Citation: Li Kaining, Zhang Mengxi, Ou Xiaoyu, Li Ruina, Li Qin, Fan Jiajie, Lv Kangle. Strategies for the Fabrication of 2D Carbon Nitride Nanosheets[J]. Acta Physico-Chimica Sinica, ;2021, 37(8): 200801. doi: 10.3866/PKU.WHXB202008010 shu

Strategies for the Fabrication of 2D Carbon Nitride Nanosheets

  • Corresponding author: Lv Kangle, lvkangle@mail.scuec.edu.cn
  • Received Date: 4 August 2020
    Revised Date: 27 August 2020
    Accepted Date: 31 August 2020
    Available Online: 7 September 2020

    Fund Project: The project was supported by National Natural Science Foundation of China (51672312)National Natural Science Foundation of China 51672312

  • Layered graphitic carbon nitride (g-C3N4) is a typical polymeric semiconductor with an sp2 π-conjugated system having great potential in energy conversion, environmental purification, materials science, etc., owing to its unique physicochemical and electrical properties. However, bulk g-C3N4 obtained by calcination suffers from a low specific surface area, rapid charge carrier recombination, and poor dispersion in aqueous solutions, which limit its practical applications. Controlling the size of g-C3N4 (e.g., preparing g-C3N4 nanosheets) can effectively solve the above problems. Compared with the bulk material, g-C3N4 nanosheets have a larger specific surface area, richer active sites, and a larger band gap due to the quantum confinement effect. As g-C3N4 has a layered structure with strong in-plane C-N covalent bonds and weak van der Waals forces between the layers, g-C3N4 nanosheets can be prepared by exfoliating bulk g-C3N4. Alternatively, g-C3N4 nanosheets can otherwise be obtained through the anisotropic assembly of organic precursors. Nevertheless, some of these methods have various limitations, such as high energy consumption, are time consuming, and have low yield. Accordingly, developing green and cost-effective exfoliation and preparation strategies for g-C3N4 nanosheets is necessary. Herein, the research progress of the exfoliation and preparation strategies (including the thermal oxidation etching process, the ultrasound-assisted route, the chemical exfoliation, the mechanical method, and the template method) for two-dimensional C3N4 nanosheets are introduced. Their features are systematically analyzed and the perspectives and challenges in the preparation of g-C3N4 nanosheets are discussed. This study emphasizes the following: (1) The preparation method of g-C3N4 nanosheets should be properly selected according to the practical application needs. Additionally, various strategies (such as chemical method and ultrasonic method) can be combined to exfoliate nanosheets from bulk g-C3N4; (2) More reasonable nano- or even subnanostructured g-C3N4 nanosheets should be continuously explored; (3) Novel modification strategies, such as defective engineering, heterojunction construction, and surface functional group regulation, should be introduced to improve the reactivity and selectivity of the g-C3N4 nanosheets; (4) The application of in situ characterization techniques (such as in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), electron spin resonance (ESR) spectroscopy, and Raman spectroscopy) should also be strengthened to monitor the detailed catalytic process and investigate the g-C3N4 nanosheet structure-efficiency relationship. (5) To gain a deeper understanding of the relationship between the macroscopic properties and the microscopic structure, the combination of theoretical calculations and experimental results should be strengthened, which will be beneficial for exploiting high-quality g-C3N4 nanosheets.
  • 加载中
    1. [1]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    2. [2]

      Li, Q.; Li, X.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. Adv. Energy Mater. 2015, 5, 1500010. doi: 10.1002/aenm.201500010  doi: 10.1002/aenm.201500010

    3. [3]

      Wang, J.; Jin, X.; Li, C.; Wang, W.; Wu, H.; Guo, S. Chem. Eng. J. 2019, 370, 831. doi: 10.1016/j.cej.2019.03.229  doi: 10.1016/j.cej.2019.03.229

    4. [4]

      Zhao, H.; Ding, R.; Zhao, X.; Li, Y.; Qu, L.; Pei, H.; Yildirimer, L.; Wu, Z.; Zhang, W. Drug Discov. Today 2017, 22, 1302. doi: 10.1016/j.drudis.2017.04.002  doi: 10.1016/j.drudis.2017.04.002

    5. [5]

      Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. Nat. Rev. Mater. 2017, 2, 16098. doi: 10.1038/natrevmats.2016.98  doi: 10.1038/natrevmats.2016.98

