Citation: Wang Han, An Hanwen, Shan Hongmei, Zhao Lei, Wang Jiajun. Research Progress on Interfaces of All-Solid-State Batteries[J]. Acta Physico-Chimica Sinica, ;2021, 37(11): 200707. doi: 10.3866/PKU.WHXB202007070 shu

Research Progress on Interfaces of All-Solid-State Batteries

  • Corresponding author: Wang Jiajun, jiajunhit@hit.edu.cn
  • Received Date: 25 July 2020
    Revised Date: 17 August 2020
    Accepted Date: 20 August 2020
    Available Online: 26 August 2020

    Fund Project: the Natural Science Funds of Heilongjiang Province, China ZD2019B001the National Natural Science Foundation of China U1932205The project was supported by the National Natural Science Foundation of China (U1932205) and the Natural Science Funds of Heilongjiang Province, China (ZD2019B001)

  • Owing to the serious energy crisis and environmental problems caused by fossil energy consumption, development of high-energy-density batteries is becoming increasingly significant to satisfy the rapidly growing social demands. Lithium-ion batteries have received widespread attention because of their high energy densities and environmental friendliness. At present, they are widely used in portable electronic devices and electric vehicles. However, security aspects need to be addressed urgently. Substantial advances in liquid electrolyte-based lithium-ion batteries have become a performance bottleneck in the recent years. Traditional lithium-ion batteries use organic liquids as electrolytes, but the flammability and corrosion of these electrolytes considerably limit their development. Continuous growth of lithium dendrites can pierce the separator, leading to electrolyte leakage and combustion, which is a serious safety hazard. Replacement of organic electrolytes with solid-state electrolytes is one of the promising solutions for the development of next-generation energy storage devices, because they have high energy densities and are safe. Solid electrolytes can remarkably alleviate the safety hazards involved in the use of traditional liquid-based lithium-ion batteries. In addition, the composite of solid-state electrolytes and lithium metal is expected to result in a higher energy density. However, due to the lack of fluidity of the solid electrolytes, problems such as limited solid-solid contact area and increased impedance at the interface when solid-state electrolytes are in contact with electrodes must be solved. The localized and buried interface is a major drawback that restricts the electrochemical performance and practical applications of the solid-state batteries. Fabrication of a stable interface between the electrodes and solid-state electrolyte is the main challenge in the development of solid-state lithium metal batteries. All these aspects are critical to the electrochemical performance and safety of the solid-state batteries. Current research mainly focuses on addressing the problems related to the solid-solid interface in solid-state batteries and improving the electrochemical performance of such batteries. In this review, we comprehensively summarize the challenges in the fabrication of solid-state batteries, including poor chemical and electrochemical compatibilities and mechanical instability. Research progress on the improvement strategies for interface problems and the advanced characterization methods for the interface problems are discussed in detail. Meanwhile, we also propose a prospect for the future development of solid-state batteries to guide the rational designing of next-generation high-energy solid-state batteries. There are many critical problems in solid-state batteries that must be fully understood. With further research, all-solid-state batteries are expected to replace the traditional liquid-based lithium-ion batteries and become an important system for a safe and reliable energy storage.
  • 加载中
    1. [1]

      Hoshina, K.; Dokko, K.; Kanamura, K. J. Electrochem. Soc. 2005, 152, A2138. doi: 10.1149/1.2041967  doi: 10.1149/1.2041967

    2. [2]

      Huo, H. Y.; Liang, J. N.; Zhao, N.; Li, X. N.; Lin, X. T.; Zhao, Y.; Adair, K.; Li, R. Y.; Guo, X. X.; Sun, X. L. ACS Energy Lett. 2020, 5, 2156. doi: 10.1021/acsenergylett.0c00789  doi: 10.1021/acsenergylett.0c00789

    3. [3]

      Huo, H. Y.; Sun, J. Y.; Chen, C.; Meng, X. L.; He, M. H.; Zhao, N.; Guo, X. X. J. Power Sources 2018, 383, 150. doi: 10.1016/j.jpowsour.2018.02.026  doi: 10.1016/j.jpowsour.2018.02.026

