithium Metal Anode[J]. Acta Physico-Chimica Sinica, ;2021, 37(1): 200901. doi: 10.3866/PKU.WHXB202009012 shu

Nucleation Mechanism and Substrate Modification of Lithium Metal Anode

  • Corresponding author: Cheng Fangyi, fycheng@nankai.edu.cn
  • Received Date: 2 September 2020
    Revised Date: 22 September 2020
    Accepted Date: 23 September 2020
    Available Online: 9 October 2020

    Fund Project: the Ministry of Science and Technology 2016YFA0202500Young Elite Scientists Sponsorship Program by CAST 2019QNRC001the Ministry of Science and Technology 2017YFA0206702the National Natural Science Foundation of China 21835004The project was supported by the Ministry of Science and Technology (2017YFA0206702, 2016YFA0202500), the National Natural Science Foundation of China (21925503, 21835004), and Young Elite Scientists Sponsorship Program by CAST (2019QNRC001)the National Natural Science Foundation of China 21925503

  • Li is highly attractive anode material for next-generation high-energy-density batteries, such as Li-air, Li-sulfur, and solid-state Li-based systems because of its exceedingly low electrode potential (-3.04 V vs the standard hydrogen electrode) and ultra-high theoretical capacity (3860 mAh-g-1). However, Li metal anodes and Li-based batteries are plagued by issues, including unstable solid electrolyte interface (SEI), dead Li formation, and uncontrollable dendritic growth. These limitations result in low cycling stability and could induce short circuits, thermal runaway, and safety hazards. In recent years, a variety of efficient strategies have been proposed to alleviate the challenges faced by Li anodes. For example, the design of Li-free anodes (with Li supplied from the lithiated cathode) or Li-composite anodes has attracted significant attention. Their population can be ascribed to the use of non-excessive Li metal that could be potentially safer and easier to produce. In Li-free and Li-composite anodes, the initial nucleation sites play a crucial role in influencing the subsequent Li electroplating behavior. Stable, homogenous Li electrodeposition is crucial for improving Coulomb efficiency and inhibiting dendrite formation. Moreover, it is also desirable to explore the nucleation and growth mechanism of Li metal on substrates or current collectors. Therefore, in this article, we aim to provide an overview of the mechanism of Li nucleation and strategies to enhance Li metal batteries via substrate modification. The mechanisms of Li nucleation are discussed in terms of nucleation-driven forces and the relation between nuclei size/distribution and overpotential/current density. Heterogeneous nucleation and Chazalviel space charge models are introduced to describe the deposition behaviors of Li in the initial nucleation stage. In the heterogeneous nucleation process, the formation of Li nuclei and its kinetics depend on the nucleation barrier, which correlates with the properties of substrates, such as their crystal structure, lattice matching, facets, and defects. The space charge model can be applied to low-concentration electrolytes or rapid Li deposition, where the decrease in ion concentration on the electrode surface induces a localized space charge and polarized electric field. This subsequently affects the microstructure and morphology of the deposited Li. After discussing the nucleation mechanism and substrate effect, strategies to stabilize nucleation and suppress dendrite are highlighted, such as three-dimensional frameworks, heterogeneous crystal nuclei, Li storage buffer layers, electric field effects, and lattice matching engineering. Information gained from the perspective of Li nucleation and the substrate effect might enlighten the development of strategies to upgrade metallic Li anodes for application in Li-based batteries.
  • 加载中
    1. [1]

      Liu, J.; Bao, Z.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q.; Liaw, B. Y.; Liu, P.; Manthiram, A.; et al. Nat. Energy 2019, 4, 180. doi: 10.1038/s41560-019-0338-x  doi: 10.1038/s41560-019-0338-x

    2. [2]

      Liu, Y.; Zhu, Y.; Cui, Y. Nat. Energy 2019, 4, 540. doi: 10.1038/s41560-019-0405-3  doi: 10.1038/s41560-019-0405-3

