Citation: Yichen Meng, Siyu Kuang, Hai Liu, Qun Fan, Xinbin Ma, Sheng Zhang. Recent Advances in Electrochemical CO2 Reduction Using Copper-Based Catalysts[J]. Acta Physico-Chimica Sinica, ;2021, 37(5): 200603. doi: 10.3866/PKU.WHXB202006034 shu

Recent Advances in Electrochemical CO2 Reduction Using Copper-Based Catalysts

  • Corresponding author: Sheng Zhang, sheng.zhang@tju.edu.cn
  • Received Date: 12 June 2020
    Revised Date: 28 June 2020
    Accepted Date: 29 June 2020
    Available Online: 2 July 2020

    Fund Project: the Key Research and Development Project of Tianjin 18ZXJMTG00180the Key Research and Development Project of Tianjin 19ZXNCGX00030

  • Burning of fossil fuels increases CO2 concentration in the atmosphere, resulting in a series of climate- and environment-related concerns such as global warming, sea-level rise, and melting of glaciers. Therefore, utilization of renewable energy to reduce the CO2 concentration, in order to realize a sustainable development, is urgent. Capturing and utilizing CO2, a greenhouse gas, can not only address these concerns but also alleviate the current scenario of energy shortage. Thermal catalytic CO2 hydrogenation offers various pathways with high conversion efficiencies to produce fuels and industrial chemicals including CO, HCOOH, CH3OH, and CH4. However, CO2 is chemically inert due to the highly stable C=O bond. Thus, harsh reaction conditions such as high temperature and pressure are required for CO2 hydrogenation.Electrocatalytic CO2 reduction using renewable electricity and water is a promising alternative to thermocatalysis. This technology can not only store and transport the intermittent solar or wind energy but can also use water as the proton source instead of H2, which is indispensable for thermal CO2 hydrogenation. Electrochemical CO2 reduction under ambient conditions is a proton-coupled electron transfer process. The key to promote the electrochemical reduction of CO2 is to develop highly selective and active catalysts with high stability. Among various CO2 electrocatalysts, copper-based catalysts have attracted significant attention and have been extensively investigated, since they exhibit good selectivity and efficiency for the reduction of CO2 to hydrocarbons and alcohols. A broad range of products, up to 16 different gases and liquids, can be obtained in the CO2 electroconversion on copper. Copper is the only metal that has a negative adsorption energy for *CO and a positive adsorption energy for *H. Thus, it has a unique property of generating > 2e transfer products. However, selectivity of the target product is still low, especially for high value-added C2+ species (C2H4, C2H5OH, CH3COOH, CH3CHO, n-C3H7OH, etc.).The selectivity of various products on copper-based catalysts could be enhanced by surface engineering techniques such as tuning the morphologies, particle sizes, surface facets, strains levels, and atomic coordination. Electrolyte engineering could also aid in CO2 electroreduction. Therefore, improving the selectivity of C2+ products by modifying copper-based catalysts could be a hot research topic. In addition, C-C coupling is a key step in forming C2+ products, though the C2+ product formation pathway is complex, and the mechanisms are still unclear. Considering these, this paper mainly reviews the research progress in copper-based catalysts producing C2+ species in the last five years. It also discusses the possible reaction mechanisms and the factors that affect the product selectivities. In the end, further research directions are proposed.
  • 加载中
    1. [1]

      Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709. doi: 10.1021/cr4002758  doi: 10.1021/cr4002758

    2. [2]

      Chen, Y.; Chen, K.; Fu, J.; Yamaguchi, A.; Li, H.; Pan, H.; Hu, J.; Miyauchi, M.; Liu, M. Nano Mater. Sci. 2019, in Press. doi: 10.1016/j.nanoms.2019.10.006

    3. [3]

      Gao, D.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G.; Wang, J.; Bao, X. J. Am. Chem. Soc. 2015, 137, 4288. doi: 10.1021/jacs.5b00046  doi: 10.1021/jacs.5b00046

    4. [4]

      Kauffman, D. R.; Thakkar, J.; Siva, R.; Matranga, C.; Ohodnicki, P. R.; Zeng, C. J.; Jin, R. C. ACS Appl. Mater. Interfaces 2015, 7, 15626. doi: 10.1021/acsami.5b04393  doi: 10.1021/acsami.5b04393

    5. [5]

      Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. Chem. Soc. Rev. 2014, 43, 631. doi: 10.1039/c3cs60323g  doi: 10.1039/c3cs60323g

    6. [6]

