Citation: Jingyun Zou, Bing Gao, Xiaopin Zhang, Lei Tang, Simin Feng, Hehua Jin, Bilu Liu, Hui-Ming Cheng. Direct Growth of 1D SWCNT/2D MoS2 Mixed-Dimensional Heterostructures and Their Charge Transfer Property[J]. Acta Physico-Chimica Sinica, ;2022, 38(5): 200803. doi: 10.3866/PKU.WHXB202008037 shu

Direct Growth of 1D SWCNT/2D MoS2 Mixed-Dimensional Heterostructures and Their Charge Transfer Property

  • A unique mixed-dimensional van der Waals heterostructure can be formed by integrating one-dimensional (1D) and two-dimensional (2D) materials. Such a 1D/2D mixed-dimensional heterostructure will not only inherit the unique properties of 2D/2D heterostructures, but also has a variety of stacking configurations, offering a new platform to adjust its structure and properties. The combination of p-type 1D single-walled carbon nanotubes (SWCNTs) and n-type 2D molybdenum disulfide (MoS2) is one such example, possessing tunable properties. In situ chemical vapor deposition (CVD) is one of the most effective methods to construct 1D SWCNT/2D MoS2 mixed-dimensional heterostructures. There are several reports of successfully grown SWCNT/MoS2 heterostructures. The reports indicate that these heterostructures exhibit strong electrical and mechanical couplings between the SWCNTs and MoS2, making it suitable for the construction of high-performance electronic and optoelectronic devices. However, there are still several problems associated with the in situ CVD growth of SWCNT/MoS2 heterostructures. First, the growth mechanism of the 1D SWCNT/2D MoS2 heterostructure is unclear. We still do not know how the existence of small-diameter SWCNTs will affect the nucleation and growth process of MoS2. It is undetermined whether MoS2 flakes will grow above the preexisting SWCNTs or under them. Second, current studies all report the growth of MoS2 on a substrate sparsely covered by SWCNTs, which have a wide chirality distribution. Since the chirality of SWCNTs determines their physical properties and the density of SWCNTs significantly affects its performance in electronic devices, both the low density and wide chirality distribution of SWCNTs reported in these studies impose negative impacts on the interface behavior of SWCNT/MoS2 heterostructures and their performance in devices. Herein, we report the preparation of high-quality 1D SWCNT/2D MoS2 heterostructures by directly growing MoS2 on dense and narrow-chirality distributed SWCNTs on a silicon substrate. To achieve this goal, high-purity semiconducting SWCNTs with narrow chirality distributions were sorted from the raw arc-discharged SWCNTs, and then high-density SWCNT arrays or networks were formed on a silicon substrate by dip-coating. Through in-depth analyses of the surface morphology and structure of the nuclei, we found that MoS2 may prefer to grow under the SWCNTs and will grow much faster in the grooves between the SWCNTs to form a growth front. Therefore, an interesting "absorption-diffusion-absorption" growth mechanism has been proposed to explain the nucleation and growth process of SWCNT/MoS2 heterostructures. In addition, we confirm the presence of strong charge coupling in the mixed-dimensional heterostructure through Raman analysis. Carriers can be quickly transferred through the interface between the SWCNTs and MoS2, paving a way for the future design and fabrication of novel electronic and optoelectronic devices based on 1D/2D heterostructures.
  • 加载中
    1. [1]

      Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. Nat. Rev. Mater. 2017, 2, 17033. doi: 10.1038/natrevmats.2017.33  doi: 10.1038/natrevmats.2017.33

    2. [2]

      Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. Nat. Chem. 2013, 5, 263. doi: 10.1038/nchem.1589  doi: 10.1038/nchem.1589

    3. [3]

      Ellis, J. K.; Lucero, M. J.; Scuseria, G. E. Appl. Phys. Lett. 2011, 99, 261908. doi: 10.1063/1.3672219  doi: 10.1063/1.3672219

    4. [4]

      Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; et al. Science 2013, 340, 1311. doi: 10.1126/science.1235547  doi: 10.1126/science.1235547

    5. [5]

      Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Nat. Nanotechnol. 2011, 6, 147. doi: 10.1038/nnano.2010.279  doi: 10.1038/nnano.2010.279

    6. [6]

      Kormányos, A.; Zólyomi, V.; Drummond, N. D.; Rakyta, P.; Burkard, G.; Fal'ko, V. I. Phys. Rev. B 2013, 88, 045416. doi: 10.1103/PhysRevB.88.045416  doi: 10.1103/PhysRevB.88.045416

    7. [7]

      Mak, K. F.; He, K.; Shan, J.; Heinz, T. F. Nat. Nanotechnol. 2012, 7, 494. doi: 10.1038/nnano.2012.96  doi: 10.1038/nnano.2012.96

