Citation: Liu Yang, Duan Xiaojie. Carbon-based Nanomaterials for Neural Electrode Technology[J]. Acta Physico-Chimica Sinica, ;2020, 36(12): 200706. doi: 10.3866/PKU.WHXB202007066 shu

Carbon-based Nanomaterials for Neural Electrode Technology

  • Corresponding author: Duan Xiaojie, xjduan@pku.edu.cn
  • Received Date: 25 July 2020
    Revised Date: 21 August 2020
    Accepted Date: 23 August 2020
    Available Online: 27 August 2020

    Fund Project: the National Key Basic Research Program of China 2016YFA0200103the National Natural Science Foundation of China 21972005The project was supported by the National Natural Science Foundation of China (21972005, 91648207, 81771821), the National Key Basic Research Program of China (2016YFA0200103), and the Beijing Graphene Innovation Program (Z191100000819001)the National Natural Science Foundation of China 81771821the National Natural Science Foundation of China 91648207the Beijing Graphene Innovation Program Z191100000819001

  • As a powerful tool for monitoring and modulating neural activities, implantable neural electrodes constitute the basis for a wide range of applications, including fundamental studies of brain circuits and functions, treatment of various neurological diseases, and realization of brain-machine interfaces. However, conventional neural electrodes have the issue of mechanical mismatch with soft neural tissues, which can result in tissue inflammation and gliosis, thus causing degradation of function over chronic implantation. Furthermore, implantable neural electrodes, especially depth electrodes, can only carry out limited data sampling within predefined anatomical regions, making it challenging to perform large-area brain mapping. With excellent electrical, mechanical, and chemical properties, carbon-based nanomaterials, including graphene and carbon nanotubes (CNTs), have been used as materials of implantable neural electrodes in recent years. Electrodes made from graphene and CNT fibers exhibit low electrochemical impedance, benefiting from the porous microstructure of the fibers. This enables a much smaller size of neural electrode. Together with the low Young's modulus of the fibers, this small size results in very soft electrodes. Soft neural electrodes made from graphene and CNT fibers show a much-reduced inflammatory response and enable stable chronic in vivo action potential recording for 4-5 months. Combining different modalities of neural interfacing, including electrophysiological measurement, optical imaging/stimulation, and magnetic resonance imaging (MRI), could leverage the spatial and temporal resolution advantages of different techniques, thus providing new insights into how neural circuits process information. Transparent neural electrode arrays made from graphene or CNTs enable simultaneous calcium imaging through the transparent electrodes, from which concurrent electrical recording is taken, thus providing complementary cellular information in addition to high-temporal-resolution electrical recording. Transparent neural electrodes from carbon-based nanomaterials can record well-defined neuronal response signals with negligible light-induced artifacts from cortical surfaces under optogenetic stimulation. Graphene and CNT-based materials were used to fabricate MRI-compatible neural electrodes with negligible artifacts under high field MRI. Simultaneous deep brain stimulation (DBS) and functional magnetic resonance imaging (fMRI) with graphene fiber electrodes in the subthalamic nucleus (STN) in Parkinsonian rats revealed robust blood oxygenation level dependent responses along the basal ganglia-thalamocortical network in a frequency-dependent manner, with responses from some regions not previously detectable. This review introduces the recent development and application of neural electrode technologies based on graphene and CNTs. We also discuss biological safety issues and challenges faced by neural electrodes made from carbon nanomaterials. The use of carbon-based nanomaterials for the fabrication of various soft and multi-modality compatible neural electrodes will provide a powerful platform for both fundamental and translational neuroscience research.
  • 加载中
    1. [1]

      Quiroga, R. Q.; Reddy, L.; Kreiman, G.; Koch, C.; Fried, I. Nature 2005, 435 (7045), 1102. doi: 10.1038/nature03687  doi: 10.1038/nature03687

    2. [2]

      Jang, A. I.; Wittig, J. H., Jr.; Inati, S. K.; Zaghloul, K. A. Curr. Biol. 2017, 27 (11), 1700. doi: 10.1016/j.cub.2017.05.014  doi: 10.1016/j.cub.2017.05.014

    3. [3]

