Citation: Xu Guiying, Xue Rongming, Zhang Moyao, Li Yaowen, Li Yongfang. Synthesis of Pyrazine-based Hole Transport Layer and Its Application in p-i-n Planar Perovskite Solar Cells[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200805. doi: 10.3866/PKU.WHXB202008050 shu

Synthesis of Pyrazine-based Hole Transport Layer and Its Application in p-i-n Planar Perovskite Solar Cells

  • Corresponding author: Li Yaowen, ywli@suda.edu.cn
  • Received Date: 19 August 2020
    Revised Date: 20 September 2020
    Accepted Date: 23 September 2020
    Available Online: 9 October 2020

    Fund Project: the National Natural Science Foundation of China 51673138The project was supported by the National Natural Science Foundation of China (51922074, 51673138, 51820105003), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCPTTPA8_2496)the National Natural Science Foundation of China 51820105003the National Natural Science Foundation of China 51922074the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Postgraduate Research & Practice Innovation Program of Jiangsu Province KYCPTTPA8_2496

  • Planar p-i-n perovskite solar cells (pero-SCs) with solution-processed fabrication, low cost, flexible device fabrication, and negligible hysteresis have attracted significant interest. Hole transport material (HTM) plays a crucial role in improving the performance of p-i-n planar pero-SCs by facilitating hole extraction and then reducing surface recombination. Two types of HTMs have been used in p-i-n pero-SCs. p-Type inorganic semiconductors, such as NiO, CuI, Cu2O, CuSCN, and graphene oxide, have shown good efficiency and stability; however, organic semiconductor-based HTMs (e.g., poly[bis(4-phenyl) (2, 4, 6-trimethylphenyl)amine] (PTAA), polyarylamine (poly-TPD), poly(N-9-heptadecanyl-2, 7-carbazole-alt-5, 5-(4, 7-di(thien-2-yl)-2, 1, 3-benzothiadiazole)) (PCDTBT), and triphenylamine or thiophene derivative) have outstanding processability for simple one-step solution process at low temperatures; therefore, they should be investigated further. However, their electrical properties are usually inferior than those of inorganic semiconductors, and additives are required to improve their mobility and conductivity, which complicates device processing and results in hysteresis and poor device stability. Therefore, for the organic semiconductor-based HTMs, new hole transport layer (HTL) materials should be developed with easy synthesis process, highly reproducible photovoltaic performance, and better understanding of the structure–property relationship between the HTL materials and the device performance. Herein, an X-type HTM 4, 4, 4'', 4'''-(pyrazine-2, 3, 5, 6-tetrayl)tetrakis(N, N-bis(4-methoxyphenyl)aniline) (PT-TPA) containing pyrazine as the molecular core and triphenylamine (TPA) derivative as branches was designed and synthesized. We introduce an electron-deficient para-diazine as the core and electron-donating methoxytriphenylamine as the peripheral unit to enhance the dipole moment of PT-TPA, which could induce an intermolecular charge transfer. Compared with 4, 4'', 4'', 4'''-silanetetrayltetrakis(N, N-bis(4-methoxyphenyl)aniline) (Si-OMeTPA), the pyrazine core not only endows PT-TPA with good crystallinity but also improves the charge transfer property and plane conjugation of the molecular center, which significantly enhances the hole mobility of PT-TPA. The p-i-n planar pero-SCs based on dopant-free PT-TPA HTL showed a power conversion efficiency of 17.52%, which is approximately 15% higher than that of the device with a Si-OMeTPA HTL.
  • 加载中
    1. [1]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. doi: 10.1021/ja809598r  doi: 10.1021/ja809598r

    2. [2]

      Olaleru, S. A.; Kirui, J. K.; Wamwangi, D.; Roro, K. T.; Mwakikunga, B. Sol. Energy 2020, 196, 295. doi: 10.1016/j.solener.2019.12.025  doi: 10.1016/j.solener.2019.12.025

    3. [3]

      Park, N. G. ACS Energy Lett. 2019, 4, 2983. doi: 10.1021/acsenergylett.9b02442  doi: 10.1021/acsenergylett.9b02442

    4. [4]