      Spinner, N. S.; Vega, J. A.; Mustain, W. E. Catal. Sci. Technol. 2012, 2, 19. doi: 10.1039/C1CY00314C  doi: 10.1039/C1CY00314C

    7. [7]

      Han, N.; Ding, P.; He, L.; Li, Y. Y.; Li, Y. G. Adv. Energy Mater. 2020, 10, 19. doi: 10.1002/aenm.201902338  doi: 10.1002/aenm.201902338

    8. [8]

      Li, Y. M.; Chu, S. L.; Shen, H. D.; Xia, Q. N.; Robertson, A. W.; Masa, J.; Siddiqui, U.; Sun, Z. Y. ACS Sustainable Chem. Eng. 2020, 8, 4948. doi: 10.1021/acssuschemeng.0c00800  doi: 10.1021/acssuschemeng.0c00800

    9. [9]

      Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Nature 2016, 529, 68. doi: 10.1038/nature16455  doi: 10.1038/nature16455

    10. [10]

      Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Adv. Mater. 2016, 28, 3423. doi: 10.1002/adma.201504766  doi: 10.1002/adma.201504766

    11. [11]

      Jones, J. P.; Prakash, G. K. S.; Olah, G. A. Isr. J. Chem. 2014, 54, 1451. doi: 10.1002/ijch.201400081  doi: 10.1002/ijch.201400081

    12. [12]

      Ajmal, S.; Yang, Y.; Li, K.; Tahir, M.A.; Liu, Y.; Wang, T.; Bacha, A. -U. -R.; Feng, Y.; Deng, Y.; Zhang, L. J. Phys. Chem. C 2019, 123, 11555. doi: 10.1021/acs.jpcc.9b00119  doi: 10.1021/acs.jpcc.9b00119

    13. [13]

      Peng, X.; Karakalos, S. G.; Mustain, W. E. ACS Appl. Mater. Interfaces 2018, 10, 1734. doi: 10.1021/acsami.7b16164  doi: 10.1021/acsami.7b16164

    14. [14]

      Hori, Y. Electrochemical CO2 Reduction on Metal Electrodes, in Modern Aspects of Electrochemistry; Vayenas, C. G., White, R. E., Gamboa-Aldeco, M. E., Eds.; Springer New York: New York, NY, USA, 2008; p. 89.

    15. [15]

      Yang, K.D.; Lee, C.W.; Jin, K.; Im, S.W.; Nam, K.T. J. Phys. Chem. Lett. 2017, 8, 538. doi: 10.1021/acs.jpclett.6b02748  doi: 10.1021/acs.jpclett.6b02748

    16. [16]

      Fan, L.; Xia, C.; Yang, F. Q.; Wang, J.; Wang, H. T.; Lu, Y. Y. Sci. Adv. 2020, 6, 17. doi: 10.1126/sciadv.aay3111  doi: 10.1126/sciadv.aay3111

    17. [17]

      Li, Y. G. C.; Wang, Z. Y.; Yuan, T. G.; Nam, D. H.; Luo, M. C.; Wicks, J.; Chen, B.; Li, J.; Li, F. W.; de Arguer, F. P. G.; et al. J. Am. Chem. Soc. 2019, 141, 8584. doi: 10.1021/jacs.9b02945  doi: 10.1021/jacs.9b02945

    18. [18]

      Zhang, Y.; Li, K.; Chen, M.; Wang, J.; Liu, J.; Zhang, Y. ACS Appl. Nano Mater. 2020, 3, 257. doi: 10.1021/acsanm.9b01935  doi: 10.1021/acsanm.9b01935

    19. [19]

      Tao, Z. X.; Wu, Z. S.; Yuan, X. L.; Wu, Y. S.; Wang, H. L. ACS Catal. 2019, 9, 10894. doi: 10.1021/acscatal.9b03158  doi: 10.1021/acscatal.9b03158

    20. [20]

      Weng, Z.; Zhang, X.; Wu, Y.S.; Huo, S.J.; Jiang, J.B.; Liu, W.; He, G.J.; Liang, Y.Y.; Wang, H.L. Angew. Chem.-Int. Edit. 2017, 56, 13135. doi: 10.1002/anie.201707478  doi: 10.1002/anie.201707478

    21. [21]

      Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Energy Environ. Sci. 2012, 5, 7050. doi: 10.1039/C2EE21234J  doi: 10.1039/C2EE21234J

    22. [22]