      Lee, K. Y.; Ratte, S.; Prescott, S. A. Elife 2019, 8, e49753. doi: 10.7554/eLife.49753  doi: 10.7554/eLife.49753

    4. [4]

      Truccolo, W.; Donoghue, J. A.; Hochberg, L. R.; Eskandar, E. N.; Madsen, J. R.; Anderson, W. S.; Brown, E. N.; Halgren, E.; Cash, S. S. Nat. Neurosci. 2011, 14 (5), 635. doi: 10.1038/nn.2782  doi: 10.1038/nn.2782

    5. [5]

      Fried, I.; Macdonald, K. A.; Wilson, C. L. Neuron 1997, 18 (5), 753. doi: 10.1016/S0896-6273(00)80315-3  doi: 10.1016/S0896-6273(00)80315-3

    6. [6]

      Middlebrooks, J. C.; Bierer, J. A.; Snyder, R. L. Curr. Opin. Neurobiol. 2005, 15 (4), 488. doi: 10.1016/j.conb.2005.06.004  doi: 10.1016/j.conb.2005.06.004

    7. [7]

      Benabid, A. L.; Chabardes, S.; Mitrofanis, J.; Pollak, P. Lancet Neurol. 2009, 8 (1), 67. doi: 10.1016/S1474-4422(08)70291-6  doi: 10.1016/S1474-4422(08)70291-6

    8. [8]

      Wolter, T. J. Pain Res. 2014, 7, 651. doi: 10.2147/JPR.S37589  doi: 10.2147/JPR.S37589

    9. [9]

      Lu, Y.; Lyu, H.; Richardson, A. G.; Lucas, T. H.; Kuzum, D. Sci. Rep. 2016, 6, 33526. doi: 10.1038/srep33526  doi: 10.1038/srep33526

    10. [10]

      Lacour, S. P.; Courtine, G.; Guck, J. Nat. Rev. Mater. 2016, 1, 16063. doi: 10.1038/natrevmats.2016.63  doi: 10.1038/natrevmats.2016.63

    11. [11]

      Zhang, H.; Patel, P. R.; Xie, Z.; Swanson, S. D.; Wang, X.; Kotov, N. A. ACS Nano 2013, 7 (9), 7619. doi: 10.1021/nn402074y  doi: 10.1021/nn402074y

    12. [12]

      Apollo, N. V.; Maturana, M. I.; Tong, W.; Nayagam, D. A. X.; Shivdasani, M. N.; Foroughi, J.; Wallace, G. G.; Prawer, S.; Ibbotson, M. R.; Garrett, D. J. Adv. Funct. Mater. 2015, 25 (23), 3551. doi: 10.1002/adfm.201500110  doi: 10.1002/adfm.201500110

    13. [13]

      Wang, M.; Mi, G.; Shi, D.; Bassous, N.; Hickey, D.; Webster, T. J. Adv. Funct. Mater. 2018, 28 (12), 1700905. doi: 10.1002/adfm.201700905  doi: 10.1002/adfm.201700905

    14. [14]

      Kuzum, D.; Takano, H.; Shim, E.; Reed, J. C.; Juul, H.; Richardson, A. G.; de Vries, J.; Bink, H.; Dichter, M. A.; Lucas, T. H.; et al. Nat. Commun. 2014, 5, 5259. doi: 10.1038/ncomms6259  doi: 10.1038/ncomms6259

    15. [15]

      Baranauskas, G.; Maggiolini, E.; Castagnola, E.; Ansaldo, A.; Mazzoni, A.; Angotzi, G. N.; Vato, A.; Ricci, D.; Panzeri, S.; Fadiga, L. J. Neural Eng. 2011, 8 (6), 066013. doi: 10.1088/1741-2560/8/6/066013  doi: 10.1088/1741-2560/8/6/066013

    16. [16]

      Cogan, S. F. Annu. Rev. Biomed. Eng. 2008, 10, 275. doi: 10.1146/annurev.bioeng.10.061807.160518  doi: 10.1146/annurev.bioeng.10.061807.160518

    17. [17]

      Xie, F.; Xi, Y.; Xu, Q. D.; Liu, J. Q. Acta Phys. -Chim. Sin. 2020, 36, 2003014.  doi: 10.3866/PKU.WHXB202003014

