Citation: Wu Chen, Zhou Ying, Zhu Xiaolong, Zhan Minzhi, Yang Hanxi, Qian Jiangfeng. Research Progress on High Concentration Electrolytes for Li Metal Batteries[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200804. doi: 10.3866/PKU.WHXB202008044 shu

Research Progress on High Concentration Electrolytes for Li Metal Batteries

  • Corresponding author: Qian Jiangfeng, jfqian@whu.edu.cn
  • Received Date: 16 August 2020
    Revised Date: 10 September 2020
    Accepted Date: 10 September 2020
    Available Online: 16 September 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (21773177) and the Fundamental Research Funds for the Central Universities, China (2042020gf0007)the Fundamental Research Funds for the Central Universities, China 2042020gf0007the National Natural Science Foundation of China 21773177

  • Improvement in the energy density of conventional lithium-ion batteries (LIBs), based on the intercalation-extraction chemistry of graphite and transition metal layered oxides, has apparently lagged behind the advances in consumer electronics and electric vehicles. Secondary Li-metal batteries (LMBs), utilizing metallic Li as the anode material, have incomparable advantages in terms of energy density due to their high specific capacity (3860 mAh·g-1) and low redox potential (-3.04 V vs. standard hydrogen electrode) of Li metal. Irrespective of whether Li anodes are coupled with intercalation-type cathodes (e.g. LiFePO4, LiCoO2, LiNixCoyMnzO2, etc.) or conversion-type cathodes (S, O2), the energy density of LMBs is much higher than that of traditional LIBs, which should solve the range concern of electric vehicles. However, the intrinsically high reactivity between metallic Li and organic electrolytes could induce the formation of a solid electrolyte interface (SEI). The heterogeneous SEI, consisting of a flexible organic outer layer and a brittle inorganic inner layer, suffers from repeated rupture and regeneration due to infinite volume expansions associated with Li deposition and dissolution reactions. Meanwhile, Li is preferentially deposited on the "hot sites" and is stripped from the root of sediments, resulting in uncontrolled dendrite growth during charging and formation of electrochemically isolated Li ("dead" Li) during discharging. Thus, the Columbic efficiency of Li metal full cells is greatly limited by interfacial side effects and continuous loss of active Li, especially in conventional carbonate-based electrolyte, viz. 1 mol·L-1 LiPF6-EC/DEC (ethylene carbonate/diethyl carbonate), which impedes the large-scale employment of Li metal batteries. Recently, novel electrolytes with high or localized-high salt concentrations have attracted considerable attention because of their unique physiochemical properties and excellent electrochemical performance. In high-concentration electrolytes, the reduction in the population of free solvent molecules inhibits irreversible electrolyte decomposition at the electrode-electrolyte interface. In localized-high-concentration electrolytes, the introduction of a dilute reagent retains the desired solvation structure, while improving the physicochemical properties (conductivity and viscosity) of the electrolyte. Herein, we systemically review the latest progress in high-concentration and localized-high-concentration electrolytes for use in Li metal batteries. The solvation chemistry structure, physicochemical properties, and interfacial-stabilizing mechanisms are analyzed in detail, and special attention is devoted to their superior interfacial compatibility with Li metal anodes. Finally, we briefly clarify the current problems associated with the research of high-concentration and localized-high-concentration electrolytes from the viewpoints of basic scientific research and practical applications, and some possible solutions are provided to further pave the way to practical Li metal batteries.
  • 加载中
    1. [1]

      Yang, Z.; Zhang, J.; Kintner-Meyer, M. C. W.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J. Chem. Rev. 2011, 111, 3577. doi: 10.1021/cr100290v  doi: 10.1021/cr100290v

    2. [2]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    3. [3]

      Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J. G. Energy Environ. Sci. 2014, 7, 513. doi: 10.1039/c3ee40795k  doi: 10.1039/c3ee40795k

    4. [4]

      Zhang, Y.; Zuo, T. T.; Popovic, J.; Lim, K.; Yin, Y. X.; Maier, J.; Guo, Y. G. Mater. Today 2020, 33, 56. doi: 10.1016/j.mattod.2019.09.018  doi: 10.1016/j.mattod.2019.09.018

    5. [5]

      Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2012, 11, 19. doi: 10.1038/NMAT3191  doi: 10.1038/NMAT3191