    4. [4]

      Yamamoto, K.; Yoshida, R.; Sato, T.; Matsumoto, H.; Kurobe, H.; Hamanaka, T.; Kato, T.; Iriyama, Y.; Hirayama, T. J. Power Sources 2014, 266, 414. doi: 10.1016/j.jpowsour.2014.04.154  doi: 10.1016/j.jpowsour.2014.04.154

    5. [5]

      Haruyama, J.; Sodeyama, K.; Han, L. Y.; Takada, K.; Tateyama, Y. Chem. Mater. 2014, 26, 4248. doi: 10.1021/cm5016959  doi: 10.1021/cm5016959

    6. [6]

      Zhang, W. B.; Richter, F. H.; Culver, S. P.; Leichtweiss, T.; Lozano, J. G.; Dietrich, C.; Bruce, P. G.; Zeier, W. G.; Janek, J. ACS Appl. Mater. Interfaces 2018, 10, 22226. doi: 10.1021/acsami.8b05132  doi: 10.1021/acsami.8b05132

    7. [7]

      Wenzel, S.; Randau, S.; Leichtwei, T.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J. Chem. Mater. 2016, 28, 2400. doi: 10.1021/acs.chemmater.6b00610  doi: 10.1021/acs.chemmater.6b00610

    8. [8]

      Sakuda, A.; Hayashi, A.; Tatsumisago, M. Chem. Mater. 2010, 22, 949. doi: 10.1021/cm901819c  doi: 10.1021/cm901819c

    9. [9]

      Huang, Y.; Chen, B.; Duan, J.; Yang, F.; Wang, T. R.; Wang, Z. F.; Yang, W. J.; Hu, C. C.; Luo, W.; Huang, Y. H. Angew. Chem. Int. Ed. 2020, 59, 3699. doi: 10.1002/anie.201914417  doi: 10.1002/anie.201914417

    10. [10]

      Xia, Y. Y.; Fujieda, T.; Tatsumi, K.; Prosini, P. P.; Sakai, T. J. Power Sources 2001, 92, 234. doi: 10.1016/S0378-7753(00)00533-4  doi: 10.1016/S0378-7753(00)00533-4

    11. [11]

      Zhang, D. C.; Zhang, L.; Yang, K.; Wang, H. Q.; Yu, C.; Xu, D.; Xu, B.; Wang, L. M. ACS Appl. Mater. Interfaces 2017, 9, 36886. doi: 10.1021/acsami.7b12186  doi: 10.1021/acsami.7b12186

    12. [12]

      Xu, B, Y.; Li, W. L.; Duan, H. N.; Wang, H. J.; Guo, Y. P.; Li, H.; Liu, H. Z. J. Power Sources 2017, 354, 68. doi: 10.1016/j.jpowsour.2017.04.026  doi: 10.1016/j.jpowsour.2017.04.026

    13. [13]

      Fu, K.; Gong, Y. H.; Fu, Z. Z.; Xie, H.; Yao, Y. G.; Liu, B. Y.; Carter, M.; Wachsman, E.; Hu, L. B. Angew. Chem. Int. Ed. 2017, 56, 14942. doi: 10.1002/anie.201708637  doi: 10.1002/anie.201708637

    14. [14]

      Xiong, S. Z.; Liu, Y. Y.; Jankowski, P.; Liu, Q.; Nitze, F.; Xie, K.; Song, J. X.; Matic, A. Adv. Funct. Mater. 2020, 30, 2001444. doi: 10.1002/adfm.202001444  doi: 10.1002/adfm.202001444

    15. [15]

      Kato, A.; Hayashi, A.; Tatsumisago, M. J. Power Sources 2016, 309, 27. doi: 10.1016/j.jpowsour.2016.01.068  doi: 10.1016/j.jpowsour.2016.01.068

    16. [16]

      Wakasugi, J.; Munakata, H.; Kanamura, K. J. Electrochem. Soc. 2017, 164, A1022. doi: 10.1149/2.0471706jes  doi: 10.1149/2.0471706jes