      Zheng, X.; Hou, Y.; Bao, C.; Yin, J.; Yuan, F.; Huang, Z.; Song, K.; Liu, J.; Troughton, J.; Gasparini, N.; et al. Nat. Energy 2020, 5, 131. doi: 10.1038/s41560-019-0538-4  doi: 10.1038/s41560-019-0538-4

    5. [5]

      Yang, D.; Sano, T.; Yaguchi, Y.; Sun, H.; Sasabe, H.; Kido, J. Adv. Funct. Mater. 2019, 29, 1970074. doi: 10.1002/adfm.201970074  doi: 10.1002/adfm.201970074

    6. [6]

      Xue, R.; Zhang, M.; Luo, D.; Chen, W.; Zhu, R.; Yang, Y. M.; Li, Y.; Li, Y. Sci. China Chem. 2020, doi: 10.1007/s11426-020-9741-1

    7. [7]

      Jia, X.; Zuo, C.; Tao, S.; Sun, K.; Zhao, Y.; Yang, S.; Cheng, M.; Wang, M.; Yuan, Y.; Yang J.; et al. Science Bulletin 2019, 64, 1532. doi: 10.1016/j.scib.2019.08.017  doi: 10.1016/j.scib.2019.08.017

    8. [8]

      Cheng, M.; Zuo, C.; Wu, Y.; Li, Z.; Xu, B.; Hua, Y.; Ding, L. Science Bulletin 2020, 65 (15), 1237. doi: 10.1016/j.scib.2020.04.021  doi: 10.1016/j.scib.2020.04.021

    9. [9]

      Sathiyan, G.; Syed. A. A.; Chen, C.; Wu, C.; Tao, L.; Ding, X.; Miao, Y.; Li, G.; Cheng, M.; Ding L. Nano Energy 2020, 72, 104673. doi: 10.1016/j.nanoen.2020.104673  doi: 10.1016/j.nanoen.2020.104673

    10. [10]

      Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J. Nat. Commun. 2015, 6, 7747. doi: 10.1038/ncomms8747  doi: 10.1038/ncomms8747

    11. [11]

      Huang, C.; Fu, W.; Li, C. Z.; Zhang, Z.; Qiu, W.; Shi, M.; Heremans, P.; Jen, A. K. Y.; Chen, H. J. Am. Chem. Soc. 2016, 138, 2528. doi: 10.1021/jacs.6b00039  doi: 10.1021/jacs.6b00039

    12. [12]

      Zhang, J.; He, Y.; Min, J. Acta Phys. -Chim. Sin. 2018, 34, 1221.  doi: 10.3866/PKU.WHXB201803231

    13. [13]

      Xu, L.; Chen, X.; Jin, J.; Liu, W.; Dong, B.; Bai, X.; Song, H.; Reiss, P. Nano Energy 2019, 63, 103860. doi: 10.1016/j.nanoen.2019.103860  doi: 10.1016/j.nanoen.2019.103860

    14. [14]

      Son, M. K.; Steier, L.; Schreier, M.; Mayer, M. T.; Luo, J.; Grätzel, M. Energy Environ. Sci. 2017, 10, 912. doi: 10.1039/C6EE03613A  doi: 10.1039/C6EE03613A

    15. [15]

      Zhao, D.; Sexton, M.; Park, H. Y.; Baure, G.; Nino, J. C.; So, F. Adv. Energy Mater. 2015, 5, 1401855. doi: 10.1002/aenm.201500436  doi: 10.1002/aenm.201500436

    16. [16]

      Li, X.; Liu, X.; Wang, X.; Zhao, L.; Jiu, T.; Fang, J. J. Mater. Chem. A 2015, 3, 15024. doi: 10.1039/C5TA04712A  doi: 10.1039/C5TA04712A

    17. [17]

      Meng, L.; You, J.; Guo, T. F.; Yang, Y. Acc. Chem. Res. 2016, 49, 155. doi: 10.1021/acs.accounts.5b00404  doi: 10.1021/acs.accounts.5b00404

    18. [18]

      Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897. doi: 10.1038/nmat4014  doi: 10.1038/nmat4014

    19. [19]

