Citation: Zhang Zibo, Deng Wei, Zhou Xufeng, Liu Zhaoping. LiC6 Heterogeneous Interface for Stable Lithium Plating and Stripping[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200809. doi: 10.3866/PKU.WHXB202008073 shu

LiC6 Heterogeneous Interface for Stable Lithium Plating and Stripping

  • Corresponding author: Zhou Xufeng, zhouxf@nimte.ac.cn Liu Zhaoping, liuzp@nimte.ac.cn
  • Received Date: 25 August 2020
    Revised Date: 27 September 2020
    Accepted Date: 6 October 2020
    Available Online: 22 October 2020

  • Lithium metal has the highest theoretical specific energy density (3860 mAh∙g−1) and the most negative redox potential (−3.04 V vs standard hydrogen electrode) among all alkali metals. These features have attracted the interest of battery researchers to put lithium metal into practical use in rechargeable batteries. However, lithium metal tends to deposit as dendritic or mossy morphology during the charging process, and such non-uniform deposition induces low Coulombic efficiency and poor cycling stability. In addition, dendritic metallic lithium can easily penetrate the separator, which causes internal short circuit and leads to severe safety issues. Thus it is important to control the electrodeposition process of lithium to inhibit the formation of Li dendrites. Surface modification of lithium is a widely adopted strategy that can induce uniform deposition of Li. In this paper, a LiC6 heterogeneous interfacial layer is decorated on the surface of lithium metal anode. It is prepared in a simple manner by mechanically rolling graphitized carbon nanospheres on a Li foil. The increase in surface area by this LiC6 layer can homogenize the current density on the surface of the lithium foil. Simultaneously, the electronegativity of LiC6 can also homogenize the lithium ion flux. The effect of heterogeneous interface on the electrochemical plating and stripping behavior of lithium in carbonate electrolyte is also studied. Morphological characterization and electrochemical performance tests reveal that the LiC6 heterogeneous interface can significantly improve the reversibility and uniformity of the electrochemical plating and stripping of Li, thereby inhibiting dendritic growth and maintaining the stability of the anode/electrolyte interface. Alternating current electrochemical impedance spectroscopy analysis determines that the solid electrolyte interface (SEI) impedance of bare lithium decreases from the initial 275 to 100 Ω as the deposition capacity increases, suggesting that severe rupture of the SEI is caused by the huge volume change after lithium deposition. On the contrary, the SEI impedance of the lithium foil with the LiC6 heterogeneous interface layer remains nearly constant (from the initial 26 to 25 Ω after electrodeposition) indicates that the LiC6 layer is able to inhibit dendrite growth and stabilize the interface. Thus, stable lithium plating/stripping over 300 h is achieved at a current density of 1 mA∙cm−2 and at a fixed capacity of 1 mAh∙cm−2 with a voltage hysteresis of less than 50 mV. The Li-LiFePO4 full cell test demonstrates that the cycling stability of the modified lithium metal anode is superior to that of the bare one.
  • 加载中
    1. [1]

      Liu, C.; Jin, Z.; Wang, C.; Liu, H.; Zhang, Q. Energy Chem. 2019, 1 (1), 100003. doi: 10.1016/j.enchem.2019.100003  doi: 10.1016/j.enchem.2019.100003

    2. [2]

      Peng, Z.; Song, J.; Huai, L.; Jia, H.; Xiao, B.; Zou, L. Adv. Energy Mater. 2019, 9 (42), 1901764. doi: 10.1002/aenm.201901764  doi: 10.1002/aenm.201901764

    3. [3]

      Wang, D.; Luan, C.; Zhang, W.; Liu, X.; Wang, P.; Zheng, W. Adv. Energy Mater. 2018, 8 (21), 1800650. doi: 10.1002/aenm.201800650  doi: 10.1002/aenm.201800650

    4. [4]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117 (15), 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    5. [5]

      Yan, C.; Cheng, X. B.; Yao, Y. X.; Shen, X.; Li, B. Q.; Li, W. J.; Zhang, Q. Adv. Mater. 2018, 30(45), 1804461. doi: 10.1002/adma.201804461  doi: 10.1002/adma.201804461

    6. [6]

      Xu, S. M.; Duan, H.; Shi, J. L.; Zuo, T. T.; Hu, X. C.; Lang, S. Y.; Zhang, X. Nano Res. 2020, 13 (2), 430. doi: 10.1007/s12274-020-2628-z  doi: 10.1007/s12274-020-2628-z

    7. [7]

      Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. Adv. Mater. 2016, 28 (9), 1853. doi: 10.1002/adma.201504526  doi: 10.1002/adma.201504526

    8. [8]

      Aurbach, D.; Gofer, Y.; Langzam, J. J. Electrochem. Soc 1989, 136, 11. doi: 10.1149/1.2096425  doi: 10.1149/1.2096425

    9. [9]

