Citation: Yue Lu, Yang Ge, Manling Sui. Degradation Mechanism of CH3NH3PbI3-based Perovskite Solar Cells under Ultraviolet Illumination[J]. Acta Physico-Chimica Sinica, ;2022, 38(5): 200708. doi: 10.3866/PKU.WHXB202007088 shu

Degradation Mechanism of CH3NH3PbI3-based Perovskite Solar Cells under Ultraviolet Illumination

  • Corresponding author: Manling Sui, mlsui@bjut.edu.cn
  • Received Date: 29 July 2020
    Revised Date: 10 September 2020
    Accepted Date: 11 September 2020
    Available Online: 16 September 2020

    Fund Project: the National Key Research and Development Program of China 2016YFB0700700the National Natural Science Foundation of China 11704015the National Natural Science Foundation of China 51621003the Scientific Research Key Program of Beijing Municipal Commission of Education, China KZ201310005002the Beijing Innovation Team Building Program, China IDHT20190503

  • With the development of photovoltaic devices, organic-inorganic hybrid perovskite solar cells (PSCs) have been promising devices that have attracted significant attention in the fields of industrial and scientific research. Currently, the photoelectric conversion efficiency (PCE) of PSCs has been improved to 25.2%, and they are considered to be the primary alternative to silicon-based solar cells. However, the environmental stability of PSCs is unsatisfactory; they are prone to degradation under exposure to moisture, oxygen, elevated temperature, or even light illumination, which restricts their wide application in industrial production. Previous studies have elucidated that understanding the ultraviolet (UV)-induced degradation mechanism of organic-inorganic PSCs is of great importance for the improvement of light stability in PSCs. However, until now, there has been almost no comprehensive investigation on the decay process of PSCs under UV light illumination nor on the corresponding evolution of their microstructure. In this study, focused ion beam scanning electron microscopy (FIB-SEM) and aberration-corrected transmission electron microscopy (TEM) were used to comprehensively study changes in the performance and the evolution of the microstructure of PSC devices. The experimental results show that a built-in electric field developed under UV light illumination, which drove the diffusion of iodide ions (I-) from the CH3NH3PbI3 (MAPbI3) layer to the hole transfer layer (HTL, Spiro-OMeTAD). Together with the photo-excited holes in the HTL, the I- ions reacted with the Au electrode, and the Au atoms were oxidized into Au+ ions. Furthermore, Au+ ions preferred to diffuse across the HTL and the perovskite layer into the interface between the SnO2 and MAPbI3 layers. SnO2 is known to be a good electron transfer layer (ETL), which should collect the photo-excited electrons to reduce the Au+ ions into metallic Au clusters; this is why the Au electrode was destroyed and Au clusters aggregated at the SnO2-MAPbI3 interface under the UV light illumination. Meanwhile, the Au clusters would accelerate the degradation of the perovskite. In addition, as the PSC performance declined (as determined by the PCE, open-circuit voltage (Voc), and short-circuit current (Jsc)), the decomposition of tetragonal MAPbI3 into hexagonal PbI2 was observed at the interface between Spiro-OMeTAD and MAPbI3, along with a widening of the grain boundaries in the perovskite layer. All of these factors play critical roles in the UV-induced degradation of PSCs. This is the first study to elucidate the light-induced migration of Au from the metal electrode to the interface between SnO2/MAPbI3, which reveals that the UV-induced degradation of PSCs may be mitigated by finding new ways to restrain the interdiffusion of Au+ and I- ions.
  • 加载中
    1. [1]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. doi: 10.1021/ja809598r  doi: 10.1021/ja809598r

    2. [2]

      National Renewable Energy Laboratory. Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed 2019).

    3. [3]

      Bi, F. Z.; Zheng, X.; Yam, C. Y. Acta Phys. -Chim. Sin. 2019, 35, 69.  doi: 10.3866/PKU.WHXB201801082

    4. [4]

      Ge, Y.; Mou, X. L.; Lu, Y.; Sui, M. L. Acta Phys. -Chim. Sin. 2020, 36, 1905039.  doi: 10.3866/PKU.WHXB201905039

    5. [5]

      Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X. N.; Kosco, J.; Saiful Islam, M.; Haque, S. A. Nat. Commun. 2017, 8, 15218. doi: 10.1038/ncomms15218  doi: 10.1038/ncomms15218

    6. [6]

      Divitini, G.; Cacovich, S.; Matteocci, F.; Cinà, L.; Carlo, A. D.; Ducati, C. Nat. Energy 2016, 1, 15012. doi: 10.1038/nenergy.2015.12  doi: 10.1038/nenergy.2015.12

    7. [7]

