Citation: He Yitao, Ding Fei, Lin Li, Wang Zhihong, Lü Zhe, Zhang Yaohui. Influence of Interfacial Concentration Polarization on Lithium Metal Electrodeposition[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200900. doi: 10.3866/PKU.WHXB202009001 shu

Influence of Interfacial Concentration Polarization on Lithium Metal Electrodeposition

  • Corresponding author: Ding Fei, fding@nklps.org Zhang Yaohui, hitcrazyzyh@hit.edu.cn
  • Received Date: 1 September 2020
    Revised Date: 27 September 2020
    Accepted Date: 30 September 2020
    Available Online: 21 October 2020

    Fund Project: the Pre-Research Foundation of China 61407210406the Foundation of National Key Laboratory of China 6142808180202The project was supported by the Foundation of National Key Laboratory of China (6142808180202), the Pre-Research Foundation of China (61407210406, 61407210208, and 41421080401), and the Open Fund of Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies (EEST2019-1)the Pre-Research Foundation of China 41421080401the Open Fund of Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies EEST2019-1the Pre-Research Foundation of China 61407210208

  • As an ideal negative electrode material for next-generation high-energy-density batteries, lithium (Li) metal has received extensive attention from the global research community. However, the safety hazards and short cycle life caused by the growth of Li dendrites have seriously hampered the application of Li metal batteries. Based on electrochemical phenomena and theory, this paper discusses the mechanism of dendritic growth, dead Li formation, and full battery failure from the perspective of concentration polarization. During the electrodeposition process, the consumption of Li ions on the surface induces concentration polarization. After the initial deposition, a relatively loose dendrite layer appears on the Li metal surface; the electrolyte can penetrate this dendrite layer to reach the dense Li metal surface. When the grown dendrites penetrate the concentration polarization layer, the interface concentration battery is short-circuited. In this case, the concentration difference battery tends to release all stored power and reach a potential balance between the high- and low-concentration regions, which causes the deposition of Li ions over the dendrites to reduce the ion concentration in the surrounding electrolyte. Meanwhile, the dissolution of Li ions that occurs at the roots of the dendrites increases the local ion concentration. This process accelerates the formation of a dead Li layer. A similar electrochemical process often occurs in columnar Li, as reported in other studies. When columnar Li is cycled several times, each Li column degenerates into a matchstick shape with a large head and thin neck. Therefore, eliminating concentration polarization is necessary for the application of columnar Li. Furthermore, in this work, concentration polarization and dendrite suppression in state-of-the-art porous host electrodes are analyzed. The larger specific surface area of the porous electrode greatly reduces the local current density on the electrode surface, which can reduce the interface concentration polarization and thus prevent dendrite growth. In charge-discharge cycling, a constant-voltage charging or shelving step is often inserted in each cycle in order to eliminate the influence of concentration polarization. However, if a dendritic layer has been formed on the Li metal surface after charging, in addition to the self-diffusion of ions, the self-discharge process of the interface concentration battery causes the detachment of the dendrite layer, thus resulting in the above-mentioned dead Li. Therefore, a larger amount of deposited Li yields a thicker Li dendritic layer, thus accelerating the capacity decay and failure of the battery, especially to those with high-capacity, high-voltage positive electrodes. The conclusions obtained in this paper can provide a theoretical basis for researchers to further explore Li metal protection strategies.
  • 加载中
    1. [1]

      Zhang, P.; Zhao, Y.; Zhang, X. Chem. Soc. Rev. 2018, 47, 2921. doi: 10.1039/C8CS00009C  doi: 10.1039/C8CS00009C

    2. [2]

      Zhang, Q. Acta Phys. -Chim. Sin. 2017, 33, 1275.  doi: 10.3866/PKU.WHXB201705021

    3. [3]

      Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J. G. Energy Environ. Sci. 2014, 7, 513. doi: 10.1039/C3EE40795K  doi: 10.1039/C3EE40795K

    4. [4]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    5. [5]

      Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nano Lett. 2017, 17, 1132. doi: 10.1021/acs.nanolett.6b04755  doi: 10.1021/acs.nanolett.6b04755

    6. [6]

      Yan, K.; Lu, Z.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y. Nat. Energy 2016, 1, 16010. doi: 10.1038/nenergy.2016.10  doi: 10.1038/nenergy.2016.10

    7. [7]

      Yan, K.; Wang, J.; Zhao, S.; Zhou, D.; Sun, B.; Cui, Y.; Wang, G. Angew. Chem. Int. Ed. 2019, 131, 11486. doi: 10.1002/ange.201905251  doi: 10.1002/ange.201905251

    8. [8]

      Thirumalraj, B.; Hagos, T. T.; Huang, C. J.; Teshager, M. A.; Cheng, J. H.; Su, W. N.; Hwang, B. J. J. Am. Chem. Soc. 2019, 141, 18612. doi: 10.1021/jacs.9b10195  doi: 10.1021/jacs.9b10195

    9. [9]

      Guo, Y. G. Acta Phys.-Chim. Sin. 2020, 36, 1912010.  doi: 10.3866/PKU.WHXB201912010

    10. [10]