    17. [17]

      Han, F. D.; Westover, A. S.; Yue, J.; Fan, X. L.; Wang, F.; Chi, M. F.; Leonard, D. N.; Dudney, N.; Wang, H.; Wang, C. S. Nat. Energy 2019, 4, 187. doi: 10.1038/s41560-018-0312-z  doi: 10.1038/s41560-018-0312-z

    18. [18]

      Han, X. G.; Gong, Y. H.; Fu, K.; He, X. F.; Hitz, G. T.; Dai, J. Q.; Pearse, A.; Liu, B. Y.; Wang, H.; Rublo, G.; et al. Nat. Mater. 2017, 16, 572. doi: 10.1038/NMAT4821  doi: 10.1038/NMAT4821

    19. [19]

      Feng, W. L.; Dong, X. L.; Li, P. L.; Wang, Y. G.; Xia, Y. Y. J. Power Sources 2019, 419, 91. doi: 10.1016/j.jpowsour.2019.02.066  doi: 10.1016/j.jpowsour.2019.02.066

    20. [20]

      Deng, T.; Ji, X.; Zhao, Y.; Cao, L. S.; Li, S.; Hwang, S.; Luo, C.; Wang, P. F.; Jia, H. P.; Fan, X. L. Adv. Mater. 2020, 32, 2000030. doi: 10.1002/adma.202000030  doi: 10.1002/adma.202000030

    21. [21]

      Huo, H. Y.; Chen, Y.; Li, R. Y.; Zhao, N.; Luo, J.; da Silva, J. G. P.; Mucke, R.; Kaghazchi, P.; Guo, X. X.; Sun, X. L. Energy Environ. Sci. 2020, 13, 127. doi: 10.1039/c9ee01903k  doi: 10.1039/c9ee01903k

    22. [22]

      Manthiram, A.; Yu, X. W.; Wang, S. F. Nat. Rev. Mater. 2017, 2, 16103. doi: 10.1038/natrevmats.2016.103  doi: 10.1038/natrevmats.2016.103

    23. [23]

      Jin, F.; Li, J.; Hu, C. J.; Dong, H. C.; Chen, P.; Shen, Y. B.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35, 1399.  doi: 10.3866/PKU.WHXB201904085

    24. [24]

      Du, A. B.; Chai, J. C.; Zhang, J. J.; Liu, Z. H.; Cui, G. L. Energy Storage Sci. Technol. 2016, 5, 627.  doi: 10.12028/j.issn.2095-4239.2016.0020

    25. [25]

      Li, Y.; Ding, F.; Sang, L.; Zhong, H.; Liu, X. J. Energy Storage Sci. Technol. 2016, 5, 615.  doi: 10.12028/j.issn.2095-4239.2016.0043

    26. [26]

      Huo, H. Y.; Zhao, N.; Sun, J. Y.; Du, F. M.; Li, Y. Q.; Guo, X. X. J. Power Sources 2017, 372, 1. doi: 10.1016/j.jpowsour.2017.10.059  doi: 10.1016/j.jpowsour.2017.10.059

    27. [27]

      Huo, H. Y.; Li, X. N.; Sun, Y. P.; Lin, X. T.; Kieran, D. D.; Liang, J. W.; Gao, X. J.; Li, R. Y.; Huang, H.; Guo, X. X.; et al. Nano Energy 2020, 73, 104836. doi: 10.1016/j.nanoen.2020.104836  doi: 10.1016/j.nanoen.2020.104836

    28. [28]

      Huo, H. Y.; Chen, Y.; Luo, J.; Yang, X. F.; Guo, X. X. Adv. Energy Mater. 2019, 9, 1804004. doi: 10.1002/aenm.201804004  doi: 10.1002/aenm.201804004

    29. [29]

      Bae, J.; Li, Y. T.; Zhang, J.; Zhou, X. Y.; Zhao, F.; Shi, Y.; Goodenough, J. B.; Yu, G. H. Angew. Chem. Int. Ed. 2018, 57, 2096. doi: 10.1002/anie.201710841  doi: 10.1002/anie.201710841