    6. [6]

      Zhang, Y. T.; Liu, Z. J.; Wang, J. W.; Wang, L.; Peng, Z. Q. Acta Phys. -Chim. Sin. 2017, 33, 486.  doi: 10.3866/PKU.WHXB201611181

    7. [7]

      Zhang, X.; Wang, A.; Liu, X.; Luo, J. Acc. Chem. Res. 2019, 52, 3223. doi: 10.1021/acs.accounts.9b00437  doi: 10.1021/acs.accounts.9b00437

    8. [8]

      Cheng, X. B.; Zhang, Q. Prog. Chem. 2018, 30, 51.  doi: 10.7536/PC170704

    9. [9]

      Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 5301. doi: 10.1002/anie.201801513  doi: 10.1002/anie.201801513

    10. [10]

      Jie, Y.; Ren, X.; Cao, R.; Cai, W.; Jiao, S. Adv. Funct. Mater. 2020, 30, 1910777. doi: 10.1002/adfm.201910777  doi: 10.1002/adfm.201910777

    11. [11]

      Wang, C.; Fu, K.; Kammampata, S. P.; McOwen, D. W.; Samson, A. J.; Zhang, L.; Hitz, G. T.; Nolan, A. M.; Wachsman, E. D.; Mo, Y.; et al. Chem. Rev. 2020, 120, 4257. doi: 10.1021/acs.chemrev.9b00427  doi: 10.1021/acs.chemrev.9b00427

    12. [12]

      Jin, F.; Li, J.; Hu, C. J.; Dong, H. C.; Chen, P.; Shen, Y. B.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35, 1399.  doi: 10.3866/PKU.WHXB201904085

    13. [13]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. Adv. Sci. 2016, 3, 1500213. doi: 10.1002/advs.201500213  doi: 10.1002/advs.201500213

    14. [14]

      Wu, C.; Guo, F.; Zhuang, L.; Ai, X.; Zhong, F.; Yang, H.; Qian, J. ACS Energy Lett. 2020, 5, 1644. doi: 10.1021/acsenergylett.0c00804  doi: 10.1021/acsenergylett.0c00804

    15. [15]

      Zhang, R.; Li, N. W.; Cheng, X. B.; Yin, Y. X.; Zhang, Q.; Guo, Y. G. Adv. Sci. 2017, 4, 1600445. doi: 10.1002/advs.201600445  doi: 10.1002/advs.201600445

    16. [16]

      Guo, F.; Wu, C.; Chen, S.; Ai, X.; Zhong, F.; Yang, H.; Qian, J. ACS Mater. Lett. 2020, 2, 358. doi: 10.1021/acsmaterialslett.0c00001  doi: 10.1021/acsmaterialslett.0c00001

    17. [17]

      Li, S.; Jiang, M.; Xie, Y.; Xu, H.; Jia, J.; Li, J. Adv. Mater. 2018, 30, e1706375. doi: 10.1002/adma.201706375  doi: 10.1002/adma.201706375

    18. [18]

      Wan, G.; Guo, F.; Li, H.; Cao, Y.; Ai, X.; Qian, J.; Li, Y.; Yang, H. ACS Appl. Mater. Interfaces 2018, 10, 593. doi: 10.1021/acsami.7b14662  doi: 10.1021/acsami.7b14662

    19. [19]

      Qian, J.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Henderson, W. A.; Zhang, Y.; Zhang, J. G. Nano Energy 2015, 15, 135. doi: 10.1016/j.nanoen.2015.04.009  doi: 10.1016/j.nanoen.2015.04.009

    20. [20]

      Yamada, Y.; Wang, J.; Ko, S.; Watanabe, E.; Yamada, A. Nat. Energy 2019, 4, 1. doi: 10.1038/s41560-019-0336-z  doi: 10.1038/s41560-019-0336-z

    21. [21]

      Chang, Z.; Wang, J.; Wu, Z.; Zhao, J.; Lu, S. Prog. Chem. 2018, 30, 170.  doi: 10.7536/PC180344

    22. [22]

      Yu, Z.; Zhang, J.; Liu, T.; Tang, B.; Yang, X.; Zhou, X.; Cui, G. Acta Chim. Sin. 2020, 78, 114. doi: 10.6023/a19100385  doi: 10.6023/a19100385

