Citation: Gao Feixue, Chen Yongjun, Liu Dongsheng, Liu Minghua, Tian Zhongqun, Zhang Xi. Review of Major Research Plan on "Controlled Self-assembly Systems and Functionalization"[J]. Acta Physico-Chimica Sinica, ;2020, 36(11): 200606. doi: 10.3866/PKU.WHXB202006060 shu

Review of Major Research Plan on "Controlled Self-assembly Systems and Functionalization"

  • Corresponding author: Gao Feixue, gaofx@nsfc.gov.cn
  • Received Date: 24 June 2020
    Revised Date: 24 June 2020
    Accepted Date: 24 June 2020
    Available Online: 30 June 2020

  • In 2005, the Science magazine, in commemorating the 125th anniversary of its founding, proposed 25 most challenging scientific issues in the future. One of the issues, "How far can we push chemical self-assembly?" has attracted the attention of scientists all over the world. During the 11th Five Year Plan period, NSFC convened scientists from various fields and proposed a major research project, "Controllable self-assembly system and its functionalization". Since the implementation of this project, Chinese scientists have developed and recognized a variety of noncovalent interactions, constructed numerous assembly building blocks with the "Chinese label", established a new assembly method similar to an organic "name reaction", realized the functions of multi-component and multi-level assemblies, and constructed a batch of controllable self-assembly systems having scientific importance and potential practical value. They have achieved great leap forward from following to original innovation, and brought the research of chemical self-assembly in China to move forward to the center of international stage. In this study, we examined the overall scientific goals, general layout of the plan, and ideas for implementation of the major research program "Controllable Self-Assembly System and its Functionalization", as well as an array of significant research accomplishments made possible through the funding received by the program.
  • 加载中
    1. [1]

      Lehn, J. Science 2002, 295 (5564), 2400. doi: 10.1126/science.1071063  doi: 10.1126/science.1071063

    2. [2]

      Whitesides, G. M.; Grzybowski, B. Science 2002, 295 (5564), 2418. doi: 10.1126/science.1070821  doi: 10.1126/science.1070821

    3. [3]

      Robert, F. Science 2005, 309, 95. doi: 10.1126/science.309.5731.95  doi: 10.1126/science.309.5731.95

    4. [4]

      Wang, D.; Wang, M. J. Am. Chem. Soc. 2013, 135 (2), 892. doi: 10.1021/ja310834w  doi: 10.1021/ja310834w

    5. [5]

      Xi, J.; Xu, X. Phys. Chem. Chem. Phys. 2016, 18 (9), 6913. doi: 10.1039/C5CP08065G  doi: 10.1039/C5CP08065G

    6. [6]

      Zhang, I. Y.; Xu, X.; Jung, Y.; Goddard III, W. A. Proc. Natl. Acad. Sci. 2011, 108 (50), 19896. doi: 10.1073/pnas.1115123108  doi: 10.1073/pnas.1115123108

    7. [7]

      Su, N. Q.; Xu, X. Annu. Rev. Phys. Chem. 2017, 68 (1), 155. doi: 10.1146/annurev-physchem052516-044835  doi: 10.1146/annurev-physchem052516-044835

    8. [8]

      Su, N. Q.; Zhu, Z.; Xu, X. Proc. Natl. Acad. Sci. 2018, 115 (10), 2287. doi: 10.1073/pnas.1713047115  doi: 10.1073/pnas.1713047115

    9. [9]

      Tian, J.; Zhou, T. Y.; Zhang, S. C.; Aloni, S.; Altoe, M. V.; Xie, S. H.; Wang, H.; Zhang, D. W.; Zhao, X.; Liu, Y.; et al. Nat. Commun. 2014, 5 (1), 5574. doi: 10.1038/ncomms6574  doi: 10.1038/ncomms6574

    10. [10]

      Tian, J.; Xu, Z. Y.; Zhang, D. W.; Wang, H.; Xie, S. H.; Xu, D. W.; Ren, Y. H.; Wang, H.; Liu, Y.; Li, Z. T. Nat. Commun. 2016, 7 (1), 11580. doi: 10.1038/ncomms11580  doi: 10.1038/ncomms11580

    11. [11]

      Qin, B.; Zhang, S.; Song, Q.; Hang, Z. H.; Xu, J. F.; Zhang, X. Angew. Chem. Int. Ed. 2017, 56 (26), 7639. doi: 10.1002/anie.201703572  doi: 10.1002/anie.201703572

    12. [12]

      Yang, L. L.; Liu, X. G.; Tan, X. X.; Yang, H.; Wang, Z. Q.; Zhang, X. Polym. Chem. 2014, 5 (2), 323. doi: 10.1039/C3PY01161E  doi: 10.1039/C3PY01161E

    13. [13]