    3. [3]

      Wang, L.; Wu, Z.; Zou, J.; Gao, P.; Niu, X.; Li, H.; Chen, L. Joule 2019, 3, 2086. doi: 10.1016/j.Joule2019.07.011  doi: 10.1016/j.Joule2019.07.011

    4. [4]

      Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587. doi: 10.1021/cm901452z  doi: 10.1021/cm901452z

    5. [5]

      Cheng, F.; Liang, J.; Tao, Z.; Chen, J. Adv. Mater. 2011, 23, 1695. doi: 10.1002/adma.201003587  doi: 10.1002/adma.201003587

    6. [6]

      Martin, C.; Genovese, M.; Louli, A. J.; Weber, R.; Dahn, J. R. Joule 2020, 4, 1296. doi: 10.1016/j.Joule2020.04.003  doi: 10.1016/j.Joule2020.04.003

    7. [7]

      Zhang, P.; Zhao, Y.; Zhang, X. Chem. Soc. Rev. 2018, 47, 2921. doi: 10.1039/c8cs00009c  doi: 10.1039/c8cs00009c

    8. [8]

      Qu, G.; Tan, J.; Wu, H.; Yu, Z.; Zhang, S.; Liu, G.; Zheng, G. W.; Tian, B.; Su, C. ACS Appl. Mater. Interfaces 2020, 12, 23867. doi: 10.1021/acsami.0c03621  doi: 10.1021/acsami.0c03621

    9. [9]

      Zhu, G. L.; Zhao, C. Z.; Yuan, H.; Nan, H. X.; Zhao, B. C.; Hou, L. P.; He, C. X.; Liu, Q. B.; Huang, J. Q. Acta Phys. -Chim. Sin. 2021, 37, 2005003.  doi: 10.3866/PKU.WHXB202005003

    10. [10]

      Ghazi, Z. A.; Sun, Z.; Sun, C.; Qi, F.; An, B.; Li, F.; Cheng, H. M. Small 2019, 15, e1900687. doi: 10.1002/smll.201900687  doi: 10.1002/smll.201900687

    11. [11]

      Xie, Z.; Wu, Z.; An, X.; Yue, X.; Wang, J.; Abudula, A.; Guan, G. Energy Storage Mater. 2020, 32, 386. doi: 10.1016/j.ensm.2020.07.004  doi: 10.1016/j.ensm.2020.07.004

    12. [12]

      Ju, Z.; Nai, J.; Wang, Y.; Liu, T.; Zheng, J.; Yuan, H.; Sheng, O.; Jin, C.; Zhang, W.; Jin, Z.; et al. Nat. Commun. 2020, 11, 488. doi: 10.1038/s41467-020-14358-1  doi: 10.1038/s41467-020-14358-1

    13. [13]

      Chen, X.; Bai, Y. K.; Zhao, C. Z.; Shen, X.; Zhang, Q. Angew. Chem. Int. Ed. 2020, 59, 11192. doi: 10.1002/anie.201915623  doi: 10.1002/anie.201915623

    14. [14]

      Yue, X, Y.; Ma, C.; Bao, J.; Yang, S, Y.; Chen, D.; Wu, X, J.; Zhou, Y, N. Acta Phys. -Chim. Sin. 2021, 37, 2005012.  doi: 10.3866/PKU.WHXB202005012

    15. [15]

      Liu, F, F.; Zhang, Z, W.; Ye, S, F.; Yao, Y.; Yu, Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021.  doi: 10.3866/PKU.WHXB202006021

    16. [16]

      Wang, Z.; Qi, F.; Yin, L.; Shi, Y.; Sun, C.; An, B.; Cheng, H. M.; Li, F. Adv. Energy Mater. 2020, 10, 1903843. doi: 10.1002/aenm.201903843  doi: 10.1002/aenm.201903843

    17. [17]