    23. [23]

      Alia, J. M.; Edwards, H. G. M.; Moore, J. J. Raman. Spectrosc. 1995, 26, 715. doi: 10.1002/jrs.1250260819  doi: 10.1002/jrs.1250260819

    24. [24]

      Seo, D. M.; Boyle, P. D.; Sommer, R. D.; Daubert, J. S.; Borodin, O.; Henderson, W. A. J. Phys. Chem. B 2014, 118, 13601. doi: 10.1021/jp505006x  doi: 10.1021/jp505006x

    25. [25]

      Cazzanelli, E.; Mustarelli, P.; Benevelli, F.; Appetecchi, G. B.; Croce, F. Solid State Ionics 1996, 86–88, 379. doi: 10.1016/0167-2738(96)00154-3  doi: 10.1016/0167-2738(96)00154-3

    26. [26]

      Suo, L.; Zheng, F.; Hu, Y. S.; Chen, L. Chin. Phys. B 2016, 25, 016101. doi: 10.1088/1674-1056/25/1/016101  doi: 10.1088/1674-1056/25/1/016101

    27. [27]

      Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. J. Am. Chem. Soc. 2014, 136, 5039. doi: 10.1021/ja412807w  doi: 10.1021/ja412807w

    28. [28]

      Ugata, Y.; Tatara, R.; Ueno, K.; Dokko, K.; Watanabe, M. J. Chem. Phys. 2020, 152, 104502. doi: 10.1063/1.5145340  doi: 10.1063/1.5145340

    29. [29]

      Yoshida, K.; Tsuchiya, M.; Tachikawa, N.; Dokko, K.; Watanabe, M. J. Phys. Chem. C 2011, 115, 18384. doi: 10.1021/jp206881t  doi: 10.1021/jp206881t

    30. [30]

      Suo, L.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. Nat. Commun. 2013, 4, 1481. doi: 10.1038/ncomms2513  doi: 10.1038/ncomms2513

    31. [31]

      Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. Nat. Commun. 2015, 6, 6362. doi: 10.1038/ncomms7362  doi: 10.1038/ncomms7362

    32. [32]

      Yoshida, K.; Nakamura, M.; Kazue, Y.; Tachikawa, N.; Tsuzuki, S.; Seki, S.; Dokko, K.; Watanabe, M. J. Am. Chem. Soc. 2011, 133, 13121. doi: 10.1021/ja203983r  doi: 10.1021/ja203983r

    33. [33]

      McOwen, D. W.; Seo, D. M.; Borodin, O.; Vatamanu, J.; Boyle, P. D.; Henderson, W. A. Energy Environ. Sci. 2014, 7, 416. doi: 10.1039/C3EE42351D  doi: 10.1039/C3EE42351D

    34. [34]

      Matsumoto, K.; Inoue, K.; Nakahara, K.; Yuge, R.; Noguchi, T.; Utsugi, K. J. Power Sources 2013, 231, 234. doi: 10.1016/j.jpowsour.2012.12.028  doi: 10.1016/j.jpowsour.2012.12.028

    35. [35]

      Yamada, Y.; Yamada, A. J. Electrochem. Soc. 2015, 162, A2406. doi: 10.1149/2.0041514jes  doi: 10.1149/2.0041514jes

    36. [36]

      Moon, H.; Mandai, T.; Tatara, R.; Ueno, K.; Yamazaki, A.; Yoshida, K.; Seki, S.; Dokko, K.; Watanabe, M. J. Phys. Chem. C 2015, 119, 3957. doi: 10.1021/jp5128578  doi: 10.1021/jp5128578

    37. [37]

      Fang, Z.; Ma, Q.; Liu, P.; Ma, J.; Hu, Y. S.; Zhou, Z.; Li, H.; Huang, X.; Chen, L. ACS Appl. Mater. Inter. 2017, 9, 4282. doi: 10.1021/acsami.6b03857  doi: 10.1021/acsami.6b03857

    38. [38]

      Jiao, S.; Ren, X.; Cao, R.; Engelhard, M. H.; Liu, Y.; Hu, D.; Mei, D.; Zheng, J.; Zhao, W.; Li, Q. Nat. Energy 2018, 3, 739. doi: 10.1038/s41560-018-0199-8  doi: 10.1038/s41560-018-0199-8