    6. [6]

      Li, K.; Zhang, S.; Li, Y.; Fan, J.; Lv, K. Chin. J. Catal. 2021, 42, 3. doi: 10.1016/s1872-2067(20)63630-0  doi: 10.1016/s1872-2067(20)63630-0

    7. [7]

      Lv, K.; Li, K.; Li, Z.; Huang, W.; Li, Q.; Shen, Q. J. Xuzhou Instit. Technol. (Nat. Sci. Ed.) 2019, 34, 18.  doi: 10.15873/j.cnki.jxit.000314

    8. [8]

      Hu, W.; Han, G.; Liu, Y.; Dong, B.; Chai, Y.; Liu, Y.; Liu, C. Int. J. Hydrog. Energy 2015, 40, 6552. doi: 10.1016/j.ijhydene.2015.03.150  doi: 10.1016/j.ijhydene.2015.03.150

    9. [9]

      Ning, M. Q.; Lu, M. M.; Li, J. B.; Chen, Z.; Dou, Y. K.; Wang, C. Z.; Rehman, F.; Cao, M. S.; Jin, H. B. Nanoscale 2015, 7, 15734. doi: 10.1039/c5nr04670j  doi: 10.1039/c5nr04670j

    10. [10]

      Krishnamoorthy, K.; Pazhamalai, P.; Kim, S. J. Energy Environ. Sci. 2018, 11, 1595. doi: 10.1039/c8ee00160j  doi: 10.1039/c8ee00160j

    11. [11]

      Pazhamalai, P.; Krishnamoorthy, K.; Sahoo, S.; Mariappan, V. K.; Kim, S. J. ACS Appl. Mater. Interfaces 2019, 11, 624. doi: 10.1021/acsami.8b15323  doi: 10.1021/acsami.8b15323

    12. [12]

      Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Chem. Rev. 2016, 116, 7159. doi: 10.1021/acs.chemrev.6b00075  doi: 10.1021/acs.chemrev.6b00075

    13. [13]

      Zhang, J.; Chen, Y.; Wang, X. Energy Environ. Sci. 2015, 8, 3092. doi: 10.1039/c5ee01895a  doi: 10.1039/c5ee01895a

    14. [14]

      Low, J.; Cao, S.; Yu, J.; Wageh, S. Chem. Commun. 2014, 50, 10768. doi: 10.1039/c4cc02553a  doi: 10.1039/c4cc02553a

    15. [15]

      Dong, X.; Cheng, F. J. Mater. Chem. A 2015, 3, 23642. doi: 10.1039/c5ta07374j  doi: 10.1039/c5ta07374j

    16. [16]

      Panneri, S.; Ganguly, P.; Nair, B. N.; Mohamed, A. A.; Warrier, K. G.; Hareesh, U. N. Environ. Sci. Pollut. Res. Int. 2017, 24, 8609. doi: 10.1007/s11356-017-8538-z  doi: 10.1007/s11356-017-8538-z

    17. [17]

      Han, Q.; Wang, B.; Zhao, Y.; Hu, C.; Qu, L. Angew. Chem. Int. Ed. 2015, 54, 11433. doi: 10.1002/anie.201504985  doi: 10.1002/anie.201504985

    18. [18]

      Yu, Y.; Yan, W.; Wang, X.; Li, P.; Gao, W.; Zou, H.; Wu, S.; Ding, K. Adv. Mater. 2018, 30, 1705060. doi: 10.1002/adma.201705060  doi: 10.1002/adma.201705060

    19. [19]

      Yang, C.; Zhang, S.; Huang, Y.; Lv, K.; Fang, S.; Wu, X.; Li, Q.; Fan, J. Appl. Surf. Sci. 2020, 505, 144654. doi: 10.1016/j.apsusc.2019.144654  doi: 10.1016/j.apsusc.2019.144654

    20. [20]

      Cheng, J.; Hu, Z.; Lv, K.; Wu, X.; Li, Q.; Li, Y.; Li, X.; Sun, J. Appl. Catal. B 2018, 232, 330. doi: 10.1016/j.apcatb.2018.03.066  doi: 10.1016/j.apcatb.2018.03.066

    21. [21]

      Liu, M.; Wageh, S.; Al-Ghamdi, A. A.; Xia, P.; Cheng, B.; Zhang, L.; Yu, J. Chem. Commun. 2019, 55, 14023. doi: 10.1039/c9cc07647f  doi: 10.1039/c9cc07647f