      Gu, Y.; Wang, W. W.; Li, Y. J.; Wu, Q. H.; Tang, S.; Yan, J. W.; Chen, Z. B. Nat. Commun. 2018, 9 (1), 1. doi: 10.1038/s41467-018-03466-8  doi: 10.1038/s41467-018-03466-8

    10. [10]

      Lee, J. I.; Shin, M.; Hong, D. Adv. Energy Mater. 2019, 9 (13), 1803722.1. doi: 10.1002/aenm.201803722  doi: 10.1002/aenm.201803722

    11. [11]

      Lee, D.; Sun, S.; Kwon, J. Adv. Mater. 2020, 32, 1905573. doi: 10.1002/adma.201905573  doi: 10.1002/adma.201905573

    12. [12]

      Guo, F.; Wu, C.; Chen, S. ACS. Mater. Lett. 2020, 2 (4), 358. doi: 10.1021/acsmaterialslett.0c00001  doi: 10.1021/acsmaterialslett.0c00001

    13. [13]

      Guo, F.; Chen, P.; Kang, T.; Wang, Y. L.; Liu, C. H.; Shen, Y. B.; Lu, W.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35 (12), 1365.  doi: 10.3866/PKU.WHXB201903008

    14. [14]

      Guo, F.; Wang, Y.; Kang, T.; Liu, C.; Shen, Y.; Lu, W.; Chen, L. Energy Storage Mater. 2018, 15, 116. doi: 10.1016/j.ensm.2018.03.018  doi: 10.1016/j.ensm.2018.03.018

    15. [15]

      Shi, P.; Li, T.; Zhang, R.; Shen, X.; Huang, J.; Cheng, X.; Zhang, Q. Adv. Mater. 2019, 31(8), 1807131. doi: 10.1002/adma.201807131  doi: 10.1002/adma.201807131

    16. [16]

      Cui, J.; Yao, S.; Wu, J.; Kim, J. Adv. Energy Mater. 2019, 9, 1802777. doi: 10.1002/aenm.201802777  doi: 10.1002/aenm.201802777

    17. [17]

      Zhao, Q.; Liu, X.; Stalin, S.; Khan, K.; Archer, L. A. Nat Energy. 2019, 4 (5), 365. doi: 10.1038/s41560-019-0349-7  doi: 10.1038/s41560-019-0349-7

    18. [18]

      Yan, K.; Lee, H. W.; Gao, T.; Zheng, G.; Yao, H.; Wang, H.; Chu, S. Nano Lett. 2014, 14(10), 6016. doi: 10.1021/nl503125u  doi: 10.1021/nl503125u

    19. [19]

      Kim, M. S.; Ryu, J. H.; Lim, Y. R.; Nah, I. W.; Lee, K. R.; Archer, L. A.; Cho, W. I. Nat Energy. 2018, 3 (10), 889. doi: 10.1038/s41560-018-0237-6  doi: 10.1038/s41560-018-0237-6

    20. [20]

      Lin, D.; Liu, Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H.; Cui, Y. Nat. Nanotechnol. 2016, 11 (7), 626. doi: 10.1038/NNANO.2016.32  doi: 10.1038/NNANO.2016.32

    21. [21]

      Huang, S.; Tang, L.; Najafabadi, H. S.; Chen, S.; Ren, Z. Nano Energy 2017, 38, 504. doi: 10.1016/j.nanoen.2017.06.030  doi: 10.1016/j.nanoen.2017.06.030

    22. [22]

      Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Angew. Chem. Int. Ed. 2017, 56 (27), 7764. doi: 10.1002/anie.201702099  doi: 10.1002/anie.201702099

    23. [23]

      Shao, Y.; Wang, H.; Gong, Z.; Wang, D.; Zheng, B.; Zhu, J.; Huang, X. ACS Energy Lett. 2018, 3 (6), 1212. doi: 10.1021/acsenergylett.8b00453  doi: 10.1021/acsenergylett.8b00453

    24. [24]

      Siroma, Z.; Sato, T.; Tamonari, T.; Nagai, R.; Ota, A.; Ioroi, T. J. Power Sources 2016, 316, 215. doi: 10.1016/j.jpowsour.2016.03.059  doi: 10.1016/j.jpowsour.2016.03.059

    25. [25]

      Salvatierra, R. V.; Yoon, J.; Tour, J. M. Adv. Mater. 2018, 30 (50), 1803869. doi: 10.1002/adma.201803869  doi: 10.1002/adma.201803869

    26. [26]

      Zhou, W. F. Electrochemical measurements. Shanghai Science and Technology Press: Shanghai, 1983; pp. 134-136.

  • 加载中
    1. [1]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    2. [2]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    3. [3]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    4. [4]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    5. [5]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    6. [6]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    7. [7]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    8. [8]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    9. [9]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    10. [10]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    11. [11]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    12. [12]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    13. [13]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    16. [16]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    17. [17]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    18. [18]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    19. [19]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    20. [20]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

Metrics
  • PDF Downloads(11)
  • Abstract views(1040)
  • HTML views(246)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return