      Kahsay, A. W.; Ibrahim, K. B.; Tsai, M. -C.; Birhanu, M. K.; Chala, S. A.; Su, W. -N.; Hwang, B. -J. Catal. Lett. 2019, 149, 860. doi: 10.1007/s10562-019-02657-2  doi: 10.1007/s10562-019-02657-2

    23. [23]

      Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. J. Am. Chem. Soc. 2014, 136, 6978. doi: 10.1021/ja500328k  doi: 10.1021/ja500328k

    24. [24]

      Li, Y. F.; Cui, F.; Ross, M. B.; Kim, D.; Sun, Y.; Yang, P. D. Nano Lett. 2017, 17, 1312. doi: 10.1021/acs.nanolett.6b05287  doi: 10.1021/acs.nanolett.6b05287

    25. [25]

      Clark, E. L.; Hahn, C.; Jaramillo, T. F.; Bell, A. T. J. Am. Chem. Soc. 2017, 139, 15848. doi: 10.1021/jacs.7b08607  doi: 10.1021/jacs.7b08607

    26. [26]

      Gao, Y. G.; Wu, Q.; Liang, X. Z.; Wang, Z. Y.; Zheng, Z. K.; Wang, P.; Liu, Y. Y.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Adv. Sci. 2020, 7, 1902820. doi: 10.1002/advs.201902820  doi: 10.1002/advs.201902820

    27. [27]

      De Luna, P.; Quintero-Bermudez, R.; Dinh, C. T.; Ross, M. B.; Bushuyev, O. S.; Todorovic, P.; Regier, T.; Kelley, S. O.; Yang, P. D.; Sargent, E. H. Nat. Catal. 2018, 1, 103. doi: 10.1038/s41929-017-0018-9  doi: 10.1038/s41929-017-0018-9

    28. [28]

      Shih, C. F.; Zhang, T.; Li, J.; Bai, C. Joule 2018, 2, 1925. doi: 10.1016/j.joule.2018.08.016  doi: 10.1016/j.joule.2018.08.016

    29. [29]

      Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A.; et al. Chem. Rev. 2013, 113, 6621. doi: 10.1021/cr300463y  doi: 10.1021/cr300463y

    30. [30]

      Wu, J. H.; Huang, Y.; Ye, W.; Li, Y. G. Adv. Sci. 2017, 4, 29. doi: 10.1002/advs.201700194  doi: 10.1002/advs.201700194

    31. [31]

      Oloman, C.; Li, H. ChemSusChem 2008, 1, 385. doi: 10.1002/cssc.200800015  doi: 10.1002/cssc.200800015

    32. [32]

      Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; et al. Chem. Rev. 2019, 119, 7610. doi: 10.1021/acs.chemrev.8b00705  doi: 10.1021/acs.chemrev.8b00705

    33. [33]

      D'Alessandro, D. M.; Smit, B.; Long, J. R. Angew. Chem. Int. Ed. 2010, 49, 6058. doi: 10.1002/anie.201000431  doi: 10.1002/anie.201000431

    34. [34]

      Frese, K. W. Chapter 6-Electrochemical Reduction of CO2 at Solid Electrodes. In Electrochemical and Electrocatalytic Reactions of Carbon Dioxide; Sullivan, B. P., Ed.; Elsevier: Amsterdam, The Netherlands, 1993; p. 145.

    35. [35]

      Ma, M.; Djanashvili, K.; Smith, W. A. Angew. Chem. Int. Ed. 2016, 55, 6680. doi: 10.1002/anie.201601282  doi: 10.1002/anie.201601282

    36. [36]

      Tang, W.; Peterson, A. A.; Varela, A. S.; Jovanov, Z. P.; Bech, L.; Durand, W. J.; Dahl, S.; Nørskov, J. K.; Chorkendorff, I. Phys. Chem. Chem. Phys. 2012, 14, 76. doi: 10.1039/C1CP22700A  doi: 10.1039/C1CP22700A

    37. [37]

      Popovic, S.; Smiljanic, M.; Jovanovic, P.; Vavra, J.; Buonsanti, R.; Hodnik, N. Angew. Chem. Int. Ed. Engl. 2020, in press. doi: 10.1002/anie.202000617  doi: 10.1002/anie.202000617

    38. [38]

      Ripatti, D. S.; Veltman, T. R.; Kanan, M. W. Joule 2019, 3, 240. doi: 10.1016/j.joule.2018.10.007  doi: 10.1016/j.joule.2018.10.007

    39. [39]