    22. [22]

      Sun, Z.; Wang, H.; Wu, Z.; Wang, L. Catal. Today 2018, 300, 160. doi: 10.1016/j.cattod.2017.05.033  doi: 10.1016/j.cattod.2017.05.033

    23. [23]

      Li, C.; Yu, S.; Zhang, X.; Wang, Y.; Liu, C.; Chen, G.; Dong, H. J. Colloid Interface Sci. 2019, 538, 462. doi: 10.1016/j.jcis.2018.12.009  doi: 10.1016/j.jcis.2018.12.009

    24. [24]

      Zheng, Q.; Durkin, D. P.; Elenewski, J. E.; Sun, Y.; Banek, N. A.; Hua, L.; Chen, H.; Wagner, M. J.; Zhang, W.; Shuai, D. Environ. Sci. Technol. 2016, 50, 12938. doi: 10.1021/acs.est.6b02579  doi: 10.1021/acs.est.6b02579

    25. [25]

      Fang, S.; Xia, Y.; Lv, K.; Li, Q.; Sun, J.; Li, M. Appl. Catal. B 2016, 185, 225. doi: 10.1016/j.apcatb.2015.12.025  doi: 10.1016/j.apcatb.2015.12.025

    26. [26]

      Liao, J.; Cui, W.; Li, J.; Sheng, J.; Wang, H.; Dong, X. A.; Chen, P.; Jiang, G.; Wang, Z.; Dong, F. Chem. Eng. J. 2020, 379, 122282. doi: 10.1016/j.cej.2019.122282  doi: 10.1016/j.cej.2019.122282

    27. [27]

      Liu, S. H.; Lin, W. X. J. Hazard. Mater. 2019, 368, 468. doi: 10.1016/j.jhazmat.2019.01.082  doi: 10.1016/j.jhazmat.2019.01.082

    28. [28]

      Duan, Y.; Li, X.; Lv, K.; Zhao, L.; Liu, Y. Appl. Surf. Sci. 2019, 492, 166. doi: 10.1016/j.apsusc.2019.06.125  doi: 10.1016/j.apsusc.2019.06.125

    29. [29]

      Li, Y.; Gu, M.; Shi, T.; Cui, W.; Zhang, X.; Dong, F.; Cheng, J.; Fan, J.; Lv, K. Appl. Catal. B 2020, 262, 118281. doi: 10.1016/j.apcatb.2019.118281  doi: 10.1016/j.apcatb.2019.118281

    30. [30]

      Han, X.; Zhang, W.; Ma, X.; Zhong, C.; Zhao, N.; Hu, W.; Deng, Y. Adv. Mater. 2019, 31, e1808281. doi: 10.1002/adma.201808281  doi: 10.1002/adma.201808281

    31. [31]

      Zhuang, Z.; Li, Y.; Li, Z.; Lv, F.; Lang, Z.; Zhao, K.; Zhou, L.; Moskaleva, L.; Guo, S.; Mai, L. Angew. Chem. Int. Ed. 2018, 57, 496. doi: 10.1002/anie.201708748  doi: 10.1002/anie.201708748

    32. [32]

      Wang, S.; He, P.; Jia, L.; He, M.; Zhang, T.; Dong, F.; Liu, M.; Liu, H.; Zhang, Y.; Li, C.; et al. Appl. Catal. B 2019, 243, 463. doi: 10.1016/j.apcatb.2018.10.071  doi: 10.1016/j.apcatb.2018.10.071

    33. [33]

      Zheng, Y.; Jiao, Y.; Zhu, Y.; Cai, Q.; Vasileff, A.; Li, L. H.; Han, Y.; Chen, Y.; Qiao, S. Z. J. Am. Chem. Soc. 2017, 139, 3336. doi: 10.1021/jacs.6b13100  doi: 10.1021/jacs.6b13100

    34. [34]

      Sarkar, S.; Sumukh, S. S.; Roy, K.; Kamboj, N.; Purkait, T.; Das, M.; Dey, R. S. J. Colloid Interface Sci. 2020, 558, 182. doi: 10.1016/j.jcis.2019.09.107  doi: 10.1016/j.jcis.2019.09.107

    35. [35]