      Liu, J.; Wang, Y.; Liu, F.; Cheng, F.; Chen, J. J. Energy Chem. 2020, 42, 1. doi: 10.1016/j.jechem.2019.05.017  doi: 10.1016/j.jechem.2019.05.017

    18. [18]

      Chen, J.; Fan, X.; Li, Q.; Yang, H.; Khoshi, M. R.; Xu, Y.; Hwang, S.; Chen, L.; Ji, X.; Yang, C.; et al. Nat. Energy 2020. doi: 10.1038/s41560-020-0601-1  doi: 10.1038/s41560-020-0601-1

    19. [19]

      Biswal, P.; Stalin, S.; Kludze, A.; Choudhury, S.; Archer, L. A. Nano Lett. 2019, 19, 8191. doi: 10.1021/acs.nanolett.9b03548  doi: 10.1021/acs.nanolett.9b03548

    20. [20]

      Thirumalraj, B.; Hagos, T. T.; Huang, C. J.; Teshager, M. A.; Cheng, J. H.; Su, W. N.; Hwang, B. J. J. Am. Chem. Soc. 2019, 141, 18612. doi: 10.1021/jacs.9b10195  doi: 10.1021/jacs.9b10195

    21. [21]

      Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nano Lett. 2017, 17, 1132. doi: 10.1021/acs.nanolett.6b04755  doi: 10.1021/acs.nanolett.6b04755

    22. [22]

      Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J. G. Energy Environ. Sci. 2014, 7, 513. doi: 10.1039/c3ee40795k  doi: 10.1039/c3ee40795k

    23. [23]

      Brissot, C.; Rosso, M.; Chazalviel, J. N.; Lascaud, S. J. Power Sources 1999, 81, 925. doi: 10.1016/s0378-7753(98)00242-0  doi: 10.1016/s0378-7753(98)00242-0

    24. [24]

      Rosso, M.; Brissot, C.; Teyssot, A.; Dolle, M.; Sannier, L.; Tarascon, J. M.; Bouchetc, R.; Lascaud, S. Electrochim. Acta 2006, 51, 5334. doi: 10.1016/j.electacta.2006.02.004  doi: 10.1016/j.electacta.2006.02.004

    25. [25]

      Ely, D. R.; García, R. E. J. Electrochem. Soc. 2013, 160, A662. doi: 10.1149/1.057304jes  doi: 10.1149/1.057304jes

    26. [26]

      Sun, X.; Zhang, X.; Ma, Q.; Guan, X.; Wang, W.; Luo, J. Angew. Chem. Int. Ed. 2020, 59, 6665. doi: 10.1002/anie.201912217  doi: 10.1002/anie.201912217

    27. [27]

      Pande, V.; Viswanathan, V. ACS Energy Lett. 2019, 4, 2952. doi: 10.1021/acsenergylett.9b02306  doi: 10.1021/acsenergylett.9b02306

    28. [28]

      Chazalviel, J. N. Phys. Rev. A 1990, 42, 7355. doi: 10.1103/PhysRevA.42.7355  doi: 10.1103/PhysRevA.42.7355

    29. [29]

      Liu, Z, F. Acta Phys. -Chim. Sin. 2019, 35, 1293.  doi: 10.3866/PKU.WHXB201906040

    30. [30]

      Shi, Y.; Wang, Z.; Gao, H.; Niu, J.; Ma, W.; Qin, J.; Peng, Z.; Zhang, Z. J. Mater. Chem. A 2019, 7, 1092. doi: 10.1039/c8ta09384a  doi: 10.1039/c8ta09384a

    31. [31]

      Zhang, D.; Dai, A.; Wu, M.; Shen, K.; Xiao, T.; Hou, G.; Lu, J.; Tang, Y. ACS Energy Lett. 2019, 5, 180. doi: 10.1021/acsenergylett.9b01987  doi: 10.1021/acsenergylett.9b01987

    32. [32]