      Meng, Q.; Deng, B.; Zhang, H.; Wang, B.; Zhang, W.; Wen, Y.; Ming, H.; Zhu, X.; Guan, Y.; Xiang, Y.; et al. Energy Storage Mater. 2019, 16, 419. doi: 10.1016/j.ensm.2018.06.024  doi: 10.1016/j.ensm.2018.06.024

    11. [11]

      Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Angew. Chem. Int. Ed. 2017, 129, 7872. doi: 10.1002/ange.201702099  doi: 10.1002/ange.201702099

    12. [12]

      Peng, Z.; Song, J.; Huai, L.; Jia, H.; Xiao, B.; Zou, L.; Zhu, G.; Martinez, A.; Roy, S.; Murugesan, V.; et al. Adv. Energy Mater. 2019, 9, 1901764. doi: 10.1002/aenm.201901764  doi: 10.1002/aenm.201901764

    13. [13]

      Jackson, K. A. J. Cryst. Growth 1999, 198, 1. doi: 10.1016/S0022-0248(98)01234-2  doi: 10.1016/S0022-0248(98)01234-2

    14. [14]

      Ely, D. R.; García, R. E. J. Electrochem. Soc. 2013, 160, A662. doi: 10.1149/1.057304jes  doi: 10.1149/1.057304jes

    15. [15]

      Chazalviel, J. N. Phy. Rev. A 1990, 42, 7355. doi: 10.1103/PhysRevA.42.7355  doi: 10.1103/PhysRevA.42.7355

    16. [16]

      Stark, J. K.; Ding, Y.; Kohl, P. A. J. Electrochem. Soc. 2013, 160, D337. doi: 10.1149/2.028309jes  doi: 10.1149/2.028309jes

    17. [17]

      Tang, M.; Newman, J. J. Electrochem. Soc. 2011, 158, A530. doi: 10.1149/1.3567765  doi: 10.1149/1.3567765

    18. [18]

      Li, D. Principles of Electrochemistry; The Publishing House of Beijing Aerospace University: Beijing, 1999; pp. 179-182.

    19. [19]

      Broadhead, J.; Murphy, D. W.; Steele, B. C. H. Materials for Advanced Batteries; Plenum Press: New York, 1980; p. 373.

    20. [20]

      Hong, Z; Viswanathan, V. ACS Energy Lett. 2018, 3, 1737. doi: 10.1021/acsenergylett.8b01009  doi: 10.1021/acsenergylett.8b01009

    21. [21]

      Li, Q.; Qiu, Z.; Peelong, N. J. Chin. J. Power Sources 1994, 18, 11.

    22. [22]

      Zhang, Y.; Qian, J.; Xu, W.; Russell, S. M.; Chen, X.; Nasybulin, E.; Bhattacharya, P.; Engelhard, M. H.; Mei, D.; Cao, R.; et al. Nano Lett. 2014, 14, 6889. doi: 10.1021/nl5039117  doi: 10.1021/nl5039117

    23. [23]

      Zhang, X. Q.; Chen, X.; Xu, R.; Cheng, X. B.; Peng, H. J.; Zhang, R.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2017, 129, 14395. doi: 10.1002/ange.201707093  doi: 10.1002/ange.201707093

    24. [24]

      Chang, W.; Park, J. H.; Dutta, N. S.; Arnold, C. B.; Steingart, D. A. Chem. Mater. 2020, 32, 2803. doi: 10.1021/acs.chemmater.9b04385  doi: 10.1021/acs.chemmater.9b04385

    25. [25]

      Liu, L.; Yin, Y. X.; Li, J. Y.; Wang, S. H.; Guo, Y. G.; Wan, L. J. Adv. Mater. 2018, 30, 1706216. doi: 10.1002/adma.201706216  doi: 10.1002/adma.201706216

    26. [26]

      King C. V. J. Electrochem. Soc. 1955, 102, 193. doi: 10.1149/1.2430023  doi: 10.1149/1.2430023

    27. [27]

      Zhang, X. Q.; Cheng, X. B.; Zhang, Q. Adv. Mater. Interfaces 2018, 5, 1701097. doi: 10.1002/admi.201701097  doi: 10.1002/admi.201701097

    28. [28]

      Zhang, J.; Yu, J.; Cha, C.; Yang, H. J. Power Sources 2004, 136, 180. doi: 10.1016/j.jpowsour.2004.05.008  doi: 10.1016/j.jpowsour.2004.05.008

    29. [29]

      Li, J.; Murphy, E.; Winick, J.; Kohl, P. A. J. Power Sources 2001, 102, 302. doi: 10.1016/S0378-7753(01)00820-5  doi: 10.1016/S0378-7753(01)00820-5

  • 加载中
    1. [1]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    2. [2]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    3. [3]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    4. [4]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    5. [5]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    6. [6]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    7. [7]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    8. [8]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    9. [9]

      Hao Ren Wen Zhao Fangna Dai Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145

    10. [10]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    11. [11]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    12. [12]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    13. [13]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    14. [14]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    15. [15]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    16. [16]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    17. [17]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    20. [20]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

Metrics
  • PDF Downloads(21)
  • Abstract views(1064)
  • HTML views(340)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return