    18. [18]

      Moffitt, M. A.; McIntyre, C. C. Clin. Neurophysiol. 2005, 116 (9), 2240. doi: 10.1016/j.clinph.2005.05.018  doi: 10.1016/j.clinph.2005.05.018

    19. [19]

      Frank, J. A.; Antonini, M. J.; Anikeeva, P. Nat. Biotechnol. 2019, 37 (9), 1013. doi: 10.1038/s41587-019-0198-8  doi: 10.1038/s41587-019-0198-8

    20. [20]

      Song, E.; Li, J.; Won, S. M.; Bai, W.; Rogers, J. A. Nat. Mater. 2020, 19 (6), 590. doi: 10.1038/s41563-020-0679-7  doi: 10.1038/s41563-020-0679-7

    21. [21]

      Yang, X.; Zhou, T.; Zwang, T. J.; Hong, G.; Zhao, Y.; Viveros, R. D.; Fu, T. M.; Gao, T.; Lieber, C. M. Nat. Mater. 2019, 18 (5), 510. doi: 10.1038/s41563-019-0292-9  doi: 10.1038/s41563-019-0292-9

    22. [22]

      Minev, I. R.; Musienko, P.; Hirsch, A.; Barraud, Q.; Wenger, N.; Moraud, E. M.; Gandar, J.; Capogrosso, M.; Milekovic, T.; Asboth, L.; et al. Science 2015, 347 (6218), 159. doi: 10.1126/science.1260318  doi: 10.1126/science.1260318

    23. [23]

      Park, D. W.; Schendel, A. A.; Mikael, S.; Brodnick, S. K.; Richner, T. J.; Ness, J. P.; Hayat, M. R.; Atry, F.; Frye, S. T.; Pashaie, R.; et al. Nat. Commun. 2014, 5, 5258. doi: 10.1038/ncomms6258  doi: 10.1038/ncomms6258

    24. [24]

      Kim, T.; Cho, M.; Yu, K. J. Materials 2018, 11 (7), 1163. doi: 10.3390/ma11071163  doi: 10.3390/ma11071163

    25. [25]

      Han, X.; Qian, X.; Bernstein, J. G.; Zhou, H. H.; Franzesi, G. T.; Stern, P.; Bronson, R. T.; Graybiel, A. M.; Desimone, R.; Boyden, E. S. Neuron 2009, 62 (2), 191-8. doi: 10.1016/j.neuron.2009.03.011  doi: 10.1016/j.neuron.2009.03.011

    26. [26]

      Thunemann, M.; Lu, Y.; Liu, X.; Kilic, K.; Desjardins, M.; Vandenberghe, M.; Sadegh, S.; Saisan, P. A.; Cheng, Q.; Weldy, K. L.; et al. Nat. Commun. 2018, 9, 2035. doi: 10.1038/s41467-018-04457-5  doi: 10.1038/s41467-018-04457-5

    27. [27]

      Zhao, S.; Liu, X.; Xu, Z.; Ren, H.; Deng, B.; Tang, M.; Lu, L.; Fu, X.; Peng, H.; Liu, Z.; Duan, X. Nano Lett. 2016, 16 (12), 7731. doi: 10.1021/acs.nanolett.6b03829  doi: 10.1021/acs.nanolett.6b03829

    28. [28]

      Wang, X. Y.; Narita, A.; Müllen, K. Nat. Rev. Chem. 2018, 2, 0100. doi: 10.1038/s41570-017-0100  doi: 10.1038/s41570-017-0100

    29. [29]

      Zhang, M.; Atkinson, K. R.; Baughman, R. H. Science 2004, 306(5700), 1358. doi: 10.1126/science.1104276  doi: 10.1126/science.1104276

    30. [30]

      McCallum, G. A.; Sui, X.; Qiu, C.; Marmerstein, J.; Zheng, Y.; Eggers, T. E.; Hu, C.; Dai, L.; Durand, D. M. Sci. Rep. 2017, 7 (1), 11723. doi: 10.1038/s41598-017-10639-w  doi: 10.1038/s41598-017-10639-w