      Zhai, P.; Wei, Y.; Xiao, J.; Liu, W.; Zuo, J.; Gu, X.; Yang, W.; Cui, S.; Li, B.; Yang, S.; Gong, Y. Adv. Energy Mater. 2020, 10, 1903339. doi: 10.1002/aenm.201903339  doi: 10.1002/aenm.201903339

    33. [33]

      Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Nat. Commun. 2015, 6, 8058. doi: 10.1038/ncomms9058  doi: 10.1038/ncomms9058

    34. [34]

      Zhang, Q. Acta Phys. -Chim. Sin. 2017, 33, 1275.  doi: 10.3866/PKU.WHXB201705021

    35. [35]

      Wang, H.; Wu, J.; Yuan, L.; Li, Z.; Huang, Y. ACS Appl. Mater. Interfaces 2020, 12, 28337. doi: 10.1021/acsami.0c08029  doi: 10.1021/acsami.0c08029

    36. [36]

      Shi, H.; Zhang, C. J.; Lu, P.; Dong, Y.; Wen, P.; Wu, Z. S. ACS Nano 2019, 13, 14308. doi: 10.1021/acsnano.9b07710  doi: 10.1021/acsnano.9b07710

    37. [37]

      Meng, J. K.; Wang, W. W.; Yue, X. Y.; Xia, H. Y.; Wang, Q. C.; Wang, X. X.; Fu, Z.; Wu, X. J.; Zhou, Y. N. J. Power Sources 2020, 465, 228291. doi: 10.1016/j.jpowsour.2020.228291  doi: 10.1016/j.jpowsour.2020.228291

    38. [38]

      Hwang, C.; Song, W. J.; Song, G.; Wu, Y.; Lee, S.; Son, H. B.; Kim, J.; Liu, N.; Park, S.; Song, H. K. ACS Appl. Mater. Interfaces 2020, 12, 29235. doi: 10.1021/acsami.0c05065  doi: 10.1021/acsami.0c05065

    39. [39]

      Zhang, R.; Wang, N.; Shi, C.; Liu, E.; He, C.; Zhao, N. Carbon 2020, 161, 198. doi: 10.1016/j.carbon.2020.01.077  doi: 10.1016/j.carbon.2020.01.077

    40. [40]

      Yun, Q.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B.; Kang, F.; Yang, Q. H. Adv. Mater. 2016, 28, 6932. doi: 10.1002/adma.201601409  doi: 10.1002/adma.201601409

    41. [41]

      Zhang, D.; Dai, A.; Fan, B.; Li, Y.; Shen, K.; Xiao, T.; Hou, G.; Cao, H.; Tao, X.; Tang, Y. ACS Appl. Mater. Interfaces 2020, 12, 31542. doi: 10.1021/acsami.0c09503  doi: 10.1021/acsami.0c09503

    42. [42]

      Yan, K.; Lu, Z.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y. Nat. Energy 2016, 1, 16010. doi: 10.1038/nenergy.2016.10  doi: 10.1038/nenergy.2016.10

    43. [43]

      Cui, Y. Acta Phys. -Chim. Sin. 2019, 35, 661.  doi: 10.3866/PKU.WHXB201809053

    44. [44]

      Yang, G.; Chen, J.; Xiao, P.; Agboola, P. O.; Shakir, I.; Xu, Y. J. Mater. Chem. A 2018, 6, 9899. doi: 10.1039/c8ta02810a  doi: 10.1039/c8ta02810a

    45. [45]

      Guo, H.; Yao, Y.; Cheng, J.; Chen, L.; Dai, L.; Zhang, L.; Si, P.; Ci, L. ACS Appl. Energy Mater. 2020. doi: 10.1021/acsaem.0c01316  doi: 10.1021/acsaem.0c01316

    46. [46]

      Meng, Q.; Deng, B.; Zhang, H.; Wang, B.; Zhang, W.; Wen, Y.; Ming, H.; Zhu, X.; Guan, Y.; Xiang, Y.; et al. Energy Storage Mater. 2019, 16, 419. doi: 10.1016/j.ensm.2018.06.024  doi: 10.1016/j.ensm.2018.06.024