      Wang, Y. K.; Yuan, Z. C.; Shi, G. Z.; Li, Y. X.; Li, Q.; Hui, F.; Sun, B. Q.; Jiang, Z.; Liao, L. Adv. Funct. Mater. 2016, 26, 1375. doi: 10.1002/adfm.201504245  doi: 10.1002/adfm.201504245

    20. [20]

      Labban, A. E.; Chen, H.; Kirkus, M.; Barbe, J.; Del Gobbo, S.; Neophytou, M.; McCulloch, I.; Eid, J. Adv. Energy Mater. 2016, 6, 1502101. doi: 10.1002/aenm.201502101  doi: 10.1002/aenm.201502101

    21. [21]

      Chen, H.; Fu, W.; Huang, C.; Zhang, Z.; Li, S.; Ding, F.; Shi, M.; Li, C. Z.; Jen, A. K. Y.; Chen, H. Adv. Energy Mater. 2017, 7, 1700012. doi: 10.1002/aenm.201700012  doi: 10.1002/aenm.201700012

    22. [22]

      Xue, R.; Zhang, M.; Xu, G.; Zhang, J.; Chen, W.; Chen, H.; Yang, M.; Cui, C.; Li, Y.; Li, Y. J. Mater. Chem. A 2018, 6, 404. doi: 10.1039/C7TA09716F  doi: 10.1039/C7TA09716F

    23. [23]

      Lin, H.; Chen, S.; Hu, H.; Zhang, L.; Ma, T.; Lai, J. Y. L.; Li, Z.; Qin, A.; Huang, X.; Tang, B.; Yan, H. Adv. Mater. 2016, 28, 8546. doi: 10.1002/adma.201600997  doi: 10.1002/adma.201600997

    24. [24]

      Liu, Y.; Lai, J. Y. L.; Chen, S.; Li, Y.; Jiang, K.; Zhao, J.; Li, Z.; Hu, H.; Ma, T.; Lin, H.; et al. J. Mater. Chem. A 2015, 3, 13632. doi: 10.1039/C5TA03093E  doi: 10.1039/C5TA03093E

    25. [25]

      Liu, Y.; Mu, C.; Jiang, K.; Zhao, J.; Li, Y.; Zhang, L.; Li, Z.; Lai, J.; Hu, H.; Ma, T.; et al. Adv. Mater. 2015, 27, 1015. doi: 10.1002/adma.201404152  doi: 10.1002/adma.201404152

    26. [26]

      Xu, L.; Zhang, Q. Sci. China Mater. 2017, 60, 1093. doi: 10.1007/s40843-016-5170-2  doi: 10.1007/s40843-016-5170-2

    27. [27]

      Zhu, Y.; Champion, R.; Jenekhe, S. Macromolecules 2006, 39, 8712. doi: 10.1021/ma061861g  doi: 10.1021/ma061861g

    28. [28]

      Zhou, E.; Cong, J.; Yamakawa, S.; Wei, Q.; Nakamura, M.; Tajima, K.; Yang, C.; Hashimoto, K. Macromolecules 2010, 43, 2873. doi: 10.1021/ma100039q  doi: 10.1021/ma100039q

    29. [29]

      Chen, M.; Nie, H.; Song, B.; Li, L.; Sun, J. Z.; Qin, A.; Tang, B. Z. J. Mater. Chem. C 2016, 4, 2901. doi: 10.1039/C5TC03299G  doi: 10.1039/C5TC03299G

    30. [30]

      Liu, F.; Wu, F.; Tu, Z.; Liao, Q.; Gong, Y.; Zhu, L.; Li, Q.; Li, Z. Adv. Funct. Mater. 2019, 29, 1901296. doi: 10.1002/adfm.201901296  doi: 10.1002/adfm.201901296

    31. [31]

      Zhang, D.; Xu, P.; Wu, T.; Ou, Y.; Yang, X.; Sun, A.; Cui, B.; Sun, H.; Hua, Y. J. Mater. Chem. A 2019, 7, 5221. doi: 10.1039/C8TA12139G  doi: 10.1039/C8TA12139G

    32. [32]

