Neutron Depth Profiling Technique for Studying Rechargeable Lithium Metal Anodes
- Corresponding author: Yang Yong, yyang@xmu.edu.cn
Citation:
Zheng Guorui, Xiang Yuxuan, Yang Yong. Neutron Depth Profiling Technique for Studying Rechargeable Lithium Metal Anodes[J]. Acta Physico-Chimica Sinica,
;2021, 37(1): 200809.
doi:
10.3866/PKU.WHXB202008094
Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J. G. Energy Environ. Sci. 2014, 7, 513. doi: 10.1039/c3ee40795k
doi: 10.1039/c3ee40795k
Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. Nat. Commun. 2015, 6, 6362. doi: 10.1038/ncomms7362
doi: 10.1038/ncomms7362
Markevich, E.; Salitra, G.; Chesneau, F.; Schmidt, M.; Aurbach, D. ACS Energy Lett. 2017, 2, 1321. doi: 10.1021/acsenergylett.7b00300
doi: 10.1021/acsenergylett.7b00300
Zheng, J.; Engelhard, M. H.; Mei, D.; Jiao, S.; Polzin, B. J.; Zhang, J. G.; Xu, W. Nat. Energy 2017, 2, 17012. doi: 10.1038/nenergy.2017.12
doi: 10.1038/nenergy.2017.12
Luo, W.; Gong, Y.; Zhu, Y.; Li, Y.; Yao, Y.; Zhang, Y.; Fu, K. K.; Pastel, G.; Lin, C. F.; Mo, Y.; Wachsman, E. D.; Hu, L. Adv. Mater. 2017, 29, 1606042. doi: 10.1002/adma.201606042
doi: 10.1002/adma.201606042
Wang, C.; Gong, Y.; Liu, B.; Fu, K.; Yao, Y.; Hitz, E.; Li, Y.; Dai, J.; Xu, S.; Luo, W.; Wachsman, E. D.; Hu, L. Nano Lett. 2017, 17, 565. doi: 10.1021/acs.nanolett.6b04695
doi: 10.1021/acs.nanolett.6b04695
Liu, W.; Lin, D.; Pei, A.; Cui, Y. J. Am. Chem. Soc. 2016, 138, 15443. doi: 10.1021/jacs.6b08730
doi: 10.1021/jacs.6b08730
Zachman, M. J.; Tu, Z.; Choudhury, S.; Archer, L. A.; Kourkoutis, L. F. Nature 2018, 560, 345. doi: 10.1038/s41586-018-0397-3
doi: 10.1038/s41586-018-0397-3
Chang, H. J.; Trease, N. M.; Ilott, A. J.; Zeng, D.; Du, L. S.; Jerschow, A.; Grey, C. P. J. Phys. Chem. C 2015, 119, 16443. doi: 10.1021/acs.jpcc.5b03396
doi: 10.1021/acs.jpcc.5b03396
Chang, H. J.; Ilott, A. J.; Trease, N. M.; Mohammadi, M.; Jerschow, A.; Grey, C. P. J. Am. Chem. Soc. 2015, 137, 15209. doi: 10.1021/jacs.5b09385
doi: 10.1021/jacs.5b09385
Ilott, A. J.; Mohammadi, M.; Chang, H. J.; Grey, C. P.; Jerschow, A. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 10779. doi: 10.1073/pnas.1607903113
doi: 10.1073/pnas.1607903113
Lv, S.; Verhallen, T.; Vasileiadis, A.; Ooms, F.; Xu, Y.; Li, Z.; Li, Z.; Wagemaker, M. Nat. Commun. 2018, 9, 2152. doi: 10.1038/s41467-018-04394-3
doi: 10.1038/s41467-018-04394-3
Nagpure, S. C.; Downing, R. G.; Bhushan, B.; Babu, S. S.; Cao, L. Electrochim. Acta 2011, 56, 4735. doi: 10.1016/j.electacta.2011.02.037
doi: 10.1016/j.electacta.2011.02.037
Wetjen, M.; Trunk, M.; Werner, L.; Gernhäuser, R.; Märkisch, B.; Révay, Z.; Gilles, R.; Gasteiger, H. A. J. Electrochem. Soc. 2018, 165, A2340. doi: 10.1149/2.1341810jes
doi: 10.1149/2.1341810jes
Liu, D. X.; Co, A. C. J. Am. Chem. Soc. 2016, 138, 231. doi: 10.1021/jacs.5b10295
doi: 10.1021/jacs.5b10295
Liu, D. X.; Cao, L. R.; Co, A. C. Chem. Mater. 2016, 28, 556. doi: 10.1021/acs.chemmater.5b04039
doi: 10.1021/acs.chemmater.5b04039
Yang, Y.; Liu, X.; Dai, Z.; Yuan, F.; Bando, Y.; Golberg, D.; Wang, X. Adv. Mater. 2017, 29. doi: 10.1002/adma.201606922
doi: 10.1002/adma.201606922
Tripathi, A. M.; Su, W. N.; Hwang, B. J. Chem. Soc. Rev. 2018, 47, 736. doi: 10.1039/c7cs00180k
doi: 10.1039/c7cs00180k
Downing, R. G.; Lamaze, G. P.; Langland, J. K.; Hwang, S. T. J. Res. Natl. Inst. Stand. Technol. 1993, 98, 109. doi: 10.6028/jres.098.008