      Pieta, I. S.; Rathi, A.; Pieta, P.; Nowakowski, R.; Hołdynski, M.; Pisarek, M.; Kaminska, A.; Gawande, M. B.; Zboril, R. Appl. Catal. B 2019, 244, 272. doi: 10.1016/j.apcatb.2018.10.072  doi: 10.1016/j.apcatb.2018.10.072

    36. [36]

      Cheng, J.; Hu, Z.; Li, Q.; Li, X.; Fang, S.; Wu, X.; Li, M.; Ding, Y.; Liu, B.; Yang, C.; et al. Appl. Catal. B 2019, 245, 197. doi: 10.1016/j.apcatb.2018.12.044  doi: 10.1016/j.apcatb.2018.12.044

    37. [37]

      Qin, Z.; Wu, J.; Li, B.; Su, T.; Ji, H. Acta Phys. -Chim. Sin. 2021, 37, 2005027.  doi: 10.3866/PKU.WHXB202005027

    38. [38]

      Hong, Y.; Li, C.; Li, D.; Fang, Z.; Luo, B.; Yan, X.; Shen, H.; Mao, B.; Shi, W. Nanoscale 2017, 9, 14103. doi: 10.1039/c7nr05155g  doi: 10.1039/c7nr05155g

    39. [39]

      Dong, F.; Li, Y.; Wang, Z.; Ho, W. Appl. Surf. Sci. 2015, 358, 393. doi: 10.1016/j.apsusc.2015.04.034  doi: 10.1016/j.apsusc.2015.04.034

    40. [40]

      Niu, P.; Zhang, L.; Liu, G.; Cheng, H. Adv. Funct. Mater. 2012, 22, 4763. doi: 10.1002/adfm.201200922  doi: 10.1002/adfm.201200922

    41. [41]

      Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2013, 135, 18. doi: 10.1021/ja308249k  doi: 10.1021/ja308249k

    42. [42]

      Zhang, J.; Li, J.; Wang, W.; Zhang, X.; Tan, X.; Chu, W.; Guo, Y. Adv. Energy Mater. 2018, 8, 1702839. doi: 10.1002/aenm.201702839  doi: 10.1002/aenm.201702839

    43. [43]

      Xu, J.; Zhang, L.; Shi, R.; Zhu, Y. J. Mater. Chem. A 2013, 1, 14766. doi: 10.1039/c3ta13188b  doi: 10.1039/c3ta13188b

    44. [44]

      Lin, L. S.; Cong, Z. X.; Li, J.; Ke, K. M.; Guo, S. S.; Yang, H. H.; Chen, G. N. J. Mater. Chem. B 2014, 2, 1031. doi: 10.1039/c3tb21479f  doi: 10.1039/c3tb21479f

    45. [45]

      Du, X.; Zou, G.; Wang, Z.; Wang, X. Nanoscale 2015, 7, 8701. doi: 10.1039/c5nr00665a  doi: 10.1039/c5nr00665a

    46. [46]

      Kwon, N. H.; Shin, S.; Jin, X.; Jung, Y.; Hwang, G.; Kim, H.; Hwang, S. Appl. Catal. B 2020, 277, 119191. doi: 10.1016/j.apcatb.2020.119191  doi: 10.1016/j.apcatb.2020.119191

    47. [47]

      Han, Q.; Zhao, F.; Hu, C.; Lv, L.; Zhang, Z.; Chen, N.; Qu, L. Nano Res. 2015, 8, 1718. doi: 10.1007/s12274-014-0675-9  doi: 10.1007/s12274-014-0675-9

    48. [48]

      Ji, J.; Wen, J.; Shen, Y.; Lv, Y.; Chen, Y.; Liu, S.; Ma, H.; Zhang, Y. J. Am. Chem. Soc. 2017, 139, 11698. doi: 10.1021/jacs.7b06708  doi: 10.1021/jacs.7b06708

    49. [49]

      Wu, M.; Yan, J. M.; Tang, X. N.; Zhao, M.; Jiang, Q. ChemSusChem 2014, 7, 2654. doi: 10.1002/cssc.201402180  doi: 10.1002/cssc.201402180

    50. [50]

      Lu, X.; Xu, K.; Chen, P.; Jia, K.; Liu, S.; Wu, C. J. Mater. Chem. A 2014, 2, 18924. doi: 10.1039/c4ta04487h  doi: 10.1039/c4ta04487h

    51. [51]