      Hua, Y.; Chen, S.; Zhang, D.; Xu, P.; Sun, A.; Ou, Y.; Wu, T.; Sun, H.; Cui, B.; Zhu, X. J. Mater. Chem. A 2019, 7, 10200. doi: 10.1039/C9TA01731C  doi: 10.1039/C9TA01731C

    33. [33]

      Zhao, Y.; Xu, G.; Guo, X.; Xia, Y.; Cui, C.; Zhang, M.; Song, B.; Li, Y.; Li, Y. J. Mater. Chem. A 2015, 3, 17991. doi: 10.1039/C5TA03801D  doi: 10.1039/C5TA03801D

    34. [34]

      Zhang, P.; Li, C.; Li, Y.; Yang, X.; Chen, L.; Xu, B.; Tian, W.; Tu, Y. Chem. Commun. 2013, 49, 4917. doi: 10.1039/C3CC41321G  doi: 10.1039/C3CC41321G

    35. [35]

      Deepa, M.; Salado, M.; Calio, L.; Kazim, S.; Shivaprasad, S. M.; Ahmad, S. Phys. Chem. Chem. Phys. 2017, 19, 4069. doi: 10.1039/C6CP08022G  doi: 10.1039/C6CP08022G

    36. [36]

      Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M. Energy Environ. Sci. 2016, 9, 1989. doi: 10.1039/C5EE03874J  doi: 10.1039/C5EE03874J

    37. [37]

      Ge, Q. Q.; Shao, J. Y.; Ding, J.; Deng, L. Y.; Zhou, W. K.; Chen, Y. X.; Ma, J. Y.; Wan, L. J.; Yao, J.; Hu, J. S.; Zhong, Y. W. Angew. Chem. Int. Ed. 2018, 57, 10959. doi: 10.1002/anie.201806392  doi: 10.1002/anie.201806392

    38. [38]

      Luo, D.; Yang, W.; Wang, Z.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade, G. F.; Watts, J. F.; Xu, Z.; et al. Science 2018, 360, 1442. doi: 10.1126/science.aap9282  doi: 10.1126/science.aap9282

    39. [39]

      Tu, Y.; Yang, X.; Su, R.; Luo, D.; Cao, Y.; Zhao, L.; Liu, T.; Yang, W.; Zhang, Y.; Xu, Z.; et al. Adv. Mater. 2018, 30, 1805085. doi: 10.1002/adma.201805085  doi: 10.1002/adma.201805085

    40. [40]

      Li, Y.; Zhao, Y.; Chen, Q.; Yang, Y.; Liu, Y.; Hong, Z.; Liu, Z.; Hsieh, Y. T.; Meng, L.; Li, Y.; Yang, Y. J. Am. Chem. Soc. 2015, 137, 15540. doi: 10.1021/jacs.5b10614  doi: 10.1021/jacs.5b10614

    41. [41]

      Cowan, S. R.; Roy, A.; Heeger, A. J. Phys. Rev. B 2010, 82, 245207. doi: 10.1103/PhysRevB.82.245207  doi: 10.1103/PhysRevB.82.245207

    42. [42]

      Mandoc, M. M.; Kooistra, F. B.; Hummelen, J. C.; Boer, B. d.; Blom, P. W. M. Appl. Phys. Lett. 2007, 91, 263505.doi: 10.1063/1.2821368  doi: 10.1063/1.2821368

    43. [43]

      Liu, X.; Yu, Z.; Wang, T.; Chiu, K.; Lin, F.; Gong, H.; Ding, L.; Cheng, Y. Adv. Energy Mater. 2020, 2001958. doi: 10.1002/aenm.202001958

  • 加载中
    1. [1]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    2. [2]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    3. [3]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    4. [4]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    5. [5]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    8. [8]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    9. [9]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    10. [10]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    11. [11]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    12. [12]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    13. [13]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    14. [14]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    15. [15]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    16. [16]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    17. [17]

      Fengxiao Wang Zhiwei Miao Yaofeng Yuan . 有机磷化学与化学教学. University Chemistry, 2025, 40(8): 158-168. doi: 10.12461/PKU.DXHX202410077

    18. [18]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    19. [19]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    20. [20]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

Metrics
  • PDF Downloads(5)
  • Abstract views(556)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return