      Yoshio, H.; Katsuhei, K.; Shin, S. Chem. Lett. 1985, 14, 1695. doi: 10.1246/cl.1985.1695  doi: 10.1246/cl.1985.1695

    40. [40]

      Hori, Y.; Murata, A.; Takahashi, R. J. Chem. Soc., Faraday Trans. 1 1989, 85, 2309. doi: 10.1039/F19898502309  doi: 10.1039/F19898502309

    41. [41]

      Hori, Y.; Takahashi, R.; Yoshinami, Y.; Murata, A. J. Phys. Chem. B 1997, 101, 7075. doi: 10.1021/jp970284i  doi: 10.1021/jp970284i

    42. [42]

      Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. Energy Environ. Sci. 2010, 3, 1311. doi: 10.1039/C0EE00071J  doi: 10.1039/C0EE00071J

    43. [43]

      Deng, Y. L.; Yeo, B. S. ACS Catal. 2017, 7, 7873. doi: 10.1021/acscatal.7b02561  doi: 10.1021/acscatal.7b02561

    44. [44]

      Perez-Gallent, E.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T. M. Angew. Chem. Int. Ed. 2017, 56, 3621. doi: 10.1002/anie.201700580  doi: 10.1002/anie.201700580

    45. [45]

      Wang, X. L.; de Araujo, J. F.; Ju, W.; Bagger, A.; Schmies, H.; Kuhl, S.; Rossmeisl, J.; Strasser, P. Nat. Nanotechnol. 2019, 14, 1063. doi: 10.1038/s41565-019-0551-6  doi: 10.1038/s41565-019-0551-6

    46. [46]

      Montoya, J. H.; Shi, C.; Chan, K.; Nørskov, J. K. J. Phys. Chem. Lett. 2015, 6, 2032. doi: 10.1021/acs.jpclett.5b00722  doi: 10.1021/acs.jpclett.5b00722

    47. [47]

      Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X. Y.; Bell, D. C.; Norskov, J. K.; Chan, K. R.; Wang, H. T. Nat. Catal. 2018, 1, 111. doi: 10.1038/s41929-017-0009-x  doi: 10.1038/s41929-017-0009-x

    48. [48]

      Wuttig, A.; Liu, C.; Peng, Q. L.; Yaguchi, M.; Hendon, C. H.; Motobayashi, K.; Ye, S.; Osawa, M.; Surendranath, Y. ACS Cent. Sci. 2016, 2, 522. doi: 10.1021/acscentsci.6b00155  doi: 10.1021/acscentsci.6b00155

    49. [49]

      Cheng, T.; Xiao, H.; Goddard, W. A. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 1795. doi: 10.1073/pnas.1612106114  doi: 10.1073/pnas.1612106114

    50. [50]

      Goodpaster, J. D.; Bell, A. T.; Head-Gordon, M. J. Phys. Chem. Lett. 2016, 7, 1471. doi: 10.1021/acs.jpclett.6b00358  doi: 10.1021/acs.jpclett.6b00358

    51. [51]

      Xiao, H.; Cheng, T.; Goddard, W. A. J. Am. Chem. Soc. 2017, 139, 130. doi: 10.1021/jacs.6b06846  doi: 10.1021/jacs.6b06846

    52. [52]

      Kim, D.; Kley, C. S.; Li, Y. F.; Yang, P. D. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 10560. doi: 10.1073/pnas.1711493114  doi: 10.1073/pnas.1711493114

    53. [53]

      Ren, D.; Wong, N. T.; Handoko, A. D.; Huang, Y.; Yeo, B. S. J. Phys. Chem. Lett. 2016, 7, 20. doi: 10.1021/acs.jpclett.5b02554  doi: 10.1021/acs.jpclett.5b02554

    54. [54]

      Clark, E. L.; Bell, A. T. J. Am. Chem. Soc. 2018, 140, 7012. doi: 10.1021/jacs.8b04058  doi: 10.1021/jacs.8b04058

    55. [55]

      Chang, X. X.; Malkani, A.; Yang, X.; Xu, B. J. J. Am. Chem. Soc. 2020, 142, 2975. doi: 10.1021/jacs.9b11817  doi: 10.1021/jacs.9b11817

    56. [56]

      Garza, A. J.; Bell, A. T.; Head-Gordon, M. ACS Catal. 2018, 8, 1490. doi: 10.1021/acscatal.7b03477  doi: 10.1021/acscatal.7b03477

    57. [57]

      Zheng, Y.; Vasileff, A.; Zhou, X. L.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. J. Am. Chem. Soc. 2019, 141, 7646. doi: 10.1021/jacs.9b02124  doi: 10.1021/jacs.9b02124

