Citation: Kang Danmiao, Hart Noam, Xiao Muye, Lemmon John P.. Short Circuit of Symmetrical Li/Li Cell in Li Metal Anode Research[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200801. doi: 10.3866/PKU.WHXB202008013 shu

Short Circuit of Symmetrical Li/Li Cell in Li Metal Anode Research

  • Corresponding author: Kang Danmiao, kangdanmiao@nicenergy.com
  • Received Date: 5 August 2020
    Revised Date: 3 September 2020
    Available Online: 9 September 2020

  • Lithium is a promising anode material for next-generation high-energy-density rechargeable batteries owing to its high specific capacity, low density, and low electrochemical reduction potential. However, dendrite growth during cycling impedes its practical application and causes safety hazards. Extensive research has been conducted to obtain dendrite-free safe Li anodes with an extended cycle life by electrolyte or anode surface modification. In previous studies, the symmetrical Li/Li cell test was widely applied to evaluate the effect of various Li anode modification methods on the cycle stability and Li deposition overpotential. However, a general criterion has not yet been established to identify the short circuit in Li/Li cells. Some researchers have even made incorrect conclusions based on the Li/Li cycling data. The most common misjudgment is the ignorance of short circuit signals and mixing up of soft short circuit and normal potential decrease caused by electrode activation. In some studies, the fractal voltage signals were attributed to the unstable activation process of the symmetrical cell. Therefore, this study uses an in situ optical cell to demonstrate that a short circuit caused by the contact of dendrites from two opposite electrodes can cause a sudden drop in cell voltage to certain extent. According to the reversibility of the voltage, the short circuit induced by dendrite growth can be classified into unrecoverable hard short circuits and recoverable soft short circuits. Typical short circuit data were summarized and described to establish a rule to determine the different types of short circuits. The voltage profiles provide characteristic signals to distinguish between the soft short circuit, hard short circuit, and cell activation processes in symmetrical cells. Furthermore, this study provides a reference for identifying dendrite growth and cell short circuits, which is important for confirming the practical effect of different modification methods.
  • 加载中
    1. [1]

      Whittingham, S. Chem. Rev. 2004, 104, 4271. doi: 10.1021/cr020731c  doi: 10.1021/cr020731c

    2. [2]

      Liu, F. F.; Zhang, Z. W.; Ye, S. F.; Yao, Y.; Yu, Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021.  doi: 10.3866/PKU.WHXB202006021

    3. [3]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    4. [4]

      Zhao, C. Z.; Zhang, X. Q.; Cheng, X. B.; Zhang, R.; Xu, R.; Chen, P. Y. Proc. Natl. Acad. Sci. 2017, 114, 11069. doi: 10.1073/pnas.1708489114  doi: 10.1073/pnas.1708489114

    5. [5]

      Cui, Y. Acta Phys. -Chim. Sin. 2019, 35, 661.  doi: 10.3866/PKU.WHXB201809053

    6. [6]

      Ran, Q.; Sun, T. Y.; Han, C. Y.; Zhang, H. N.; Yan, J.; Wang, J. L. Acta Phys. -Chim. Sin. 2020, 36, 1912068.  doi: 10.3866/PKU.WHXB201912068

    7. [7]

      Cheng, X. B.; Yan, C.; Chen, X.; Guan, C.; Huang, J. Q.; Peng, H. J.; Zhang, R.; Yang, S. T.; Zhang, Q. Chem 2017, 2 (2), 258. doi: 10.1016/j.chempr.2017.01.003  doi: 10.1016/j.chempr.2017.01.003

    8. [8]

      Cao, X; Ren, X.; Zou, L.; Engelhard, M. H.; Huang, W.; Wang, H.; Mattenw. B. E.; Lee, H.; Niu, C.; Arey, B. W.; et al. Nat. Energy 2019, 4 (9), 796. doi: 10.1038/s41560-019-0464-5  doi: 10.1038/s41560-019-0464-5

    9. [9]