    31. [31]

      Guo, Y.; Duan, W.; Ma, C.; Jiang, C.; Xie, Y.; Hao, H.; Wang, R.; Li, L. Biomed. Eng. Online 2015, 14, 118. doi: 10.1186/s12938-015-0113-6  doi: 10.1186/s12938-015-0113-6

    32. [32]

      Zhao, S.; Li, G.; Tong, C.; Chen, W.; Wang, P.; Dai, J.; Fu, X.; Xu, Z.; Liu, X.; Lu, L.; et al. Nat. Commun. 2020, 11, 1788. doi: 10.1038/s41467-020-15570-9  doi: 10.1038/s41467-020-15570-9

    33. [33]

      Lu, L.; Fu, X.; Liew, Y.; Zhang, Y.; Zhao, S.; Xu, Z.; Zhao, J.; Li, D.; Li, Q.; Stanley, G. B.; Duan, X. Nano Lett. 2019, 19 (3), 1577. doi: 10.1021/acs.nanolett.8b04456  doi: 10.1021/acs.nanolett.8b04456

    34. [34]

      Xiao, T.; Wang, Y.; Wei, H.; Yu, P.; Jiang, Y.; Mao, L. Angew. Chem., Int. Ed. 2019, 58 (20), 6616. doi: 10.1002/anie.201901035  doi: 10.1002/anie.201901035

    35. [35]

      Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849  doi: 10.1038/nmat1849

    36. [36]

      Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. S.Science 2008, 321 (5887), 385. doi: 10.1126/science.1157996  doi: 10.1126/science.1157996

    37. [37]

      Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; et al. Nat. Nanotechnol. 2010, 5, 574. doi: 10.1038/nnano.2010.132  doi: 10.1038/nnano.2010.132

    38. [38]

      Ryu, M.; Yang, J. H.; Ahn, Y.; Sim, M.; Lee, K. H.; Kim, K.; Lee, T.; Yoo, S. J.; Kim, S. Y.; Moon, C.; et al. ACS Appl. Mater. Interfaces 2017, 9 (12), 10577. doi: 10.1021/acsami.7b02975  doi: 10.1021/acsami.7b02975

    39. [39]

      Blaschke, B. M.; Lottner, M.; Drieschner, S.; Calia, A. B.; Stoiber, K.; Rousseau, L.; Lissourges, G.; Garrido, J. A. 2D Mater. 2016, 3 (2), 25007. doi: 10.1088/2053-1583/3/2/025007  doi: 10.1088/2053-1583/3/2/025007

    40. [40]

      Hess, L. H.; Jansen, M.; Maybeck, V.; Hauf, M. V.; Seifert, M.; Stutzmann, M.; Sharp, I. D.; Offenhausser, A.; Garrido, J. A. Adv. Mater. 2011, 23 (43), 5045. doi: 10.1016/j.carbon.2018.11.026  doi: 10.1016/j.carbon.2018.11.026

    41. [41]

      Rauti, R.; Musto, M.; Bosi, S.; Prato, M.; Ballerini, L. Carbon 2019, 143, 430. doi: 10.1016/j.carbon.2018.11.026  doi: 10.1016/j.carbon.2018.11.026

    42. [42]

      Blaschke, B. M.; Tort-Colet, N.; Guimerà-Brunet, A.; Weinert, J.; Rousseau, L.; Heimann, A.; Drieschner, S.; Kempski, O.; Villa, R.; Sanchez-Vives, M. V.; Garrido, J. A. 2D Mater. 2017, 4, 025040. doi: 10.1088/2053-1583/aa5eff  doi: 10.1088/2053-1583/aa5eff

    43. [43]

      Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R. R.; Rousset, A. Carbon 2001, 39 (4), 507. doi: 10.1016/S0008-6223(00)00155-X  doi: 10.1016/S0008-6223(00)00155-X

    44. [44]

      Shoval, A.; Adams, C.; David-Pur, M.; Shein, M.; Hanein, Y.; Sernagor, E. Front. Neuroeng. 2009, 2, 4. doi: 10.3389/neuro.16.004.2009  doi: 10.3389/neuro.16.004.2009