    8. [8]

      Li, X.; Zhang, F.; Niu, Q. Phys. Rev. Lett. 2013, 110, 066803. doi: 10.1103/PhysRevLett.110.066803  doi: 10.1103/PhysRevLett.110.066803

    9. [9]

      Dean, C. R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.; Koshino, M.; et al. Nature 2013, 497, 598. doi: 10.1038/nature12186  doi: 10.1038/nature12186

    10. [10]

      Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; et al. Nature 2018, 556, 80. doi: 10.1038/nature26154  doi: 10.1038/nature26154

    11. [11]

      Jin, C.; Regan, E. C.; Yan, A.; Utama, M. I. B.; Wang, D.; Zhao, S.; Qin, Y.; Yang, S.; Zheng, Z.; Shi, S.; et al. Nature 2019, 567, 76. doi: 10.1038/s41586-019-0976-y  doi: 10.1038/s41586-019-0976-y

    12. [12]

      White, C. T.; Todorov, T. N. Nature 1998, 393, 240. doi: 10.1038/30420  doi: 10.1038/30420

    13. [13]

      Li, L.; Guo, Y.; Sun, Y.; Yang, L.; Qin, L.; Guan, S.; Wang, J.; Qiu, X.; Li, H.; Shang, Y.; et al. Adv. Mater. 2018, 30, 1706215. doi: 10.1002/adma.201706215  doi: 10.1002/adma.201706215

    14. [14]

      Liu, C.; Hong, H.; Wang, Q.; Liu, P.; Zuo, Y.; Liang, J.; Cheng, Y.; Zhou, X.; Wang, J.; Zhao, Y.; et al. Nanoscale 2019, 11, 17195. doi: 10.1039/C9NR04791C  doi: 10.1039/C9NR04791C

    15. [15]

      Su, W.; Jin, L.; Huo, D.; Yang, L. Opt. Quant. Electron. 2017, 49, 197. doi: 10.1007/s11082-017-1034-3  doi: 10.1007/s11082-017-1034-3

    16. [16]

      Wang, R.; Wang, T.; Hong, T.; Xu, Y. -Q. Nanotechnology 2018, 29, 345205. doi: 10.1088/1361-6528/aaca69  doi: 10.1088/1361-6528/aaca69

    17. [17]

      Gu, J.; Han, J.; Liu, D.; Yu, X.; Kang, L.; Qiu, S.; Jin, H.; Li, H.; Li, Q.; Zhang, J. Small 2016, 12, 4993. doi: 10.1002/smll.201600398  doi: 10.1002/smll.201600398

    18. [18]

      Chen, Y. Y.; Sun, Y.; Zhu, Q. B.; Wang, B. W.; Yan, X.; Qiu, S.; Li, Q. W.; Hou, P. X.; Liu, C.; Sun, D. M.; et al. Adv. Sci. 2018, 5, 1700965. doi: 10.1002/advs.201700965  doi: 10.1002/advs.201700965

    19. [19]

      Gao, B.; Zhang, X.; Qiu, S.; Jin, H.; Song, Q.; Li, Q. Carbon 2019, 146, 172. doi: 10.1016/j.carbon.2019.01.095  doi: 10.1016/j.carbon.2019.01.095

    20. [20]

      Zhou, J.; Lin, J.; Huang, X.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H.; Lei, J.; et al. Nature 2018, 556, 355. doi: 10.1038/s41586-018-0008-3  doi: 10.1038/s41586-018-0008-3

    21. [21]

      Yang, P.; Zou, X.; Zhang, Z.; Hong, M.; Shi, J.; Chen, S.; Shu, J.; Zhao, L.; Jiang, S.; Zhou, X.; et al. Nat. Commun. 2018, 9, 979. doi: 10.1038/s41467-018-03388-5  doi: 10.1038/s41467-018-03388-5

    22. [22]

      Islam, M. F.; Milkie, D. E.; Kane, C. L.; Yodh, A. G.; Kikkawa, J. M. Phys. Rev. Lett. 2004, 93, 037404. doi: 10.1103/PhysRevLett.93.037404  doi: 10.1103/PhysRevLett.93.037404

    23. [23]

      Fischer, J. E.; Zhou, W.; Vavro, J.; Llaguno, M. C.; Guthy, C.; Haggenmueller, R.; Casavant, M. J.; Walters, D. E.; Smalley, R. E. J. Appl. Phys. 2003, 93, 2157. doi: 10.1063/1.1536733  doi: 10.1063/1.1536733

    24. [24]

      Li, S.; Lin, Y. C.; Zhao, W.; Wu, J.; Wang, Z.; Hu, Z.; Shen, Y.; Tang, D. M.; Wang, J.; Zhang, Q.; et al. Nat. Mater. 2018, 17, 535. doi: 10.1038/s41563-018-0055-z  doi: 10.1038/s41563-018-0055-z