      Jiao, S.; Ren, X.; Cao, R.; Engelhard, M. H.; Liu, Y.; Hu, D.; Mei, D.; Zheng, J.; Zhao, W.; Li, Q.; et al. Nat. Energy 2018, 3 (9), 739. doi: 10.1038/s41560-018-0199-8  doi: 10.1038/s41560-018-0199-8

    10. [10]

      Zheng, J.; Engelhard, M. H.; Mei, D.; Jiao, S.; Polzin, B. J.; Zhang, J. G.; Xu, W. Nat. Energy 2017, 2 (3), 17012. doi: 10.1038/nenergy.2017.12  doi: 10.1038/nenergy.2017.12

    11. [11]

      Fan, X.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F.; Yue, J.; Piao, N.; Wang, R.; Zhou, X.; et al. Nat. Energy 2019, 4 (10), 882. doi: 10.1038/s41560-019-0474-3  doi: 10.1038/s41560-019-0474-3

    12. [12]

      Pang, Q.; Liang, X.; Shyamsunder, A.; Nazar, L. F. Joule 2017, 1 (4), 871. doi: 10.1016/j.joule.2017.11.009  doi: 10.1016/j.joule.2017.11.009

    13. [13]

      Wu, H.; Zhuo, D.; Kong, D.; Cui, Y. Nat. Commun. 2014, 5, 5193. doi: 10.1038/ncomms6193  doi: 10.1038/ncomms6193

    14. [14]

      Lu, Y.; Korf, K.; Kambe, Y.; Tu, Z.; Archer, L. A. Angew. Chem. Int. Ed. 2014, 126 (2), 498. doi: 10.1002/anie.201307137  doi: 10.1002/anie.201307137

    15. [15]

      Lu, Y.; Tu, Z.; Archer, L. A. Nat. Mater. 2014, 13 (10), 961. doi: 10.1038/nmat4041  doi: 10.1038/nmat4041

    16. [16]

      Zhang, W.; Zhuang, H. L.; Fan, L.; Gao, L.; Lu, Y. Sci. Adv. 2018, 4 (2), eaar4410. doi: 10.1126/sciadv.aar4410  doi: 10.1126/sciadv.aar4410

    17. [17]

      Wood, K. N.; Noked, M.; Dasgupta, N. P. ACS Energy Lett. 2017, 2 (3), 664. doi: 10.1021/acsenergylett.6b00650  doi: 10.1021/acsenergylett.6b00650

    18. [18]

      Chen, K. H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. J. Mater. Chem. 2017, 5 (23), 11671. doi: 10.1039/C7TA00371D  doi: 10.1039/C7TA00371D

    19. [19]

      Ping, W.; Wang, C.; Lin, Z.; Hitz, E.; Yang, C.; Wang, H.; Hu, L. Adv. Energy Mater. 2020, 10, 2000702. doi: 10.1002/aenm.202000702  doi: 10.1002/aenm.202000702

    20. [20]

      Kang, D.; Hart, N.; Koh, J.; Ma, L.; Liang, W.; Xu, J.; Sardar, S.; Lemmon, J. P. Energy Storage Mater. 2020, 24, 618. doi: 10.1016/j.ensm.2019.06.014  doi: 10.1016/j.ensm.2019.06.014

    21. [21]

      Bai, P.; Guo, J.; Wang, M.; Kushima, A.; Su, L.; Li, J.; Brushett, F. R.; Bazant, M. Z. Joule 2018, 2, 2434. doi: 10.1016/j.joule.2018.08.018  doi: 10.1016/j.joule.2018.08.018

    22. [22]

      Ely, Y. E.; Aurbach, D. Langmuir 1992, 8 (7), 1845. doi: 10.1021/la00043a026  doi: 10.1021/la00043a026

  • 加载中
    1. [1]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    2. [2]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    3. [3]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    4. [4]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    5. [5]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    6. [6]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    7. [7]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    8. [8]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    9. [9]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    10. [10]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    11. [11]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    12. [12]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    13. [13]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    14. [14]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    15. [15]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    16. [16]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    17. [17]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    18. [18]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    19. [19]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    20. [20]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

Metrics
  • PDF Downloads(264)
  • Abstract views(4446)
  • HTML views(1973)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return