    45. [45]

      Kim, H. i.; Wang, M.; Lee, S. K.; Kang, J.; Nam, J. D.; Ci, L.; Suhr, J. Sci. Rep. 2017, 7, 9512. doi: 10.1038/s41598-017-10279-0  doi: 10.1038/s41598-017-10279-0

    46. [46]

      Wang, L.; Xie, S.; Wang, Z.; Liu, F.; Yang, Y.; Tang, C.; Wu, X.; Liu, P.; Li, Y.; Saiyin, H.; et al. Nat. Biomed. Eng. 2020, 4, 159. doi: 10.1038/s41551-019-0462-8  doi: 10.1038/s41551-019-0462-8

    47. [47]

      Yu, X.; Su, J. Y.; Guo, J. Y.; Zhang, X. H.; Li, R. H.; Chai, X. Y.; Chen, Y.; Zhang, D. G.; Wang, J. G.; Sui, X. H.; Durand, D. M. J. Neurosci. Methods 2019, 328, 108450. doi: 10.1016/j.jneumeth.2019.108450  doi: 10.1016/j.jneumeth.2019.108450

    48. [48]

      Sanders, J. E.; Stiles, C. E.; Hayes, C. L. J. Biomed. Mater. Res. 2000, 52 (1), 231. doi: 10.1002/1097-4636(200010)52:1 < 231::AID-JBM29 > 3.0.CO; 2-E  doi: 10.1002/1097-4636(200010)52:1<231::AID-JBM29>3.0.CO;2-E

    49. [49]

      Vitale, F.; Summerson, S. R.; Aazhang, B.; Kemere, C.; Pasquali, M. ACS Nano 2015, 9 (4), 4465. doi: 10.1021/acsnano.5b01060  doi: 10.1021/acsnano.5b01060

    50. [50]

      Seo, K. J.; Artoni, P.; Qiang, Y.; Zhong, Y.; Han, X.; Shi, Z.; Yao, W.; Fagiolini, M.; Fang, H. Adv. Biosyst. 2019, 3 (3), 1800276. doi: 10.1002/adbi.201800276  doi: 10.1002/adbi.201800276

    51. [51]

      Lind, G.; Linsmeier, C. E.; Thelin, J.; Schouenborg, J. J. Neural Eng. 2010, 7 (4), 046005. doi: 10.1088/1741-2560/7/4/046005  doi: 10.1088/1741-2560/7/4/046005

    52. [52]

      Tien, L. W.; Wu, F.; Tang-Schomer, M. D.; Yoon, E.; Omenetto, F. G.; Kaplan, D. L. Adv. Funct. Mater. 2013, 23 (25), 3185. doi: 10.1002/adfm.201203716  doi: 10.1002/adfm.201203716

    53. [53]

      Kim, T. I.; McCall, J. G.; Jung, Y. H.; Huang, X.; Siuda, E. R.; Li, Y.; Song, J.; Song, Y. M.; Pao, H. A.; Kim, R. H.; et al. Science 2013, 340 (6129), 211. doi: 10.1126/science.1232437  doi: 10.1126/science.1232437

    54. [54]

      Kozai, T. D.; Kipke, D. R. J. Neurosci. Methods 2009, 184 (2), 199. doi: 10.1016/j.jneumeth.2009.08.002  doi: 10.1016/j.jneumeth.2009.08.002

    55. [55]

      Luan, L.; Wei, X.; Zhao, Z.; Siegel, J. J.; Potnis, O.; Tuppen, C. A.; Lin, S.; Kazmi, S.; Fowler, R. A.; Holloway, S.; et al. Sci. Adv. 2017, 3 (2), e1601966. doi: 10.1126/sciadv.1601966  doi: 10.1126/sciadv.1601966

    56. [56]

      Vitale, F.; Vercosa, D. G.; Rodriguez, A. V.; Pamulapati, S. S.; Seibt, F.; Lewis, E.; Yan, J. S.; Badhiwala, K.; Adnan, M.; Royer-Carfagni, G.; et al. Nano Lett. 2018, 18 (1), 326. doi: 10.1021/acs.nanolett.7b04184  doi: 10.1021/acs.nanolett.7b04184