    25. [25]

      Wu, S.; Huang, C.; Aivazian, G.; Ross, J. S.; Cobden, D. H.; Xu, X. ACS Nano 2013, 7, 2768. doi: 10.1021/nn4002038  doi: 10.1021/nn4002038

    26. [26]

      Zhao, J.; Buldum, A.; Han, J.; Lu, J. Nanotechnology 2002, 13, 195. doi: 10.1088/0957-4484/13/2/312  doi: 10.1088/0957-4484/13/2/312

    27. [27]

      Agnihotri, S.; Mota, J. P. B.; Rostam-Abadi, M.; Rood, M. J. Langmuir 2005, 21, 896. doi: 10.1021/la047662c  doi: 10.1021/la047662c

    28. [28]

      Xiang, R.; Inoue, T.; Zheng, Y.; Kumamoto, A.; Qian, Y.; Sato, Y.; Liu, M.; Tang, D.; Gokhale, D.; Guo, J.; et al. Science 2020, 367, 537. doi: 10.1126/science.aaz2570  doi: 10.1126/science.aaz2570

    29. [29]

      Cai, Z.; Lai, Y.; Zhao, S.; Zhang, R.; Tan, J.; Feng, S.; Zou, J.; Tang, L.; Lin, J.; Liu, B.; et al. Natl. Sci. Rev. 2021, 8, nwaa115. doi: 10.1093/nsr/nwaa115  doi: 10.1093/nsr/nwaa115

    30. [30]

      Zhang, C.; Tan, J.; Pan, Y.; Cai, X.; Zou, X.; Cheng, H. M.; Liu, B. Natl. Sci. Rev. 2020, 7, 324. doi: 10.1093/nsr/nwz156  doi: 10.1093/nsr/nwz156

    31. [31]

      Voggu, R.; Rout, C. S.; Franklin, A. D.; Fisher, T. S.; Rao, C. N. R. J. Phys. Chem. C 2008, 112, 13053. doi: 10.1021/jp805136e  doi: 10.1021/jp805136e

    32. [32]

      Chae, W. H.; Cain, J. D.; Hanson, E. D.; Murthy, A. A.; Dravid, V. P. Appl. Phys. Lett. 2017, 111, 143106. doi: 10.1063/1.4998284  doi: 10.1063/1.4998284

    33. [33]

      Xing, L.; Jiao, L. Y. Acta Phys. -Chim. Sin. 2016, 32, 2133.  doi: 10.3866/PKU.WHXB201606162

    34. [34]

      Weisman, R. B.; Bachilo, S. M. Nano Lett. 2003, 3, 1235. doi: 10.1021/nl034428i  doi: 10.1021/nl034428i

    35. [35]

      Jorio, A.; Saito, R.; Hafner, J. H.; Lieber, C. M.; Hunter, M.; McClure, T.; Dresselhaus, G.; Dresselhaus, M. S. Phys. Rev. Lett. 2001, 86, 1118. doi: 10.1103/PhysRevLett.86.1118  doi: 10.1103/PhysRevLett.86.1118

    36. [36]

      McEuen, P. L.; Fuhrer, M. S.; Hongkun, P. IEEE Trans. Nanotechnol. 2002, 99, 78. doi: 10.1109/TNANO.2002.1005429  doi: 10.1109/TNANO.2002.1005429

    37. [37]

      Shiraishi, M.; Ata, M. Carbon 2001, 39, 1913. doi: 10.1016/S0008-6223[00)00322-5  doi: 10.1016/S0008-6223[00)00322-5

    38. [38]

      Hu, C.; Yuan, C.; Hong, A.; Guo, M.; Yu, T.; Luo, X. Appl. Phys. Lett. 2018, 113, 041602. doi: 10.1063/1.5038602  doi: 10.1063/1.5038602

    39. [39]

      Chen, S.; Gao, J.; Srinivasan, B. M.; Zhang, Y. Acta Phys. -Chim. Sin. 2019, 35, 1119.  doi: 10.3866/PKU.WHXB201812023

  • 加载中
    1. [1]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    2. [2]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    3. [3]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    4. [4]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    7. [7]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    8. [8]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    9. [9]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    10. [10]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    11. [11]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    12. [12]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    13. [13]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    14. [14]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    15. [15]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    16. [16]

      Yuhang ZhangWeiwei ZhaoHongwei LiuJunpeng Lü . Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-0. doi: 10.3866/PKU.WHXB202310004

    17. [17]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    18. [18]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    20. [20]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

Metrics
  • PDF Downloads(23)
  • Abstract views(1534)
  • HTML views(281)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return