    47. [47]

      Liu, H.; Chen, X.; Cheng, X. B.; Li, B. Q.; Zhang, R.; Wang, B.; Chen, X.; Zhang, Q. Small Methods 2019, 3, 2366. doi: 10.1002/smtd.201800354  doi: 10.1002/smtd.201800354

    48. [48]

      Shin, W. K.; Kannan, A. G.; Kim, D. W. ACS Appl. Mater. Interfaces 2015, 7, 23700. doi: 10.1021/acsami.5b07730  doi: 10.1021/acsami.5b07730

    49. [49]

      Wang, T.; Zhai, P.; Legut, D.; Wang, L.; Liu, X.; Li, B.; Dong, C.; Fan, Y.; Gong, Y.; Zhang, Q. Adv. Energy Mater. 2019, 9, 1804000. doi: 10.1002/aenm.201804000  doi: 10.1002/aenm.201804000

    50. [50]

      Li, K.; Hu, Z.; Ma, J.; Chen, S.; Mu, D.; Zhang, J. Adv. Mater. 2019, 31, e1902399. doi: 10.1002/adma.201902399  doi: 10.1002/adma.201902399

    51. [51]

      Liu, Y.; Zhang, S.; Qin, X.; Kang, F.; Chen, G.; Li, B. Nano Lett. 2019, 19, 4601. doi: 10.1021/acs.nanolett.9b01567  doi: 10.1021/acs.nanolett.9b01567

    52. [52]

      Zhang, N.; Yu, S. H.; Abruña, H. D. Nano Res. 2019, 13, 45. doi: 10.1007/s12274-019-2567-7  doi: 10.1007/s12274-019-2567-7

    53. [53]

      Feng, W.; Dong, X.; Li, P.; Wang, Y.; Xia, Y. J. Power Sources 2019, 419, 91. doi: 10.1016/j.jpowsour.2019.02.066  doi: 10.1016/j.jpowsour.2019.02.066

    54. [54]

      Zhang, R.; Chen, X.; Shen, X.; Zhang, X. Q.; Chen, X. R.; Cheng, X. B.; Yan, C.; Zhao, C. Z.; Zhang, Q. Joule 2018, 2, 764. doi: 10.1016/j.Joule2018.02.001  doi: 10.1016/j.Joule2018.02.001

    55. [55]

      Ke, X.; Liang, Y.; Ou, L.; Liu, H.; Chen, Y.; Wu, W.; Cheng, Y.; Guo, Z.; Lai, Y.; Liu, P.; Shi, Z. Energy Storage Mater. 2019, 23, 547. doi: 10.1016/j.ensm.2019.04.003  doi: 10.1016/j.ensm.2019.04.003

    56. [56]

      Kang, H.; Boyer, M.; Hwang, G. S.; Lee, J. W. Electrochim. Acta 2019, 303, 78. doi: 10.1016/j.electacta.2019.02.068  doi: 10.1016/j.electacta.2019.02.068

    57. [57]

      Zhang, H.; Liao, X.; Guan, Y.; Xiang, Y.; Li, M.; Zhang, W.; Zhu, X.; Ming, H.; Lu, L.; Qiu, J.; et al. Nat. Commun. 2018, 9, 3729. doi: 10.1038/s41467-018-06126-z  doi: 10.1038/s41467-018-06126-z

    58. [58]

      Wang, X.; Pan, Z.; Wu, Y.; Ding, X.; Hong, X.; Xu, G.; Liu, M.; Zhang, Y.; Li, W. Nano Res. 2018, 12, 525. doi: 10.1007/s12274-018-2245-z  doi: 10.1007/s12274-018-2245-z

    59. [59]