    57. [57]

      Park, D. W.; Brodnick, S. K.; Ness, J. P.; Atry, F.; Krugner-Higby, L.; Sandberg, A.; Mikael, S.; Richner, T. J.; Novello, J.; Kim, H.; et al. Nat. Protoc. 2016, 11 (11), 2201. doi: 10.1038/nprot.2016.127  doi: 10.1038/nprot.2016.127

    58. [58]

      Park, D. W.; Ness, J. P.; Brodnick, S. K.; Esquibel, C.; Novello, J.; Atry, F.; Baek, D. H.; Kim, H.; Bong, J.; Swanson, K. I.; et al. ACS Nano 2018, 12 (1), 148. doi: 10.1021/acsnano.7b04321  doi: 10.1021/acsnano.7b04321

    59. [59]

      Jeong, D. W.; Kim, G. H.; Kim, N. Y.; Lee, Z.; Jung, S. D.; Lee, J. O. RSC Adv. 2017, 7 (6), 3273. doi: 10.1039/c6ra26836f  doi: 10.1039/c6ra26836f

    60. [60]

      Krakova, Y.; Tajalli, H.; Thongpang, S.; Derafshi, Z.; Ban, T.; Rahmani, S.; Selner, A. N.; Al-Tarouti, A.; Williams, J. C.; Hetling, J. R. Doc. Ophthalmol. 2014, 129 (3), 151. doi: 10.1007/s10633-014-9459-5  doi: 10.1007/s10633-014-9459-5

    61. [61]

      Yin, R.; Xu, Z.; Mei, M.; Chen, Z.; Wang, K.; Liu, Y.; Tang, T.; Priydarshi, M. K.; Meng, X.; Zhao, S.; v. Nat. Commun. 2018, 9, 2334. doi: 10.1038/s41467-018-04781-w  doi: 10.1038/s41467-018-04781-w

    62. [62]

      Hecht, D. S.; Hu, L.; Irvin, G. Adv. Mater. 2011, 23 (13), 1482. doi: 10.1002/adma.201003188  doi: 10.1002/adma.201003188

    63. [63]

      Zhang, J.; Liu, X.; Xu, W.; Luo, W.; Li, M.; Chu, F.; Xu, L.; Cao, A.; Guan, J.; Tang, S.; Duan, J.. Nano Lett. 2018, 18 (5), 2903. doi: 10.1021/acs.nanolett.8b00087  doi: 10.1021/acs.nanolett.8b00087

    64. [64]

      Pancrazio, J. J. Nanomedicine 2008, 3 (6), 823. doi: 10.2217/17435889.3.6.823  doi: 10.2217/17435889.3.6.823

    65. [65]

      Merrill, D. R.; Bikson, M.; Jefferys, J. G. J. Neurosci. Methods 2005, 141 (2), 171. doi: 10.1016/j.jneumeth.2004.10.020  doi: 10.1016/j.jneumeth.2004.10.020

    66. [66]

      Lai, H. Y.; Younce, J. R.; Albaugh, D. L.; Kao, Y. C. J.; Shih, Y. Y. I. Neuroimage 2014, 84, 11. doi: 10.1016/j.neuroimage.2013.08.026  doi: 10.1016/j.neuroimage.2013.08.026

    67. [67]

      Jiang, C. Q.; Hao, H. W.; Li, L. M. J. Neural Eng. 2013, 10, 026013. doi: 10.1088/1741-2560/10/2/026013  doi: 10.1088/1741-2560/10/2/026013

    68. [68]

      Arantes, P. R.; Cardoso, E. F.; Barreiros, M. Â.; Teixeira, M. J.; Goncalves, M. R.; Barbosa, E. R.; Sukwinder, S. S.; Leite, C. C.; Amaro, E., Jr. Mov. Disord. 2006, 21 (8), 1154. doi: 10.1002/mds.20912  doi: 10.1002/mds.20912

    69. [69]

      Dunn, J. F.; Tuor, U. I.; Kmech, J.; Young, N. A.; Henderson, A. K.; Jackson, J. C.; Valentine, P. A.; Teskey, G. C. Magn. Reson. Med. 2009, 61 (1), 222. doi: 10.1002/mrm.21803  doi: 10.1002/mrm.21803