    30. [30]

      Liu, Q.; Liu, Y. Y.; Jiao, X. X.; Song, Z. X.; Sadd, M.; Xu, X. X.; Matic, A.; Xiong, S. Z.; Song, J. X. Energy Storage Mater. 2019, 23, 105. doi: 10.1016/j.ensm.2019.05.023  doi: 10.1016/j.ensm.2019.05.023

    31. [31]

      Cao, Y.; Zuo, P. J.; Lou, S. F.; Sun, Z.; Li, Q.; Huo, H.; Ma, Y. L.; Du, C. Y.; Gao, Y. Z.; Yin, G. P. J. Mater. Chem. A 2019, 7, 6533. doi: 10.1039/c9ta00146h  doi: 10.1039/c9ta00146h

    32. [32]

      Li, Y. T.; Chen, X.; Dolocan, A.; Cui, Z. M.; Xin, S.; Xue, L. G.; Xu, H. H.; Park, K.; Goodenough, J. B. J. Am. Chem. Soc. 2018, 140, 6448. doi: 10.1021/jacs.8b03106  doi: 10.1021/jacs.8b03106

    33. [33]

      Huo, H. Y.; Chen, Y.; Zhao, N.; Lin, X. T.; Luo, J.; Yang, X. F.; Liu, Y. L.; Guo, X. X.; Sun, X. L. Nano Energy 2019, 61, 119. doi: 10.1016/j.nanoen.2019.04.058  doi: 10.1016/j.nanoen.2019.04.058

    34. [34]

      Huo, H. Y.; Luo, J.; Thangadurai, V.; Guo, X. X.; Nan, C. W.; Sun, X. L. ACS Energy Lett. 2020, 5, 252. doi: 10.1021/acsenergylett.9b02401  doi: 10.1021/acsenergylett.9b02401

    35. [35]

      Liang, J. W.; Chen, N.; Li, X. N.; Li, X.; Adair, K. R.; Li, J. J.; Wang, C. H.; Yu, C.; Banis, M. N.; Zhang, L.; et al. Chem. Mater. 2020, 32, 2664. doi: 10.1021/acs.chemmater.9b04764  doi: 10.1021/acs.chemmater.9b04764

    36. [36]

      Lepley, N. D.; Holzwarth, N. A. W.; Du, Y. J. A. Phys. Rev. B 2013, 88, 104103. doi: 10.1103/PhysRevB.88.104103  doi: 10.1103/PhysRevB.88.104103

    37. [37]

      Ong, S. P.; Mo, Y. F.; Richards, W. D.; Miara, L.; Lee, H. S.; Ceder, G. Energy Environ. Sci. 2013, 6, 148. doi: 10.1039/c2ee23355j  doi: 10.1039/c2ee23355j

    38. [38]

      Wu, F.; Fitzhugh, W.; Ye, L. h.; Ning, J. X.; Li, X. Nat. Commun. 2018, 9, 4037. doi: 10.1038/s41467-018-06123-2  doi: 10.1038/s41467-018-06123-2

    39. [39]

      Zhou, W. D.; Wang, S. F.; Li, Y. T.; Xin, S.; Manthiram, A.; Goodenough, J. B. J. Am. Chem. Soc. 2016, 138, 9385. doi: 10.1021/jacs.6b05341  doi: 10.1021/jacs.6b05341

    40. [40]

      Wu, J. F.; Pang, W. K.; Peterson, V. K.; Wei, L.; Guo, X. ACS Appl. Mater. Interfaces 2017, 9, 12461. doi: 10.1021/acsami.7b00614  doi: 10.1021/acsami.7b00614

    41. [41]

      Du, F. M.; Zhao, N.; Li, Y. Q.; Chen, C.; Liu, Z. W.; Guo, X. X. J. Power Sources 2015, 300, 24. doi: 10.1016/j.jpowsour.2015.09.061  doi: 10.1016/j.jpowsour.2015.09.061

    42. [42]