    39. [39]

      Liu, B.; Xu, W.; Yan, P.; Sun, X.; Bowden, M. E.; Read, J.; Qian, J.; Mei, D.; Wang, C.; Zhang, J. Adv. Funct. Mater. 2016, 26, 605. doi: 10.1002/adfm.201503697  doi: 10.1002/adfm.201503697

    40. [40]

      Ren, X.; Zou, L.; Jiao, S.; Mei, D.; Engelhard, M. H.; Li, Q.; Lee, H.; Niu, C.; Adams, B. D.; Wang, C.; et al. ACS Energy Lett. 2019, 4, 896. doi: 10.1021/acsenergylett.9b00381  doi: 10.1021/acsenergylett.9b00381

    41. [41]

      Fan, X.; Chen, L.; Ji, X.; Deng, T.; Hou, S.; Chen, J.; Zheng, J.; Wang, F.; Jiang, J.; Xu, K.; Wang, C. Chem 2018, 4, 174. doi: 10.1016/j.chempr.2017.10.017  doi: 10.1016/j.chempr.2017.10.017

    42. [42]

      Suo, L.; Xue, W.; Gobet, M.; Greenbaum, S. G.; Wang, C.; Chen, Y.; Yang, W.; Li, Y.; Li, J. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 1156. doi: 10.1073/pnas.1712895115  doi: 10.1073/pnas.1712895115

    43. [43]

      Wang, W.; Zhang, J.; Yang, Q.; Wang, S.; Wang, W.; Li, B. ACS Appl. Mater. Inter. 2020, 12, 22901. doi: 10.1021/acsami.0c03952  doi: 10.1021/acsami.0c03952

    44. [44]

      Dokko, K.; Watanabe, D.; Ugata, Y.; Thomas, M. L.; Tsuzuki, S.; Shinoda, W.; Hashimoto, K.; Ueno, K.; Umebayashi, Y.; Watanabe, M. J. Phys. Chem. B 2018, 122, 10736. doi: 10.1021/acs.jpcb.8b09439  doi: 10.1021/acs.jpcb.8b09439

    45. [45]

      Maeyoshi, Y.; Ding, D.; Kubota, M.; Ueda, H.; Abe, K.; Kanamura, K.; Abe, H. ACS Appl. Mater. Inter. 2019, 11, 25833. doi: 10.1021/acsami.9b05257  doi: 10.1021/acsami.9b05257

    46. [46]

      Togasaki, N.; Momma, T.; Osaka, T. J. Power Sources 2016, 307, 98. doi: 10.1016/j.jpowsour.2015.12.123  doi: 10.1016/j.jpowsour.2015.12.123

    47. [47]

      Liu, B.; Xu, W.; Yan, P.; Kim, S. T.; Engelhard, M. H.; Sun, X.; Mei, D.; Cho, J.; Wang, C. M.; Zhang, J. G. Adv. Energy Mater. 2017, 7, 1602605. doi: 10.1002/aenm.201602605  doi: 10.1002/aenm.201602605

    48. [48]

      Qi, X.; Yang, Y.; Jin, Q.; Yang, F.; Xie, Y.; Sang, P.; Liu, K.; Zhao, W.; Xu, X.; Fu, Y.; et al. Angew. Chem. Int. Ed. 2020, 59, 13908. doi: 10.1002/anie.202004424  doi: 10.1002/anie.202004424

    49. [49]

      Xiao, L.; Zeng, Z.; Liu, X.; Fang, Y.; Jiang, X.; Shao, Y.; Zhuang, L.; Ai, X.; Yang, H.; Cao, Y.; Liu, J. ACS Energy Lett. 2019, 4, 483. doi: 10.1021/acsenergylett.8b02527  doi: 10.1021/acsenergylett.8b02527

    50. [50]

      Sun, H.; Zhu, G.; Zhu, Y.; Lin, M. C.; Chen, H.; Li, Y. Y.; Hung, W. H.; Zhou, B.; Wang, X.; Bai, Y.; et al. Adv. Mater. 2020, 32, e2001741. doi: 10.1002/adma.202001741  doi: 10.1002/adma.202001741

    51. [51]