    58. [58]

      Liu, X. Y.; Xiao, J. P.; Peng, H. J.; Hong, X.; Chan, K.; Norskov, J. K. Nat. Commun. 2017, 8, 7. doi: 10.1038/ncomms15438  doi: 10.1038/ncomms15438

    59. [59]

      Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. J. Phys. Chem. B 2002, 106, 15. doi: 10.1021/jp013478d  doi: 10.1021/jp013478d

    60. [60]

      Jiang, K.; Kharel, P.; Peng, Y.; Gangishetty, M. K.; Lin, H. -Y. G.; Stavitski, E.; Attenkofer, K.; Wang, H. ACS Sustainable Chem. Eng. 2017, 5, 8529. doi: 10.1021/acssuschemeng.7b02380  doi: 10.1021/acssuschemeng.7b02380

    61. [61]

      Huang, H.; Jia, H.; Liu, Z.; Gao, P.; Zhao, J.; Luo, Z.; Yang, J.; Zeng, J. Angew. Chem. Int. Ed. 2017, 56, 3594. doi: 10.1002/anie.201612617  doi: 10.1002/anie.201612617

    62. [62]

      Li, Q.; Fu, J.; Zhu, W.; Chen, Z.; Shen, B.; Wu, L.; Xi, Z.; Wang, T.; Lu, G.; Zhu, J. -J.; Sun, S. J. Am. Chem. Soc. 2017, 139, 4290. doi: 10.1021/jacs.7b00261  doi: 10.1021/jacs.7b00261

    63. [63]

      Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F. J. Am. Chem. Soc. 2014, 136, 14107. doi: 10.1021/ja505791r  doi: 10.1021/ja505791r

    64. [64]

      Zhang, S.; Kang, P.; Meyer, T. J. J. Am. Chem. Soc. 2014, 136, 1734. doi: 10.1021/ja4113885  doi: 10.1021/ja4113885

    65. [65]

      Sun, J.; Wei, D.; Lv, H. Trans. Tianjin Univ. 2018, 24, 16. doi: 10.1007/s12209-017-0094-6  doi: 10.1007/s12209-017-0094-6

    66. [66]

      Cuellar, N. S. R.; Wiesner-Fleischer, K.; Fleischer, M.; Rucki, A.; Hinrichsen, O. Electrochim. Acta 2019, 307, 164. doi: 10.1016/j.electacta.2019.03.142  doi: 10.1016/j.electacta.2019.03.142

    67. [67]

      Zhao, X.; Du, M. S.; Liu, F. Materials 2019, 12, 10. doi: 10.3390/ma12040602  doi: 10.3390/ma12040602

    68. [68]

      Wu, M.; Zhu, C.; Wang, K.; Li, G.; Dong, X.; Song, Y.; Xue, J.; Chen, W.; Wei, W.; Sun, Y. ACS Appl. Mater. Interfaces 2020, 12, 11562. doi: 10.1021/acsami.9b21153  doi: 10.1021/acsami.9b21153

    69. [69]

      Mangione, G.; Huang, J. F.; Buonsanti, R.; Corminboeuf, C. J. Phys. Chem. Lett. 2019, 10, 4259. doi: 10.1021/acs.jpclett.9b01471  doi: 10.1021/acs.jpclett.9b01471

    70. [70]

      Kibria, M. G.; Dinh, C. T.; Seifitokaldani, A.; De Luna, P.; Burdyny, T.; Quintero-Bermudez, R.; Ross, M. B.; Bushuyev, O. S.; de Arguer, F. P. G.; Yang, P. D.; et al. Adv. Mater. 2018, 30, 7. doi: 10.1002/adma.201804867  doi: 10.1002/adma.201804867

    71. [71]

      Lum, Y.; Ager, J. W. Nat. Catal. 2019, 2, 86. doi: 10.1038/s41929-018-0201-7  doi: 10.1038/s41929-018-0201-7

    72. [72]

      Back, S.; Lim, J.; Kim, N. Y.; Kim, Y. H.; Jung, Y. Chem. Sci. 2017, 8, 1090. doi: 10.1039/c6sc03911a  doi: 10.1039/c6sc03911a

    73. [73]

      Wang, Y. F.; Chen, Z.; Han, P.; Du, Y. H.; Gu, Z. X.; Xu, X.; Zheng, G. F. ACS Catal. 2018, 8, 7113. doi: 10.1021/acscatal.8b01014  doi: 10.1021/acscatal.8b01014