      Xing, W.; Tu, W.; Han, Z.; Hu, Y.; Meng, Q.; Chen, G. ACS Energy Lett. 2018, 3, 514. doi: 10.1021/acsenergylett.7b01328  doi: 10.1021/acsenergylett.7b01328

    52. [52]

      Zhang, J.; Zhang, M.; Yang, C.; Wang, X. Adv. Mater. 2014, 26, 4121. doi: 10.1002/adma.201400573  doi: 10.1002/adma.201400573

    53. [53]

      Li, Y.; Jin, R.; Xing, Y.; Li, J.; Song, S.; Liu, X.; Li, M.; Jin, R. Adv. Energy Mater. 2016, 6, 1601273. doi: 10.1002/aenm.201601273  doi: 10.1002/aenm.201601273

    54. [54]

      Yang, S.; Gong, Y.; Zhang, J.; Zhan, L.; Ma, L.; Fang, Z.; Vajtai, R.; Wang, X.; Ajayan, P. M. Adv. Mater. 2013, 25, 2452. doi: 10.1002/adma.201204453  doi: 10.1002/adma.201204453

    55. [55]

      Ou, H.; Lin, L.; Zheng, Y.; Yang, P.; Fang, Y.; Wang, X. Adv. Mater. 2017, 29, 1700008. doi: 10.1002/adma.201700008  doi: 10.1002/adma.201700008

    56. [56]

      Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K.; et al. Nat. Nanotechnol. 2008, 3, 563. doi: 10.1038/nnano.2008.215  doi: 10.1038/nnano.2008.215

    57. [57]

      Lin, Q.; Li, L.; Liang, S.; Liu, M.; Bi, J.; Wu, L. Appl. Catal. B 2015, 163, 135. doi: 10.1016/j.apcatb.2014.07.053  doi: 10.1016/j.apcatb.2014.07.053

    58. [58]

      Xue, Z.; Liu, F.; Jiang, J.; Wang, J.; Mu, T. Green Chem. 2017, 19, 5041. doi: 10.1039/c7gc02583a  doi: 10.1039/c7gc02583a

    59. [59]

      Cheng, F.; Wang, H.; Dong, X. Chem. Commun. 2015, 51, 7176. doi: 10.1039/c5cc01035g  doi: 10.1039/c5cc01035g

    60. [60]

      Shi, L.; Chang, K.; Zhang, H.; Hai, X.; Yang, L.; Wang, T.; Ye, J. Small 2016, 12, 4431. doi: 10.1002/smll.201601668  doi: 10.1002/smll.201601668

    61. [61]

      Song, T.; Zhang, P.; Wang, T.; Ali, A.; Zeng, H. Appl. Surf. Sci. 2019, 464, 195. doi: 10.1016/j.apsusc.2018.09.062  doi: 10.1016/j.apsusc.2018.09.062

    62. [62]

      Xu, J.; Wang, H.; Zhang, C.; Yang, X.; Cao, S.; Yu, J.; Shalom, M. Angew. Chem. Int. Ed. 2017, 56, 8426. doi: 10.1002/anie.201611946  doi: 10.1002/anie.201611946

    63. [63]

      Han, Q.; Wang, B.; Gao, J.; Cheng, Z.; Zhao, Y.; Zhang, Z.; Qu, L. ACS Nano 2016, 10, 2745. doi: 10.1021/acsnano.5b07831  doi: 10.1021/acsnano.5b07831

    64. [64]

      Hong, Y.; Li, C.; Fang, Z.; Luo, B.; Shi, W. Carbon 2017, 121, 463. doi: 10.1016/j.carbon.2017.06.020  doi: 10.1016/j.carbon.2017.06.020

    65. [65]

      Wu, X.; Wang, X.; Wang, F.; Yu, H. Appl. Catal. B 2019, 247, 70. doi: 10.1016/j.apcatb.2019.01.088  doi: 10.1016/j.apcatb.2019.01.088

    66. [66]

      Wu, X.; Gao, D.; Yu, H.; Yu, J. Nanoscale 2019, 11, 9608. doi: 10.1039/c9nr00887j  doi: 10.1039/c9nr00887j

  • 加载中
    1. [1]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    2. [2]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    3. [3]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    4. [4]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    5. [5]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    8. [8]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    11. [11]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    12. [12]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    19. [19]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(4)
  • Abstract views(558)
  • HTML views(80)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return