doi: 10.6028/jres.098.008
Verhallen, T. W.; Lv, S.; Wagemaker, M. Front. Energy Res. 2018, 6. doi: 10.3389/fenrg.2018.00062
doi: 10.3389/fenrg.2018.00062
Oudenhoven, J. F.; Labohm, F.; Mulder, M.; Niessen, R. A.; Mulder, F. M.; Notten, P. H. Adv. Mater. 2011, 23, 4103. doi: 10.1002/adma.201101819
doi: 10.1002/adma.201101819
Wilson, W. D.; Haggmark, L. G.; Biersack, J. P. Phys. Rev. B 1977, 15, 2458. doi: 10.1103/PhysRevB.15.2458
doi: 10.1103/PhysRevB.15.2458
Ziegler, J. F.; Ziegler, M. D.; Biersack, J. P. Nucl. Instrum. Methods Phys. Res. B 2010, 268, 1818. doi: 10.1016/j.nimb.2010.02.091
doi: 10.1016/j.nimb.2010.02.091
Danilov, D. L.; Chen, C.; Jiang, M.; Eichel, R. A.; Notten, P. H. L. Radiat. Eff. Defects Solids 2020, 175, 367. doi: 10.1080/10420150.2019.1701468
doi: 10.1080/10420150.2019.1701468
Maki, J. T.; Fleming, R. F.; Vincent, D. H. Nucl. Instrum. Methods Phys. Res. B 1986, 17, 147. doi: 10.1016/0168-583x(86)90077-7
doi: 10.1016/0168-583x(86)90077-7
Downing, R. G.; Maki, J. T.; Fleming, R. F. J. Radioanal. Nucl. Chem. 1987, 112, 33. doi: 10.1007/BF02037274
doi: 10.1007/BF02037274
Linsenmann, F.; Trunk, M.; Rapp, P.; Werner, L.; Gernhäuser, R.; Gilles, R.; Märkisch, B.; Révay, Z.; Gasteiger, H. A. J. Electrochem. Soc. 2020, 167, 100554. doi: 10.1149/1945-7111/ab9b20
doi: 10.1149/1945-7111/ab9b20
Zhang, X.; Verhallen, T. W.; Labohm, F.; Wagemaker, M. Adv. Energy Mater. 2015, 5, 1500498. doi: 10.1002/aenm.201500498
doi: 10.1002/aenm.201500498
Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nano Lett. 2017, 17, 1132. doi: 10.1021/acs.nanolett.6b04755
doi: 10.1021/acs.nanolett.6b04755
Jana, A.; García, R. E. Nano Energy 2017, 41, 552. doi: 10.1016/j.nanoen.2017.08.056
doi: 10.1016/j.nanoen.2017.08.056
Brissot, C.; Rosso, M.; Chazalviel, J. N.; Baudry, P.; Lascaud, S. Electrochim. Acta 1998, 43, 1569. doi: 10.1016/S0013-4686(97)10055-X
doi: 10.1016/S0013-4686(97)10055-X
Brissot, C.; Rosso, M.; Chazalviel, J. N.; Lascaud, S. J. Electrochem. Soc. 1999, 146, 4393. doi: 10.1149/1.1392649
doi: 10.1149/1.1392649
Brissot, C.; Rosso, M.; Chazalviel, J. N.; Lascaud, S. J. Power Sources 1999, 81–82, 925. doi: 10.1016/S0378-7753(98)00242-0
doi: 10.1016/S0378-7753(98)00242-0
Teyssot, A.; Belhomme, C.; Bouchet, R.; Rosso, M.; Lascaud, S.; Armand, M. J. Electroanal. Chem. 2005, 584, 70. doi: 10.1016/j.jelechem.2005.01.037
doi: 10.1016/j.jelechem.2005.01.037
Yin, X.; Tang, W.; Jung, I. D.; Phua, K. C.; Adams, S.; Lee, S. W.; Zheng, G. W. Nano Energy 2018, 50, 659. doi: 10.1016/j.nanoen.2018.06.003
doi: 10.1016/j.nanoen.2018.06.003
Thirumalraj, B.; Hagos, T. T.; Huang, C. J.; Teshager, M. A.; Cheng, J. H.; Su, W. N.; Hwang, B. J. J. Am. Chem. Soc. 2019, 141, 18612. doi: 10.1021/jacs.9b10195
doi: 10.1021/jacs.9b10195
Hou, L. P.; Zhang, X. Q.; Li, B. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2020, 59, 15109. doi: 10.1002/anie.202002711
doi: 10.1002/anie.202002711
Liu, M.; Cheng, Z.; Qian, K.; Verhallen, T.; Wang, C.; Wagemaker, M. Chem. Mater. 2019, 31, 4564. doi: 10.1021/acs.chemmater.9b01325
doi: 10.1021/acs.chemmater.9b01325
Zheng, G.; Xiang, Y.; Chen, S.; Ganapathy, S.; Verhallen, T. W.; Liu, M.; Zhong, G.; Zhu, J.; Han, X.; Wang, W.; et al. Energy Storage Mater. 2020, 29, 377. doi: 10.1016/j.ensm.2019.12.027