      Wu, S.; Zhang, Z.; Lan, M.; Yang, S.; Cheng, J.; Cai, J.; Shen, J.; Zhu, Y.; Zhang, K.; Zhang, W. Adv. Mater. 2018, 30, 1705830. doi: 10.1002/adma.201705830  doi: 10.1002/adma.201705830

    60. [60]

      Zhang, C.; Lv, W.; Zhou, G.; Huang, Z.; Zhang, Y.; Lyu, R.; Wu, H.; Yun, Q.; Kang, F.; Yang, Q. H. Adv. Energy Mater. 2018, 8, 1703404. doi: 10.1002/aenm.201703404  doi: 10.1002/aenm.201703404

    61. [61]

      Li, R.; Wang, H.; Fu Q.; Tian, Z, Y.; Wang, J, X.; Ma, X, J.; Yang, J.; Qian, Y, T. J. Inorg. Mater. 2020, 8, 882.  doi: 10.15541/jim20190545

    62. [62]

      Liu, Y.; Zhang, S.; Qin, X.; Kang, F.; Chen, G.; Li, B. Nano Lett. 2019, 19, 4601. doi: 10.1021/acs.nanolett.9b01567  doi: 10.1021/acs.nanolett.9b01567

    63. [63]

      Yi, J.; Chen, J.; Yang, Z.; Dai, Y.; Li, W.; Cui, J.; Ciucci, F.; Lu, Z.; Yang, C. Adv. Energy Mater. 2019, 9, 1901796. doi: 10.1002/aenm.201901796  doi: 10.1002/aenm.201901796

    64. [64]

      Huang, G.; Chen, S.; Guo, P.; Tao, R.; Jie, K.; Liu, B.; Zhang, X.; Liang, J.; Cao, Y. C. Chem. Eng. J. 2020, 395, 125122. doi: 10.1016/j.cej.2020.125122  doi: 10.1016/j.cej.2020.125122

    65. [65]

      Chen, L.; Fan, X.; Ji, X.; Chen, J.; Hou, S.; Wang, C. Joule 2019, 3, 732. doi: 10.1016/j.Joule2018.11.025  doi: 10.1016/j.Joule2018.11.025

    66. [66]

      Tang, W.; Yin, X.; Kang, S.; Chen, Z.; Tian, B.; Teo, S. L.; Wang, X.; Chi, X.; Loh, K. P.; Lee, H. W.; Zheng, G. W. Adv. Mater. 2018, 30, e1801745. doi: 10.1002/adma.201801745  doi: 10.1002/adma.201801745

    67. [67]

      Wang, H.; Cao, X.; Gu, H.; Liu, Y.; Li, Y.; Zhang, Z.; Huang, W.; Wang, H.; Wang, J.; et al. ACS Nano 2020, 14, 4601. doi: 10.1021/acsnano.0c00184  doi: 10.1021/acsnano.0c00184

    68. [68]

      Chen, W.; Salvatierra, R. V.; Ren, M.; Chen, J.; Stanford, M. G.; Tour, J. M. Adv. Mater. 2020, e2002850. doi: 10.1002/adma.202002850  doi: 10.1002/adma.202002850

    69. [69]

      Du, R.; Jie, Y.; Chen, Y.; Huang, F.; Cai, W.; Liu, Y.; Li, X.; Wang, S.; Lei, Z.; Cao, R. ACS Appl. Energy Mater. 2020, 3, 6692. doi: 10.1021/acsaem.0c00842  doi: 10.1021/acsaem.0c00842

    70. [70]

      Jin, S.; Ye, Y.; Niu, Y.; Xu, Y.; Jin, H.; Wang, J.; Sun, Z.; Cao, A.; Wu, X.; Luo, Y. J. Am. Chem. Soc. 2020, 142, 8818. doi: 10.1021/jacs.0c01811  doi: 10.1021/jacs.0c01811

    71. [71]