    74. [74]

      Jiao, J.; Lin, R.; Liu, S.; Cheong, W. C.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J.; Wu, K.; Hung, S. F.; et al. Nat. Chem. 2019, 11, 222. doi: 10.1038/s41557-018-0201-x  doi: 10.1038/s41557-018-0201-x

    75. [75]

      Yuan, J.; Yang, M. P.; Zhi, W. Y.; Wang, H.; Wang, H.; Lu, J. X. J. CO2 Util. 2019, 33, 452. doi: 10.1016/j.jcou.2019.07.014  doi: 10.1016/j.jcou.2019.07.014

    76. [76]

      Cheng, Y. S.; Chu, X. P.; Ling, M.; Li, N.; Wu, K. L.; Wu, F. H.; Li, H.; Yuan, G. Z.; Wei, X. W. Catal. Sci. Technol. 2019, 9, 5668. doi: 10.1039/c9cy01131e  doi: 10.1039/c9cy01131e

    77. [77]

      Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; de Arquer, F. P. G.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S.; et al. Science 2018, 360, 783. doi: 10.1126/science.aas9100  doi: 10.1126/science.aas9100

    78. [78]

      Xiao, H.; Cheng, T.; Goddard, W.A.; Sundararaman, R. J. Am. Chem. Soc. 2016, 138, 483. doi: 10.1021/jacs.5b11390  doi: 10.1021/jacs.5b11390

    79. [79]

      Ning, H.; Mao, Q. H.; Wang, W. H.; Yang, Z. X.; Wang, X. S.; Zhao, Q. S.; Song, Y.; Wu, M. B. J. Alloy. Compd. 2019, 785, 7. doi: 10.1016/j.jallcom.2019.01.142  doi: 10.1016/j.jallcom.2019.01.142

    80. [80]

      Zarandi, R. F.; Rezaei, B.; Ghaziaskar, H. S.; Ensafi, A. A. J. Environ. Chem. Eng. 2019, 7, 7. doi: 10.1016/j.jece.2019.103141  doi: 10.1016/j.jece.2019.103141

    81. [81]

      Zhang, S.; Kang, P.; Ubnoske, S.; Brennaman, M. K.; Song, N.; House, R. L.; Glass, J. T.; Meyer, T. J. J. Am. Chem. Soc. 2014, 136, 7845. doi: 10.1021/ja5031529  doi: 10.1021/ja5031529

    82. [82]

      Gao, D. F.; Sinev, I.; Scholten, F.; Aran-Ais, R. M.; Divins, N. J.; Kvashnina, K.; Timoshenko, J.; Roldan Cuenya, B. Angew. Chem. Int. Ed. 2019, 58, 17047. doi: 10.1002/anie.201910155  doi: 10.1002/anie.201910155

    83. [83]

      Resasco, J.; Chen, L. D.; Clark, E.; Tsai, C.; Hahn, C.; Jaramillo, T. F.; Chan, K.; Bell, A. T. J. Am. Chem. Soc. 2017, 139, 11277. doi: 10.1021/jacs.7b06765  doi: 10.1021/jacs.7b06765

    84. [84]

      Xiao, H.; Goddard, W. A.; Cheng, T.; Liu, Y. Y. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 6685. doi: 10.1073/pnas.1702405114  doi: 10.1073/pnas.1702405114

    85. [85]

      Fields, M.; Hong, X.; Norskov, J. K.; Chan, K. J. Phys. Chem. C 2018, 122, 16209. doi: 10.1021/acs.jpcc.8b04983  doi: 10.1021/acs.jpcc.8b04983

    86. [86]

      Qin, T.; Qian, Y.; Zhang, F.; Lin, B. L. Chin. Chem. Lett. 2019, 30, 314. doi: 10.1016/j.cclet.2018.07.003  doi: 10.1016/j.cclet.2018.07.003

    87. [87]

      Jung, H.; Lee, S. Y.; Lee, C. W.; Cho, M. K.; Won, D. H.; Kim, C.; Oh, H. S.; Min, B. K.; Hwang, Y. J. J. Am. Chem. Soc. 2019, 141, 4624. doi: 10.1021/jacs.8b11237  doi: 10.1021/jacs.8b11237

    88. [88]

      Scholten, F.; Sinev, I.; Bernal, M.; Roldan Cuenya, B. ACS Catal. 2019, 9, 5496. doi: 10.1021/acscatal.9b00483  doi: 10.1021/acscatal.9b00483