doi: 10.1016/j.ensm.2019.12.027
Liu, Y.; Lin, D.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Nat. Commun. 2016, 7, 10992. doi: 10.1038/ncomms10992
doi: 10.1038/ncomms10992
Varzi, A.; Raccichini, R.; Passerini, S.; Scrosati, B. J. Mater. Chem. A 2016, 4, 17251. doi: 10.1039/C6TA07384K
doi: 10.1039/C6TA07384K
Mauger, A.; Armand, M.; Julien, C. M.; Zaghib, K. J. Power Sources 2017, 353, 333. doi: 10.1016/j.jpowsour.2017.04.018
doi: 10.1016/j.jpowsour.2017.04.018
Tomandl, I.; Vacik, J.; Kobayashi, T.; Mora Sierra, Y.; Hnatowicz, V.; Lavreniev, V.; Horak, P.; Ceccio, G.; Cannavo, A.; Baba, M.; et al. Radiat. Eff. Defects Solids 2020, 175, 394. doi: 10.1080/10420150.2019.1701471
doi: 10.1080/10420150.2019.1701471
Wang, C.; Gong, Y.; Dai, J.; Zhang, L.; Xie, H.; Pastel, G.; Liu, B.; Wachsman, E.; Wang, H.; Hu, L. J. Am. Chem. Soc. 2017, 139, 14257. doi: 10.1021/jacs.7b07904
doi: 10.1021/jacs.7b07904
Li, Q.; Yi, T.; Wang, X.; Pan, H.; Quan, B.; Liang, T.; Guo, X.; Yu, X.; Wang, H.; Huang, X.; et al. Nano Energy 2019, 63, 103895. doi: 10.1016/j.nanoen.2019.103895
doi: 10.1016/j.nanoen.2019.103895
Porz, L.; Swamy, T.; Sheldon, B. W.; Rettenwander, D.; Frömling, T.; Thaman, H. L.; Berendts, S.; Uecker, R.; Carter, W. C.; Chiang, Y. M. Adv. Energy Mater. 2017, 7, 1701003. doi: 10.1002/aenm.201701003
doi: 10.1002/aenm.201701003
Ke, X.; Wang, Y.; Dai, L.; Yuan, C. Energy Storage Mater. 2020. doi: 10.1016/j.ensm.2020.07.024
doi: 10.1016/j.ensm.2020.07.024
Han, F.; Westover, A. S.; Yue, J.; Fan, X.; Wang, F.; Chi, M.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. Nat. Energy 2019, 4, 187. doi: 10.1038/s41560-018-0312-z
doi: 10.1038/s41560-018-0312-z
Ping, W.; Wang, C.; Lin, Z.; Hitz, E.; Yang, C.; Wang, H.; Hu, L. Adv. Energy Mater. 2020, 10, 2000702. doi: 10.1002/aenm.202000702
doi: 10.1002/aenm.202000702
Ketzer, B. Nucl. Instrum. Methods Phys. Res. A 2013, 732, 237. doi: 10.1016/j.nima.2013.08.027
doi: 10.1016/j.nima.2013.08.027
Zhiyuan TONG , Ziyuan LI , Ke ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238
Zeyu Liu , Wenze Huang , Yang Xiao , Jundong Zhang , Weijin Kong , Peng Wu , Chenzi Zhao , Aibing Chen , Qiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040
Jiandong Liu , Xin Li , Daxiong Wu , Huaping Wang , Junda Huang , Jianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
Changsheng An , Tao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087
Zhi Dou , Huiyu Duan , Yixi Lin , Yinghui Xia , Mingbo Zheng , Zhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036
Da Wang , Xiaobin Yin , Jianfang Wu , Yaqiao Luo , Siqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029
Jiandong Liu , Zhijia Zhang , Kamenskii Mikhail , Volkov Filipp , Eliseeva Svetlana , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
Hao Chen , Dongyue Yang , Gang Huang , Xinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059
Hanmei Lü , Xin Chen , Qifu Sun , Ning Zhao , Xiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016
Xinran Zhang , Siqi Liu , Yichi Chen , Qingli Zou , Qinghong Xu , Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005
Tao Wang , Qin Dong , Cunpu Li , Zidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061
Yajie Li , Bin Chen , Yiping Wang , Hui Xing , Wei Zhao , Geng Zhang , Siqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023