      Li, H. Q.; Liu, F. Y.; Li, Z. Y.; Wang, S. F.; Jin, R. H.; Liu, C. Y.; Chen, Y. M. ACS Appl. Mater. Interfaces 2019, 11, 17925. doi: 10.1021/acsami.9b06754  doi: 10.1021/acsami.9b06754

    43. [43]

      Cao, D. X.; Zhang, Y. B.; Nolan, A. M.; Sun, X.; Liu, C.; Sheng, J. Z.; Mo, Y. F.; Wang, Y.; Zhu. H. L. Nano Lett. 2020, 20, 1483. doi: 10.1021/acs.nanolett.9b02678  doi: 10.1021/acs.nanolett.9b02678

    44. [44]

      Wang, L. P.; Zhang, X. D.; Wang, T. S.; Yin, Y. X.; Shi, J. L.; Wang, C. R.; Guo, Y. G. Adv. Energy Mater. 2018, 8, 1801528. doi: 10.1002/aenm.201801528  doi: 10.1002/aenm.201801528

    45. [45]

      Ohta, N.; Takada, K.; Zhang, L. Q.; Ma, R. Z.; Osada, M.; Sasaki, T. Adv. Mater. 2006, 18, 2226. doi: 10.1002/adma.200502604  doi: 10.1002/adma.200502604

    46. [46]

      Takada, K. Langmuir 2013, 29, 7538. doi: 10.1021/la3045253  doi: 10.1021/la3045253

    47. [47]

      Liang, J. Y.; Zeng, X. X.; Zhang, X. D.; Wang, P. F.; Ma, J. Y.; Yin, Y. X.; Wu, X. W.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2018, 140, 6767. doi: 10.1021/jacs.8b03319  doi: 10.1021/jacs.8b03319

    48. [48]

      Liang, J. Y.; Zeng, X. X.; Zhang, X. D.; Zuo, T. T.; Yan, M.; Yin, Y. X.; Shi, J. L.; Wu, X. W.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2019, 141, 9165. doi: 10.1021/jacs.9b03517  doi: 10.1021/jacs.9b03517

    49. [49]

      Yan, H. F.; Voorhees, P. W.; Xin, H. L. L. MRS Bull. 2020, 45, 264. doi: 10.1557/mrs.2020.90  doi: 10.1557/mrs.2020.90

    50. [50]

      Hovden, R.; Muller, D. A. MRS Bull. 2020, 45, 298. doi: 10.1557/mrs.2020.87  doi: 10.1557/mrs.2020.87

    51. [51]

      Yu, Z. J.; Wang, J. J.; Wang, L. G.; Xie, Y.; Lou, S. F.; Jiang, Z. X.; Ren, Y.; Lee, S.; Zuo, P. J.; Huo, H.; et al. ACS Energy Lett. 2019, 4, 2007. doi: 10.1021/acsenergylett.9b01347  doi: 10.1021/acsenergylett.9b01347

    52. [52]

      Yu, Z. J.; Wang, J. J.; Liu, Y. J. MRS Bull. 2020, 45, 283. doi: 10.1557/mrs.2020.86  doi: 10.1557/mrs.2020.86

    53. [53]

      Brissot, C.; Rosso, M.; Chazalviel, J. N.; Baudry, P.; Lascaud, S. Electrochim. Acta 1998, 43, 1569. doi: 10.1016/S0013-4686(97)10055-X  doi: 10.1016/S0013-4686(97)10055-X

    54. [54]

      Ren, Y. Y.; Shen, Y.; Lin, Y. H.; Nan, C. W. Electrochem. Commun. 2015, 57, 27. doi: 10.1016/j.elecom.2015.05.001  doi: 10.1016/j.elecom.2015.05.001

    55. [55]

      Golozar, M.; Hovington, P.; Paolella, A.; Bessette, S.; Lagace, M.; Bouchard, P.; Demers, H.; Gauvin, R.; Zaghib, K. Nano Lett. 2018, 18, 7583. doi: 10.1021/acs.nanolett.8b03148  doi: 10.1021/acs.nanolett.8b03148

    56. [56]

