Citation: Wang Zhida, Feng Yuancheng, Lu Songtao, Wang Rui, Qin Wei, Wu Xiaohong. Improvement in Performance of Three-Dimensional SnLi/Carbon Paper Anode in Lean Electrolyte with In Situ Fluorinated Protection Layer[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200808. doi: 10.3866/PKU.WHXB202008082 shu

Improvement in Performance of Three-Dimensional SnLi/Carbon Paper Anode in Lean Electrolyte with In Situ Fluorinated Protection Layer

  • Corresponding author: Lu Songtao, lusongtao@hit.edu.cn Wu Xiaohong, wuxiaohong@hit.edu.cn
  • Received Date: 27 August 2020
    Revised Date: 30 September 2020
    Accepted Date: 16 October 2020
    Available Online: 22 October 2020

    Fund Project: the Heilongjiang Postdoctoral Foundation, China LBH-TZ08the Foundation of Heilongjiang Scientific Committee, China YQ2020E010The project was supported by the National Natural Science Foundation of China (51671074), the China Postdoctoral Science Foundation (2017T100239), the Heilongjiang Postdoctoral Foundation, China (LBH-TZ08), and the Foundation of Heilongjiang Scientific Committee, China (YQ2020E010)the China Postdoctoral Science Foundation 2017T100239the National Natural Science Foundation of China 51671074

  • The emerging market for consumer electronics and electric vehicles has stimulated intensive research on lithium metal batteries (LMBs) with high energy densities and large cycle lifetimes. A metallic Li anode has a high theoretical specific capacity of 3860 mAh·g-1 and lowest redox potential of -3.04 V (vs. the standard hydrogen electrode) and is generally considered an ideal electrode for next-generation high-energy-density LMBs. However, their deployment in practical batteries is severely hindered by the formation of unsafe dendrites and fast capacity decay due to the uncontrollable formation of fragile solid electrolyte interfaces (SEIs). Herein, we describe the stable cycling of carbon paper (Cp)-supported Li-Sn alloy anodes in carbonate electrolytes modified with 1 mol·L-1 bis(2, 2, 2-trifluorotoluene) carbonate (DTFEC). The molten Li-Sn alloy with 8% (mass fraction) Sn was synthesized through thermal treatment at 400 ℃ in an atmosphere of Ar. The Li-Sn-alloy-coated carbon paper (SnLi/Cp) was obtained after the molten alloy was conformally loaded onto the surface of a carbon paper under the action of capillarity. The as-synthesized interconnected SnLi/Cp composite was characterized by X-ray diffraction, energy-dispersive spectrometry, and scanning electron microscopy. The porous SnLi/Cp composite consisted of only Li and Sn5Li22 phases supported by the mechanically strong carbon paper with a good conductivity; no impurity was observed in the XRD results. The synergy of the DTFEC additive and alloying with Sn provided composite anodes with significantly improved rate capability and remarkable stability owing to the formation of a dense fluorinated SEI layer with high mechanical strength and ion penetration. Moreover, with the porous SnLi alloy covered by a fluorinated protection layer, lithium avoids the intrinsic issues of uncontrollable volume expansion and dendrite growth, which restrict the practical application of Li metal, exhibiting a stabilized over-potential of only 90 mV after 100 cycles at 8 mA·cm-2. Notably, stable cycling with a 12 μL lean electrolyte was also observed at 5 mA·cm-2. Overall, the prototype full cell assembled with the SnLi/Cp anode and NMC811 cathode exhibited a high Coulombic efficiency (98.1%) and remarkable cycling stability for 300 cycles at 1C (1.5 mA·cm-2). The rate capability was evaluated at various rates of 0.5C to 5C. Compared to pure Li, the SnLi/Cp anode in the full cell exhibited a higher capacity, particularly at a high rate (~126 mAh·g-1 at 5C). Our approach provides integrated Li metal electrodes with effectively improved cycle stabilities and is very attractive for practical high-energy-density lithium batteries.
  • 加载中
    1. [1]

      Adair, K. R.; Zhao, C.; Banis, M. N.; Zhao, Y.; Li, R.; Cai, M.; Sun, X. Angew. Chem. Int. Ed. 2019, 58, 15797. doi: 10.1002/anie.201907759  doi: 10.1002/anie.201907759

    2. [2]