      Liu, M.; Wang, C.; Cheng, Z.; Ganapathy, S.; Haverkate, L. A.; Unnikrishnan, S.; Wagemaker, M. ACS Mater. Lett. 2020, 2, 665. doi: 10.1021/acsmaterialslett.0c00152  doi: 10.1021/acsmaterialslett.0c00152

    72. [72]

      Liu, W.; Lin, D.; Pei, A.; Cui, Y. J. Am. Chem. Soc. 2016, 138, 15443. doi: 10.1021/jacs.6b08730  doi: 10.1021/jacs.6b08730

    73. [73]

      Xiong, C.; Wang, Z.; Peng, X.; Guo, Y.; Xu, S.; Zhao, T. J. Mater. Chem. A 2020, 8, 14114. doi: 10.1039/d0ta04302h  doi: 10.1039/d0ta04302h

    74. [74]

      Cao, Z.; Li, B.; Yang, S. Adv. Mater. 2019, 31, e1901310. doi: 10.1002/adma.201901310  doi: 10.1002/adma.201901310

    75. [75]

      Cao, Z.; Zhu, Q.; Wang, S.; Zhang, D.; Chen, H.; Du, Z.; Li, B.; Yang, S. Adv. Funct. Mater. 2019, 30, 1908075. doi: 10.1002/adfm.201908075  doi: 10.1002/adfm.201908075

    76. [76]

      Dong, L.; Nie, L.; Liu, W. Adv. Mater. 2020, 32, e1908494. doi: 10.1002/adma.201908494  doi: 10.1002/adma.201908494

    77. [77]

      Chen, Y.; Yue, M.; Liu, C.; Zhang, H.; Yu, Y.; Li, X.; Zhang, H. Adv. Funct. Mater. 2019, 29, 1806752. doi: 10.1002/adfm.201806752  doi: 10.1002/adfm.201806752

    78. [78]

      Steiger, J.; Kramer, D.; Mönig, R. J. Power Sources 2014, 261, 112. doi: 10.1016/j.jpowsour.2014.03.029  doi: 10.1016/j.jpowsour.2014.03.029

    79. [79]

      Lalou, I.; Gkrozou, F.; Meridis, E.; Tsonis, O.; Paschopoulos, M.; Syrrou, M. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 236, 116. doi: 10.1016/j.ejogrb.2019.03.004  doi: 10.1016/j.ejogrb.2019.03.004

    80. [80]

      Li, Y.; Li, Y.; Pei, A.; Yan, K.; Sun, Y.; Wu, C. L.; Joubert, L. M.; Chin, R.; Koh, A. L.; Yu, Y. Science 2017, 358, 506. doi: 10.1126/science.aam6014  doi: 10.1126/science.aam6014

    81. [81]

      Kim, Y. J.; Kwon, S. H.; Noh, H.; Yuk, S.; Lee, H.; Jin, H. S.; Lee, J.; Zhang, J. G.; Lee, S. G.; Guim, H.; Kim, H. T. Energy Storage Mater. 2019, 19, 154. doi: 10.1016/j.ensm.2019.02.011  doi: 10.1016/j.ensm.2019.02.011

    82. [82]

      Gu, Y.; Xu, H. Y.; Zhang, X. G.; Wang, W. W.; He, J. W.; Tang, S.; Yan, J. W.; Wu, D. Y.; Zheng, M. S.; Dong, Q. F.; Mao, B. W. Angew. Chem. Int. Ed. 2019, 58, 3092. doi: 10.1002/anie.201812523  doi: 10.1002/anie.201812523

  • 加载中
    1. [1]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    2. [2]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    3. [3]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    4. [4]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    5. [5]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    6. [6]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    7. [7]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    8. [8]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    9. [9]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    10. [10]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    11. [11]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    12. [12]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    13. [13]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    14. [14]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    15. [15]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    16. [16]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    17. [17]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    18. [18]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    19. [19]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    20. [20]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

Metrics
  • PDF Downloads(74)
  • Abstract views(3791)
  • HTML views(1450)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return