    70. [70]

      Georgi, J. C.; Stippich, C.; Tronnier, V. M.; Heiland, S. Magn. Reson. Med. 2004, 51 (2), 380. doi: 10.1002/mrm.10699  doi: 10.1002/mrm.10699

    71. [71]

      Cui, H.; Vashist, S. K.; Al-Rubeaan, K.; Luong, J. H. T.; Sheu, F. S. Chem. Res. Toxicol. 2010, 23 (7), 1131. doi: 10.1021/tx100050h  doi: 10.1021/tx100050h

    72. [72]

      Bianco, A. Angew. Chem., Int. Ed. 2013, 52 (19), 4986. doi: 10.1002/anie.201209099  doi: 10.1002/anie.201209099

    73. [73]

      Zhang, Y.; Ali, S. F.; Dervishi, E.; Xu, Y.; Li, Z.; Casciano, D.; Biris, A. S. ACS Nano 2010, 4 (6), 3181. doi: 10.1021/nn1007176  doi: 10.1021/nn1007176

    74. [74]

      Fabbro, A.; Scaini, D.; Leon, V.; Vazquez, E.; Cellot, G.; Privitera, G.; Lombardi, L.; Torrisi, F.; Tomarchio, F.; Bonaccorso, F.; et al. ACS Nano 2016, 10 (1), 615. doi: 10.1021/acsnano.5b05647  doi: 10.1021/acsnano.5b05647

    75. [75]

      Simon-Deckers, A.; Gouget, B.; Mayne-L'Hermite, M.; Herlin-Boime, N.; Reynaud, C.; Carrière, M. Toxicology 2008, 253 (1-3), 137. doi: 10.1016/j.tox.2008.09.007  doi: 10.1016/j.tox.2008.09.007

    76. [76]

      Belyanskaya, L.; Weigel, S.; Hirsch, C.; Tobler, U.; Krug, H. F.; Wick, P. Neurotoxicology 2009, 30 (4), 702. doi: 10.1016/j.neuro.2009.05.005  doi: 10.1016/j.neuro.2009.05.005

    77. [77]

      Lacerda, L.; Russier, J.; Pastorin, G.; Herrero, M. A.; Venturelli, E.; Dumortier, H.; Al-Jamal, K. T.; Prato, M.; Kostarelos, K.; Bianco, A. Biomaterials 2012, 33 (11), 3334. doi: 10.1016/j.biomaterials.2012.01.024  doi: 10.1016/j.biomaterials.2012.01.024

    78. [78]

      Mao, H. Y.; Laurent, S.; Chen, W.; Akhavan, O.; Imani, M.; Ashkarran, A. A.; Mahmoudi, M. Chem. Rev. 2013, 113 (5), 3407. doi: 10.1021/cr300335p  doi: 10.1021/cr300335p

    79. [79]

      Chen, N.; Luo, B.; Patil, A. C.; Wang, J.; Gammad, G. G. L.; Yi, Z.; Liu, X.; Yen, S. C.; Ramakrishna, S.; Thakor, N. V. ACS Nano 2020, 14 (7), 8059. doi: 10.1021/acsnano.0c00672  doi: 10.1021/acsnano.0c00672

    80. [80]

      Hu, H.; Ni, Y.; Montana, V.; Haddon, R. C.; Parpura, V. Nano Lett. 2004, 4 (3), 507. doi: 10.1021/nl035193d  doi: 10.1021/nl035193d

  • 加载中
    1. [1]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    2. [2]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    7. [7]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    8. [8]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    9. [9]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    10. [10]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    11. [11]

      Haolin ZhanQiyuan FangJiawei LiuXiaoqi ShiXinyu ChenYuqing HuangZhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Network. Acta Physico-Chimica Sinica, 2025, 41(2): 2310045-0. doi: 10.3866/PKU.WHXB202310045

    12. [12]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    13. [13]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    14. [14]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    15. [15]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    16. [16]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    17. [17]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    20. [20]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

Metrics
  • PDF Downloads(23)
  • Abstract views(1722)
  • HTML views(464)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return