    89. [89]

      Feroze, M. T.; Sami, S. K.; Doonyapisut, D.; Kim, B.; Chung, C. H. ChemElectroChem 2020, 7, 7. doi: 10.1002/celc.201902035  doi: 10.1002/celc.201902035

    90. [90]

      Gao, D. F.; McCrum, I. T.; Deo, S.; Choi, Y. W.; Scholten, F.; Wan, W. M.; Chen, J. G. G.; Janik, M. J.; Roldan Cuenya, B. ACS Catal. 2018, 8, 10012. doi: 10.1021/acscatal.8b02587  doi: 10.1021/acscatal.8b02587

    91. [91]

      Gu, Z. X.; Yang, N.; Han, P.; Kuang, M.; Mei, B. B.; Jiang, Z.; Zhong, J.; Li, L.; Zheng, G. F. Small Methods 2019, 3, 8. doi: 10.1002/smtd.201800449  doi: 10.1002/smtd.201800449

    92. [92]

      Kim, J.; Choi, W.; Park, J.W.; Kim, C.; Kim, M.; Song, H. J. Am. Chem. Soc. 2019, 141, 6986. doi: 10.1021/jacs.9b00911  doi: 10.1021/jacs.9b00911

    93. [93]

      Varela, A. S.; Kroschel, M.; Reier, T.; Strasser, P. Catal. Today 2016, 260, 8. doi: 10.1016/j.cattod.2015.06.009  doi: 10.1016/j.cattod.2015.06.009

    94. [94]

      Yang, P. -P.; Zhang, X. -L.; Gao, F. -Y.; Zheng, Y. -R.; Niu, Z. -Z.; Yu, X.; Liu, R.; Wu, Z. -Z.; Qin, S.; Chi, L. -P.; et al. J. Am. Chem. Soc. 2020, 142, 6400. doi: 10.1021/jacs.0c01699  doi: 10.1021/jacs.0c01699

    95. [95]

      Cheng, Y. S.; Li, H.; Ling, M.; Li, N.; Jiang, B. B.; Wu, F. H.; Yuan, G. Z.; Wei, X. W. Mater. Lett. 2020, 260, 4. doi: 10.1016/j.matlet.2019.126868  doi: 10.1016/j.matlet.2019.126868

    96. [96]

      Reller, C.; Krause, R.; Volkova, E.; Schmid, B.; Neubauer, S.; Rucki, A.; Schuster, M.; Schmid, G. Adv. Energy Mater. 2017, 7, 1602114. doi: 10.1002/aenm.201602114  doi: 10.1002/aenm.201602114

    97. [97]

      Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. J. Mol. Catal. A: Chem. 2003, 199, 39. doi: 10.1016/S1381-1169(03)00016-5  doi: 10.1016/S1381-1169(03)00016-5

    98. [98]

      Zhang, J.; Luo, W.; Zuttel, A. J. Mater. Chem. A 2019, 7, 26285. doi: 10.1039/c9ta06736a  doi: 10.1039/c9ta06736a

    99. [99]

      Wang, W. H.; Ning, H.; Yang, Z. X.; Feng, Z. X.; Wang, J. L.; Wang, X. S.; Mao, Q. H.; Wu, W. T.; Zhao, Q. S.; Hu, H.; et al. Electrochim. Acta 2019, 306, 360. doi: 10.1016/j.electacta.2019.03.146  doi: 10.1016/j.electacta.2019.03.146

    100. [100]

      Anastasiadou, D.; Schellekens, M.; de Heer, M.; Verma, S.; Negro, E. ChemElectroChem 2019, 6, 3928. doi: 10.1002/celc.201900971  doi: 10.1002/celc.201900971

    101. [101]

      Yang, Y.; Zhang, Y.; Hu, J.S.; Wan, L.J. Acta Phys.-Chim. Sin. 2020, 36, 1906085.  doi: 10.3866/PKU.WHXB201906085

    102. [102]

      Gao, D. F.; Aran-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B. Nat. Catal. 2019, 2, 198. doi: 10.1038/s41929-019-0235-5  doi: 10.1038/s41929-019-0235-5

    103. [103]

      Iijima, G.; Inomata, T.; Yamaguchi, H.; Ito, M.; Masuda, H. ACS Catal. 2019, 9, 6305. doi: 10.1021/acscatal.9b00896  doi: 10.1021/acscatal.9b00896

    104. [104]