      Harry, K. J.; Hallinan, D. T.; Parkinson, D. Y.; MacDowell, A. A.; Balsara, N. P. Nat. Mater. 2014, 13, 69. doi: 10.1038/NMAT3793  doi: 10.1038/NMAT3793

    57. [57]

      Gittleson, F. S.; El Gabaly, F. Nano Lett. 2017, 17, 6974. doi: 10.1021/acs.nanolett.7b03498  doi: 10.1021/acs.nanolett.7b03498

    58. [58]

      Zarabian, M.; Bartolini, M.; Pereira-Almao, P.; Thangadurai, V. J. Electrochem. Soc. 2017, 164, A1133. doi: 10.1149/2.0621706jes  doi: 10.1149/2.0621706jes

    59. [59]

      Park, K.; Yu, B. C.; Jung, J. W.; Li, Y. T.; Zhou, W. D.; Gao, H. C.; Son, S.; Goodenough, J. B. Chem. Mater. 2016, 28, 8051. doi: 10.1021/acs.chemmater.6b03870  doi: 10.1021/acs.chemmater.6b03870

    60. [60]

      Hovington, P.; Lagace, M.; Guerfi, A.; Bouchard, P.; Manger, A.; Julien, C. M.; Armand, M.; Zaghib, K. Nano Lett. 2015, 15, 2671. doi: 10.1021/acs.nanolett.5b00326  doi: 10.1021/acs.nanolett.5b00326

    61. [61]

      Wang, Z. Y.; Santhanagopalan, D.; Zhang, W.; Wang, F.; Xin, H. L. L.; He, K.; Li, J. C.; Dudney, N.; Meng, Y. S. Nano Lett. 2016, 16, 3760. doi: 10.1021/acs.nanolett.6b01119  doi: 10.1021/acs.nanolett.6b01119

    62. [62]

      Sun, N.; Liu, Q. S.; Cao, Y.; Lou, S. F.; Ge, M. Y.; Xiao, X. H.; Lee, W. K.; Gao, Y. Z.; Yin, G. P.; Wang, J. J. Angew. Chem. Int. Ed. 2019, 58, 18647. doi: 10.1002/anie.201910993  doi: 10.1002/anie.201910993

    63. [63]

      Nakayama, M.; Wada, S.; Kuroki, S.; Nogami, M. Energy Environ. Sci. 2010, 3, 1995. doi: 10.1039/c0ee00266f  doi: 10.1039/c0ee00266f

    64. [64]

      Auvergniot, J.; Cassel, A.; Ledeuil, J. B.; Viallet, V.; Seznec, V.; Dedryvere, R. Chem. Mater. 2017, 29, 3883. doi: 10.1021/acs.chemmater.6b04990  doi: 10.1021/acs.chemmater.6b04990

    65. [65]

      Zhang, F.; Lou, S. F.; Li, S.; Yu, Z. J.; Liu, Q. S.; Dai, A.; Cao, C. T.; Toney, M. F.; Ge, M. Y.; Wang, J. J.; et al. Nat. Commun. 2020, 11, 3050. doi: 10.1038/s41467-020-16824-2  doi: 10.1038/s41467-020-16824-2

    66. [66]

      Besli, M. M.; Xia, S. H.; Kuppan, S.; Huang, Y. Q.; Metzger, M.; Shukla, A. K.; Schneider, G.; Hellstrom, S.; Christensen, J.; Doeff, M. M.; et al. Chem. Mater. 2019, 31, 491. doi: 10.1021/acs.chemmater.8b04418  doi: 10.1021/acs.chemmater.8b04418

  • 加载中
    1. [1]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    2. [2]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    3. [3]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    4. [4]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    5. [5]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    7. [7]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    8. [8]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    9. [9]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    10. [10]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    11. [11]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    12. [12]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    13. [13]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    14. [14]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    15. [15]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    16. [16]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    17. [17]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    18. [18]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    19. [19]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    20. [20]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

Metrics
  • PDF Downloads(184)
  • Abstract views(3114)
  • HTML views(1207)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return