      Nie, W. Y.; Blancon, J. C.; Neukirch, A. J.; Appavoo, K.; Tsai, H.; Chhowalla, M.; Alam, M. A.; Sfeir, M. Y.; Katan, C.; Even, J.; et al. Nat. Commun. 2016, 7, 11574. doi: 10.1038/ncomms11574  doi: 10.1038/ncomms11574

    8. [8]

      Song, P. Q.; Xie, L. Q.; Shen, L. N.; Liu, K. K.; Liang, Y. M.; Lin, K. B.; Lu, J. X.; Tian, C. B.; Wei, Z. H. Acta Phys. -Chim. Sin. 2021, 37, 2004038.  doi: 10.3866/PKU.WHXB202004038

    9. [9]

      Liang, J.; Zhao, P. Y.; Wang, C. X.; Hu, Y.; Zhu, G. Y.; Ma, L. B.; Liu, J.; Jin, Z. J. Am. Chem. Soc. 2017, 139, 14009. doi: 10.1021/jacs.7b07949  doi: 10.1021/jacs.7b07949

    10. [10]

      Liang, J.; Liu, J.; Jin, Z. Solar RRL 2017, 1, 1700086. doi: 10.1002/solr.201700086  doi: 10.1002/solr.201700086

    11. [11]

      Liang, J.; Wang, C. X.; Zhao, P. Y.; Lu, Z. P.; Xu, Z. R.; Zhu, H. F.; Zhu, G. Y.; Ma, L. B.; Chen, T.; Tie, Z. X.; et al. Nanoscale 2017, 9, 11841. doi: doi.org/10.1039/C7NR03530F  doi: 10.1039/C7NR03530F

    12. [12]

      Jiang, Q.; Rebollar, D.; Gong, J.; Piacentino, E. L.; Zheng, C.; Xu, T. Angew. Chem. Int. Ed. 2015, 54, 7617. doi: 10.1002/anie.201503038  doi: 10.1002/anie.201503038

    13. [13]

      Tai, Q.; You, P.; Sang, H.; Liu, Z.; Hu, C.; Chan, H. L.; Yan, F. Nat. Commun. 2016, 7, 11105. doi: 10.1038/ncomms11105  doi: 10.1038/ncomms11105

    14. [14]

      Chiang, Y. H.; Li, M. H.; Cheng, H. M.; Shen, P. S.; Chen, P. ACS Appl. Mater. Interfaces 2017, 9, 2403. doi: 10.1021/acsami.6b13206  doi: 10.1021/acsami.6b13206

    15. [15]

      Zhu, W. D.; Bao, C. X.; Li, F. M.; Yu, T.; Gao, H.; Yi, Y.; Yang, J.; Fu, G.; Zhou, X. X.; Zou, Z. G. Nano Energy 2016, 19, 17. doi: 10.1016/j.nanoen.2015.11.024  doi: 10.1016/j.nanoen.2015.11.024

    16. [16]

      Chen, Y.; Chen, T.; Dai, L. Adv. Mater. 2015, 27, 1053. doi:10.1002/adma.201404147  doi: 10.1002/adma.201404147

    17. [17]

      Lee, J. W.; Kim, D. H.; Kim, H. S.; Seo, S. W.; Cho, S. M.; Park, N. G. Adv. Energy Mater. 2015, 5, 1501310. doi: 10.1002/aenm.201501310  doi: 10.1002/aenm.201501310

    18. [18]

      Li, Z.; Yang, M.; Park, J. S.; Wei, S. H.; Berry, J. J.; Zhu, K. Chem. Mater. 2015, 28, 284. doi: 10.1021/acs.chemmater.5b04107  doi: 10.1021/acs.chemmater.5b04107

    19. [19]

      Wu, Z.; Raga, S. R.; Juarez-Perez, E. J.; Yao, X.; Jiang, Y.; Ono, L. K.; Ning, Z.; Tian, H.; Qi, Y. Adv. Mater. 2018, 30, 1703670. doi: 10.1002/adma.201703670  doi: 10.1002/adma.201703670

    20. [20]

      Zhao, Y.; Wei, J.; Li, H.; Yan, Y.; Zhou, W.; Yu, D.; Zhao, Q. Nat. Commun. 2016, 7, 10228. doi: 10.1038/ncomms10228  doi: 10.1038/ncomms10228

    21. [21]

      Wu, C.; Wang, K.; Yan, Y.; Yang, D.; Jiang, Y.; Chi, B.; Liu, J.; Esker, A. R.; Rowe, J.; Morris, A. J.; et al. Adv. Funct. Mater. 2019, 29, 1804419. doi: 10.1002/adfm.201804419  doi: 10.1002/adfm.201804419

    22. [22]

      Boyd, C. C.; Cheacharoen, R. R.; Leijtens, T.; McGehee, M. D. Chem. Rev. 2019, 119, 5, 3418. doi: 10.1021/acs.chemrev.8b00336  doi: 10.1021/acs.chemrev.8b00336