      Yue, X. Y.; Ma, C.; Bao, J.; Yang, S. Y.; Chen, D.; Wu, X. J.; Zhou, Y. N. Acta Phys. -Chim. Sin. 2021, 37, 2005012.  doi: 10.3866/PKU.WHXB202005012

    3. [3]

      Su, Y.; Ye, L.; Fitzhugh, W.; Wang, Y.; Gil-González, E.; Kim, I.; Li, X. Energy Environ. Sci. 2020, 13, 908. doi: 10.1039/C9EE04007B  doi: 10.1039/C9EE04007B

    4. [4]

      Qiao, Y.; Li, Q.; Cheng, X. B.; Liu, F.; Yang, Y.; Lu, Z.; Zhao, J.; Wu, J.; Liu, H.; Yang, S.; Liu, Y. ACS Appl. Mater. Interfaces 2020, 12, 5767. doi: 10.1021/acsami.9b18315  doi: 10.1021/acsami.9b18315

    5. [5]

      Li, S.; Fang, S.; Dou, H.; Zhang, X. ACS Appl. Mater. Interfaces 2019, 11, 20804. doi: 10.1021/ acsami.9b03940  doi: 10.1021/acsami.9b03940

    6. [6]

      Indu, M. S.; Alexander, G. V.; Deviannapoorani, C.; Murugan, R. Ceram. Int. 2019, 45, 22610. doi: 10.1016/j.ceramint.2019.07.293  doi: 10.1016/j.ceramint.2019.07.293

    7. [7]

      Yan, C.; Xu, R.; Qin, J.; Yuan, H.; Xiao, Y.; Xu, L.; Huang, J. Angew. Chem. Int. Ed. 2019, 58, 15235. doi: 10.1002/anie.201908874  doi: 10.1002/anie.201908874

    8. [8]

      Liu, J.; Bao, Z.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q.; Liaw, B. Y.; Liu, P.; Manthiram, A.; et al. Nat. Energy 2019, 4, 180. doi: 10.1038/ s41560-019-0338-x  doi: 10.1038/s41560-019-0338-x

    9. [9]

      Li, X.; Yang, G.; Zhang, S.; Wang, Z.; Chen, L. Nano Energy 2019, 66, 104144. doi: 10.1016/ j.nanoen.2019.104144  doi: 10.1016/j.nanoen.2019.104144

    10. [10]

      Assegie, A. A.; Chung, C. C.; Tsai, M. C.; Su, W. N.; Chen, C. W.; Hwang, B. J. Nanoscale 2019, 11, 2710. doi: 10.1039/C8NR06980H  doi: 10.1039/C8NR06980H

    11. [11]

      Thirumalraj, B.; Hagos, T. T.; Huang, C. J.; Teshager, M. A.; Cheng, J. H.; Su, W. N.; Hwang, B. J. J. Am. Chem. Soc. 2019, 141, 18612. doi: 10.1021/jacs.9b10195  doi: 10.1021/jacs.9b10195

    12. [12]

      Peng, Z.; Ren, F.; Yang, S.; Wang, M.; Sun, J.; Wang, D.; Xu, W.; Zhang, J. G. Nano Energy 2019, 59, 110. doi: 10.1021/jacs.9b10195  doi: 10.1021/jacs.9b10195

    13. [13]

      Guo, F.; Chen, P.; Kang, T.; Wang, Y. L.; Liu, C. H.; Shen, Y. B.; Lu, W.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35, 1365.  doi: 10.3866/PKU.WHXB201903008

    14. [14]

      Chen, K. H.; Sanchez, A. J.; Kazyak, E.; Davis, A. L.; Dasgupta, N. P. Adv. Energy Mater. 2019, 9, 1802534. doi: 10.1002/aenm.201802534  doi: 10.1002/aenm.201802534

    15. [15]

      Shangguan, X.; Xu, G.; Cui, Z.; Wang, Q.; Du, X.; Chen, K.; Huang, S.; Jia, G.; Li, F.; Wang, X.; et al. Small 2019, 15, 1900269. doi: 10.1002/smll.201900269  doi: 10.1002/smll.201900269

    16. [16]

      Bae, J.; Qian, Y.; Li, Y.; Zhou, X.; Goodenough, J. B.; Yu, G. Energy Environ. Sci. 2019, 12, 3319. doi: 10.1039/C9EE02558H  doi: 10.1039/C9EE02558H

    17. [17]