      Dong, Y. C.; Sun, Y. W.; Wang, L. Y.; Wang, D. W.; Zhou, T.; Yang, Z. Q.; Chen, Z.; Wang, Q. B.; Fan, Q. H.; Liu, D. S. Angew. Chem. Int. Ed. 2014, 53 (10), 2607. doi: 10.1002/anie.201310715  doi: 10.1002/anie.201310715

    14. [14]

      Wang, Y.; Lin, H. X.; Chen, L.; Ding, S. Y.; Lei, Z. C.; Liu, D. Y.; Cao, X. Y.; Liang, H. J.; Jiang, Y. B.; Tian, Z. Q. Chem. Soc. Rev. 2014, 43 (1), 399. doi: 10.1039/C3CS60212E  doi: 10.1039/C3CS60212E

    15. [15]

      Wang, Y.; Lin, H. X.; Ding, S. Y.; Ding, S. Y.; Liu, D.; Chen, D.; Lei, Z.; Fan, F.; Tian, Z. Sci. Sin. Chim. 2012, 42 (4), 525. doi: 10.1360/032011-828  doi: 10.1360/032011-828

    16. [16]

      Liu, Y. Q.; Wang, T. Y.; Huan, Y.; Li, Z. B.; He, G. W.; Liu, M. H. Adv. Mater. 2013, 25 (41), 5875. doi: 10.1002/adma.201302345  doi: 10.1002/adma.201302345

    17. [17]

      Liu, H. L.; Gong, Q. H.; Yue, Y. H.; Guo, L.; Wang, X. J. Am. Chem. Soc. 2017, 139 (25), 8579. doi: 10.1021/jacs.7b03175  doi: 10.1021/jacs.7b03175

    18. [18]

      Li, X. B.; Gao, Y. J.; Wang, Y.; Zhang, F.; Zhang, X. Y.; Kong, Q. Y.; Zhao, N. J.; Guo, Q.; Wu, H. L.; Li, Z. J.; et al. J. Am. Chem. Soc. 2017, 139 (13), 4789. doi: 10.1021/jacs.6b12976  doi: 10.1021/jacs.6b12976

    19. [19]

      Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Nature 2016, 539 (7627), 76. doi: 10.1038/nature19763  doi: 10.1038/nature19763

    20. [20]

      Liu, X. H.; Kang, F. Y.; Hu, C.; Wang, L.; Xu, Z.; Zheng, D. D.; Gong, W. M.; Lu, Y.; Ma, Y. H.; Wang, J. Y. Nat. Chem. 2018, 10 (12), 1201. doi: 10.1038/s41557-018-0150-4  doi: 10.1038/s41557-018-0150-4

    21. [21]

      Li, S. P.; Jiang, Q.; Liu, S. L.; Zhang, Y. L.; Tian, Y. H.; Song, C., Wang, J.; Zou, Y. G.; Anderson, G. J.; Han, J. Y.; et al. Nat. Biotechnol. 2018, 36 (3), 258. doi: 10.1038/nbt.4071  doi: 10.1038/nbt.4071

    22. [22]

      Huang, P.; Wang, D. L.; Su, Y.; Huang, W.; Zhou, Y. F.; Cui, D. X.; Zhu, X. Y.; Yan, D. Y. J. Am. Chem. Soc.2014, 136 (33), 11748. doi: 10.1021/ja505212y  doi: 10.1021/ja505212y

    23. [23]

      Zhou, L. Y.; Lv, F. T.; Liu, L. B.; Shen, G. Z.; Yan, X. H.; Bazan, G. C.; Wang, S. Adv. Mater. 2018, 30 (10), 1704888. doi: 10.1002/adma.201704888  doi: 10.1002/adma.201704888

    24. [24]

      Chen, Y. Y.; Huang, Z. H.; Xu, J. F.; Sun, Z. W.; Zhang, X. ACS Appl. Mater. Interfaces 2016, 8 (35), 22780. doi: 10.1021/acsami.6b08295  doi: 10.1021/acsami.6b08295

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    3. [3]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    4. [4]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    5. [5]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    6. [6]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    7. [7]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    8. [8]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    11. [11]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    12. [12]

      Yajun Jian Quanguo Zhai Quan Gu Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006

    13. [13]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    14. [14]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    15. [15]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    16. [16]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    17. [17]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    18. [18]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    19. [19]

      Sifang Zhang Yanli Tan Yu Tao Jiaoyan Zhao Haihong Zhu . Exploration and Practice of Ideological and Political Cases in the Course of Chemistry History and Methodology. University Chemistry, 2024, 39(10): 377-388. doi: 10.12461/PKU.DXHX202312067

    20. [20]

      Weizhou Jiao Zhiwei Liu Chao Zhang Zhiguo Yuan Guisheng Qi Jing Gao . Construction and Implementation of a Mode of Chemical Talent Training Driven by Practice and Innovation Ability. University Chemistry, 2024, 39(7): 76-81. doi: 10.12461/PKU.DXHX202405011

Metrics
  • PDF Downloads(39)
  • Abstract views(1795)
  • HTML views(602)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return