    23. [23]

      DeQuilettes, D. W.; Zhang, W.; Burlakov, V. M.; Graham, D. J.; Leijtens, T.; Osherov, A.; Bulović, V.; Snaith, H. J.; Ginger, D. S.; Stranks, S. D. Nat. Commun. 2016, 7, 11683. doi: 10.1038/ncomms11683  doi: 10.1038/ncomms11683

    24. [24]

      Kim, G. Y.; Senocrate, A.; Yang, T. Y.; Gregori, G.; Grätzel, M.; Maier, J. Nat. Mater. 2018, 17, 445. doi: 10.1038/s41563-018-0038-0  doi: 10.1038/s41563-018-0038-0

    25. [25]

      Tang, X.; Brandl, M.; May, B.; Levchuk, I.; Hou, Y.; Richter, M.; Chen, H. W.; Chen, S.; Kahmann, S.; Osvet, A.; et al. Mater. Chem. A 2016, 4, 15896. doi: 10.1039/C6TA06497C  doi: 10.1039/C6TA06497C

    26. [26]

      Juarez-Perez, E. J.; Ono, L. K.; Maeda, M.; Jiang, Y.; Hawash, Z.; Qi, Y. J. Mater. Chem. A 2018, 6, 9604. doi: 10.1039/C8TA03501F  doi: 10.1039/C8TA03501F

    27. [27]

      Bi, E.; Chen, H.; Xie, F.; Wu, Y.; Chen, W.; Su, Y.; Islam, A.; Grätzel, M.; Yang, X. D.; Han, L. Nat. Commun. 2017, 8, 15530. doi: 10.1038/ncomms15330  doi: 10.1038/ncomms15330

    28. [28]

      Nickel, N. H.; Lang, F.; Brus, V. V.; Shargaieva, O.; Rappich, J. Adv. Electron. Mater. 2017, 3, 1700158. doi: 10.1002/aelm.201700158  doi: 10.1002/aelm.201700158

    29. [29]

      Fu, F.; Pisoni, S.; Jeangros, Q.; Sastre-Pellicer, J.; Kawecki, M.; Paracchino, A.; Moser, T.; Werner, J.; Andres, C.; Duchêne, L.; et al. Energy Environ. Sci. 2019, 12, 3074. doi: 10.1039/C9EE02043H  doi: 10.1039/C9EE02043H

    30. [30]

      Bella, F.; Griffini, G.; Correa-Baena, J. P.; Saracco, G.; Grätzel, M.; Hagfeldt, A.; Turri, S.; Gerbaldi, C. Science 2016, 354, 203. doi: 10.1126/science.aah4046  doi: 10.1126/science.aah4046

    31. [31]

      Krishnan, U.; Kaur, M.; Kumar, M.; Kumar, A. J. Photon. Energy 2019, 9, 021001. doi: 10.1117/1.JPE.9.021001  doi: 10.1117/1.JPE.9.021001

    32. [32]

      Hang, P.; Xie, J.; Li, G.; Wang, Y.; Fang, D.; Yao, Y.; Xie, D. Y.; Cui, C.; Yan, K. Y.; Xu, J. B.; et al. iScience 2019, 21, 217. doi: 10.1016/j.isci.2019.10.021  doi: 10.1016/j.isci.2019.10.021

    33. [33]

      Lee, S. W.; Kim, S.; Bae, S.; Cho, K.; Chung, T.; Mundt, L. E.; Lee, S.; Park, S.; Park, H.; Schubert, M. C.; et al. Sci. Rep. 2016, 6, 38150. doi: 10.1038/srep38150  doi: 10.1038/srep38150

    34. [34]

      Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J. Nat. Commun. 2013, 4, 3885. doi: 10.1038/ncomms3885  doi: 10.1038/ncomms3885

    35. [35]

      Sun, Y.; Fang, X.; Ma, Z.; Xu, L.; Lu, Y.; Yu, Q.; Yuan, N. Y.; Ding, J. J. Mater. Chem. C 2017, 5, 8682. doi: 10.1039/C7TC02603J  doi: 10.1039/C7TC02603J

    36. [36]

      Yue, L.; Yan, B.; Attridge, M.; Wang, Z. Sol. Energy 2016, 124, 143. doi: 10.1016/j.solener.2015.11.028  doi: 10.1016/j.solener.2015.11.028

    37. [37]

      Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nat. Photonics 2014, 8, 506. doi: 10.1038/nphoton.2014.134  doi: 10.1038/nphoton.2014.134

    38. [38]

      Eames, C.; Frost, J. M.; Barnes, P. R.; O'regan, B. C.; Walsh, A.; Islam, M. S. Nat. Commun. 2015, 6, 8497. doi: 10.1038/ncomms8497  doi: 10.1038/ncomms8497