      Cao, C.; Li, Y.; Feng, Y.; Peng, C.; Li, Z.; Feng, W. Energy Storage Mater. 2019, 19, 401. doi: 10.1016/j.ensm.2019.03.004  doi: 10.1016/j.ensm.2019.03.004

    18. [18]

      Chen, K.; Pathak, R.; Gurung, A.; Adhamash, E. A.; Bahrami, B.; He, Q.; Qiao, H.; Smirnova, A. L.; Wu, J. J.; Qiao, Q.; Zhou, Y. Energy Storage Mater. 2019, 18, 389. doi: 10.1016/j.ensm. 2019.02.006  doi: 10.1016/j.ensm.2019.02.006

    19. [19]

      Guo, F.; Wu, C.; Chen, H.; Zhong, F.; Ai, X.; Yang, H.; Qian, J. Energy Storage Mater. 2020, 24, 635. doi: 10.1016/j.ensm.2019.06.010  doi: 10.1016/j.ensm.2019.06.010

    20. [20]

      Li, N.; Yin, Y.; Yang, C.; Guo, Y. Adv. Mater. 2016, 28, 1853. doi: 10.1002/adma.201504526  doi: 10.1002/adma.201504526

    21. [21]

      Li, N.; Shi, Y.; Yin, Y.; Zeng, X.; Li, J.; Li, C.; Wan, L.; Wen, R.; Guo, Y. J. Angew. Chem. Int. Ed. 2018, 57, 1505. doi: 10.1002/anie.201710806  doi: 10.1002/anie.201710806

    22. [22]

      Chen, L.; Li, X. L.; Zhao, Q.; Cai, W. B.; Jiang, Z. Y. Acta Phys. -Chim. Sin. 2006, 22, 1155.  doi: 10.3866/PKU.WHXB20060924

    23. [23]

      Zheng, L.; Guo, F.; Kang, T; Yang, J.; Liu, Y.; Gu, W.; Zhao, Y.; Lin, H.; Shen, Y.; Lu, W.; Chen, L. Nano Res. 2020, 13, 1324. doi: 10.1007/s12274-019-2565-7  doi: 10.1007/s12274-019-2565-7

    24. [24]

      Lang, J.; Long, Y.; Qu, J.; Luo, X.; Wei, H.; Huang, K.; Zhang, H.; Qi, L.; Zhang, Q.; Li, Z.; Wu, H. Energy Storage Mater. 2019, 16, 85. doi: 10.1016/j.ensm.2018.04.024  doi: 10.1016/j.ensm.2018.04.024

    25. [25]

      DeSilva, J.; Udinwe, V.; Sideris, P J.; Smart, M. C.; Krause, F. C.; Hwang, C.; Smith, K. A.; Greenbaum, S. G. J. Electrochem. Soc. 2012, 41, 207. doi: 10.1149/1.4717978  doi: 10.1149/1.4717978

    26. [26]

      Liu, W.; Lin, D.; Pei, A.; Cui, Y. J. Am. Chem. Soc. 2016, 138, 15443. doi: 10.1021/jacs.6b08730  doi: 10.1021/jacs.6b08730

    27. [27]

      Li, S.; Wang, C.; Yu, J.; Han, Y.; Lu, Z. Energy Storage Mater. 2019, 20, 7. doi: 10.1016/ j.ensm.2018.11.030  doi: 10.1016/j.ensm.2018.11.030

    28. [28]

      Kong, L. L.; Wang, L.; Ni, Z. C.; Liu, S.; Li, G. R.; Gao, X. P. Adv. Funct. Mater. 2019, 29, 1808756. doi: 10.1002/adfm.201808756  doi: 10.1002/adfm.201808756

    29. [29]

      Hu, Z.; Li, Z.; Xia, Z.; Jiang, T.; Wang, G.; Sun, J.; Sun, P.; Yan, C.; Zhang, L. Energy Storage Mater. 2019, 22, 29. doi: 10.1016/j.ensm.2018.12.020  doi: 10.1016/j.ensm.2018.12.020

  • 加载中
    1. [1]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    2. [2]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    3. [3]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    4. [4]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    5. [5]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    6. [6]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    7. [7]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    8. [8]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    9. [9]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    10. [10]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    11. [11]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    12. [12]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    13. [13]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    14. [14]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    15. [15]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    16. [16]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    17. [17]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    18. [18]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    19. [19]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    20. [20]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

Metrics
  • PDF Downloads(6)
  • Abstract views(634)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return