      Dokko, K.; Tachikawa, N.; Yamauchi, K.; Tsuchiya, M.; Yamazaki, A.; Takashima, E.; Park, J. W.; Ueno, K.; Seki, S.; Serizawa, N.; Watanabe, M. J. Electrochem. Soc. 2013, 160, A1304. doi: 10.1149/2.111308jes  doi: 10.1149/2.111308jes

    52. [52]

      Chen, S.; Zheng, J.; Mei, D.; Han, K. S.; Engelhard, M. H.; Zhao, W.; Xu, W.; Liu, J.; Zhang, J. G. Adv. Mater. 2018, 30, e1706102. doi: 10.1002/adma.201706102  doi: 10.1002/adma.201706102

    53. [53]

      Chen, S.; Zheng, J.; Yu, L.; Ren, X.; Engelhard, M. H.; Niu, C.; Lee, H.; Xu, W.; Xiao, J.; Liu, J. Joule 2018, 2, 1548. doi: 10.1016/j.joule.2018.05.002  doi: 10.1016/j.joule.2018.05.002

    54. [54]

      Zheng, Y.; Soto, F. A.; Ponce, V.; Seminario, J. M.; Cao, X.; Zhang, J.; Balbuena, P. B. J. Mater. Chem. 2019, 7, 25047. doi: 10.1039/c9ta08935g  doi: 10.1039/c9ta08935g

    55. [55]

      Ren, X.; Chen, S.; Lee, H.; Mei, D.; Engelhard, M. H.; Burton, S. D.; Zhao, W.; Zheng, J.; Li, Q.; Ding, M. S.; et al. Chem 2018, 4, 1877. doi: 10.1016/j.chempr.2018.05.002  doi: 10.1016/j.chempr.2018.05.002

    56. [56]

      Fan, X.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C.; Liou, S. C.; et al. Nat. Nanotechnol. 2018, 13, 715. doi: 10.1038/s41565-018-0183-2  doi: 10.1038/s41565-018-0183-2

    57. [57]

      Deng, T.; Fan, X.; Cao, L.; Chen, J.; Hou, S.; Ji, X.; Chen, L.; Li, S.; Zhou, X.; Hu, E.; et al. Joule 2019, 3, 2550. doi: 10.1016/j.joule.2019.08.004  doi: 10.1016/j.joule.2019.08.004

    58. [58]

      Chen, L.; Fan, X.; Hu, E.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Li, J.; Su, D.; Yang, X.; Wang, C. Chem 2019, 5, 896. doi: 10.1016/j.chempr.2019.02.003  doi: 10.1016/j.chempr.2019.02.003

    59. [59]

      Lin, S.; Zhao, J. ACS Appl. Mater. Inter. 2020, 12, 8316. doi: 10.1021/acsami.9b21679  doi: 10.1021/acsami.9b21679

    60. [60]

      Fan, X.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F.; Yue, J.; Piao, N.; Wang, R.; Zhou, X.; et al. Nat. Energy 2019, 4, 882. doi: 10.1038/s41560-019-0474-3  doi: 10.1038/s41560-019-0474-3

    61. [61]

      Ren, X.; Zou, L.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C.; Matthews, B. E.; Zhu, Z.; et al. Joule 2019, 3, 1662. doi: 10.1016/j.joule.2019.05.006  doi: 10.1016/j.joule.2019.05.006

    62. [62]

      Zheng, J.; Ji, G.; Fan, X.; Chen, J.; Li, Q.; Wang, H.; Yang, Y.; DeMella, K. C.; Raghavan, S. R.; Wang, C. Adv. Energy Mater. 2019, 9, 1803774. doi: 10.1002/aenm.201803774  doi: 10.1002/aenm.201803774

    63. [63]

      Yoo, D. J.; Yang, S.; Kim, K. J.; Choi, J. W. Angew. Chem. Int. Ed. 2020, doi: 10.1002/anie.202003663  doi: 10.1002/anie.202003663

  • 加载中
    1. [1]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    2. [2]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    3. [3]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    4. [4]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    5. [5]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    6. [6]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    7. [7]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    8. [8]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    9. [9]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    10. [10]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    11. [11]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    12. [12]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    13. [13]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    14. [14]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    15. [15]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    16. [16]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    17. [17]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    18. [18]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    19. [19]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    20. [20]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

Metrics
  • PDF Downloads(25)
  • Abstract views(1348)
  • HTML views(323)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return