    39. [39]

      Meloni, S.; Moehl, T.; Tress, W.; Franckevičius, M.; Saliba, M.; Lee, Y. H.; Gao, P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Rothlisberger, U.; et al. Nat. Commun. 2016, 7, 10334. doi: 10.1038/ncomms10334  doi: 10.1038/ncomms10334

    40. [40]

      Azpiroz, J. M.; Mosconi, E.; Bisquert, J.; De Angelis, F. Energy Environ. Sci. 2015, 8, 2118. doi: 10.1039/C5EE01265A  doi: 10.1039/C5EE01265A

    41. [41]

      Ito, S.; Tanaka, S.; Manabe, K.; Nishino, H. J. Phys. Chem. C 2014, 118, 16995. doi: 10.1021/jp500449z  doi: 10.1021/jp500449z

    42. [42]

      Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z. G.; Wu, J. L.; Zhang, X. W.; You, J. Nat. Energy 2016, 2, 16177. doi: 10.1038/nenergy.2016.177  doi: 10.1038/nenergy.2016.177

    43. [43]

      Wang, Y. F.; Liu, J. H.; Yu, M.; Zhong, J. Y.; Zhou, Q. S.; Qiu, J. M.; Zhang, X. L. Acta Phys. -Chim. Sin. 2021, 37, 2006030.  doi: 10.3866/PKU.WHXB202006030

    44. [44]

      Ompong, D.; Singh, J. Org. Electron. 2018, 63, 104. doi: 10.1016/j.orgel.2018.09.006  doi: 10.1016/j.orgel.2018.09.006

    45. [45]

      Williams, D. B.; Carter, C. B. The Transmission Electron Microscope. Springer: Boston, MA, USA, 1996; pp. 3–17.

    46. [46]

      Zhao, Z.; Lu, Y.; Zhang, Z. H.; Sui, M. L. Acta Phys. -Chim. Sin. 2019, 35, 539.  doi: 10.3866/PKU.WHXB201806012

    47. [47]

      Wu, S.; Chen, R.; Zhang, S.; Babu, B. H.; Yue, Y.; Zhu, H.; Yang, Z. C.; Chen, C. L.; Chen, W. T.; Huang, Y. Q.; et al. Nat. Commun. 2019, 10, 1161. doi: 1161.10.1038/s41467-019-09167-0

    48. [48]

      Domanski, K.; Correa-Baena, J. P.; Mine, N.; Nazeeruddin, M. K.; Abate, A.; Saliba, M.; Tress, W.; Hagfeldt, A.; Grätzel, M. ACS Nano 2016, 10, 6306. doi: 10.1021/acsnano.6b02613  doi: 10.1021/acsnano.6b02613

    49. [49]

      Cacovich, S.; Cinà, L.; Matteocci, F.; Divitini, G.; Midgley, P. A.; Di Carlo, A.; Ducati, C. Nanoscale 2017, 9, 4700. doi: 10.1039/C7NR00784A  doi: 10.1039/C7NR00784A

    50. [50]

      Jiang, C. S.; Yang, M.; Zhou, Y.; To, B.; Nanayakkara, S. U.; Luther, J. M.; Zhou, W. L.; Berry, J. J.; de Lagemaat, J. van.; Padture, N. P.; et al. Nat. Commun. 2015, 6, 8397. doi: 10.1038/ncomms9397  doi: 10.1038/ncomms9397

    51. [51]

      Wang, S.; Yuan, W.; Meng, Y. S. ACS Appl. Mater. Inter. 2015, 7, 24791. doi: 10.1021/acsami.5b07703  doi: 10.1021/acsami.5b07703

    52. [52]

      Nan, G.; Zhang, X.; Lu, G. J. Phys. Chem. Lett. 2019, 10, 7774. doi: 10.1021/acs.jpclett.9b03413  doi: 10.1021/acs.jpclett.9b03413

    53. [53]

      Liu, L.; Huang, S.; Lu, Y.; Liu, P.; Zhao, Y.; Shi, C.; Zhang, S. Y.; Wu, J. F.; Zhong, H. Z.; Sui, M. L.; et al. Adv. Mater. 2018, 30, 1800544. doi: 10.1002/adma.201800544  doi: 10.1002/adma.201800544

  • 加载中
    1. [1]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    2. [2]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    3. [3]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    4. [4]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    5. [5]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    7. [7]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    8. [8]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    9. [9]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    10. [10]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    11. [11]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    12. [12]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    13. [13]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    14. [14]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    15. [15]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    16. [16]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    17. [17]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    18. [18]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    19. [19]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    20. [20]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

Metrics
  • PDF Downloads(55)
  • Abstract views(2075)
  • HTML views(427)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return