      Chou, T. C.; Chang, C. C.; Yu, H. L.; Yu, W. Y.; Dong, C. L.; Velasco-Velez, J. J.; Chuang, C. H.; Chen, L. C.; Lee, J. F.; Chen, J. M.; et al. J. Am. Chem. Soc. 2020, 142, 2857. doi: 10.1021/jacs.9b11126  doi: 10.1021/jacs.9b11126

    105. [105]

      Chen, C. J.; Sun, X. F.; Yan, X. P.; Wu, Y. H.; Liu, M. Y.; Liu, S. S.; Zhao, Z. J.; Han, B. X. Green Chem. 2020, 22, 1572. doi: 10.1039/d0gc00247j  doi: 10.1039/d0gc00247j

    106. [106]

      Aran-Ais, R. M.; Scholten, F.; Kunze, S.; Rizo, R.; Cuenya, B. R. Nat. Energy 2020, 5, 317. doi: 10.1038/s41560-020-0594-9  doi: 10.1038/s41560-020-0594-9

    107. [107]

      Shah, A. H.; Wang, Y. J.; Hussain, S.; Akbar, M. B.; Woldu, A. R.; Zhang, X. H.; He, T. Phys. Chem. Chem. Phys. 2020, 22, 2046. doi: 10.1039/c9cp06009j  doi: 10.1039/c9cp06009j

    108. [108]

      Permyakova, A. A.; Herranz, J.; El Kazzi, M.; Diercks, J. S.; Povia, M.; Mangani, L. R.; Horisberger, M.; Patru, A.; Schmidt, T. J. ChemPhysChem 2019, 20, 3120. doi: 10.1002/cphc.201900468  doi: 10.1002/cphc.201900468

    109. [109]

      Lei, Q.; Zhu, H.; Song, K. P.; Wei, N. N.; Liu, L. M.; Zhang, D. L.; Yin, J.; Dong, X. L.; Yao, K. X.; Wang, N.; et al. J. Am. Chem. Soc. 2020, 142, 4213. doi: 10.1021/jacs.9b11790  doi: 10.1021/jacs.9b11790

    110. [110]

      Li, G.; Qin, Y.; Wu, Y.; Pei, L.; Hu, Q.; Yang, H.; Zhang, Q.; Liu, J.; He, C. Chin. J. Catal. 2020, 41, 830. doi: 10.1016/S1872-2067(19)63485-6  doi: 10.1016/S1872-2067(19)63485-6

    111. [111]

      Yin, Z.; Yu, C.; Zhao, Z.; Guo, X.; Shen, M.; Li, N.; Muzzio, M.; Li, J.; Liu, H.; Lin, H.; et al. Nano Lett. 2019, 19, 8658. doi: 10.1021/acs.nanolett.9b03324  doi: 10.1021/acs.nanolett.9b03324

    112. [112]

      Karapinar, D.; Huan, N. T.; Ranjbar Sahraie, N.; Li, J.; Wakerley, D.; Touati, N.; Zanna, S.; Taverna, D.; Galvao Tizei, L. H.; Zitolo, A.; et al. Angew. Chem. Int. Ed. Engl. 2019, 58, 15098. doi: 10.1002/anie.201907994  doi: 10.1002/anie.201907994

    113. [113]

      Thorson, M. R.; Siil, K. I.; Kenis, P. J. A. J. Electrochem. Soc. 2012, 160, F69. doi: 10.1149/2.052301jes  doi: 10.1149/2.052301jes

    114. [114]

      Shinagawa, T.; Larrazábal, G. O.; Martín, A. J.; Krumeich, F.; Pérez-Ramírez, J. ACS Catal. 2018, 8, 837. doi: 10.1021/acscatal.7b03161  doi: 10.1021/acscatal.7b03161

    115. [115]

      Deng, Y.; Huang, Y.; Ren, D.; Handoko, A. D.; Seh, Z. W.; Hirunsit, P.; Yeo, B. S. ACS Appl. Mater. Interfaces 2018, 10, 28572. doi: 10.1021/acsami.8b08428  doi: 10.1021/acsami.8b08428

    116. [116]

      Zhao, Z.; Peng, X.; Liu, X.; Sun, X.; Shi, J.; Han, L.; Li, G.; Luo, J. J. Mater. Chem. A 2017, 5, 20239. doi: 10.1039/c7ta05507b  doi: 10.1039/c7ta05507b

    117. [117]

      Zhu, Q. G.; Sun, X. F.; Kang, X. C.; Ma, J.; Qian, Q. L.; Han, B. X. Acta Phys. -Chim. Sin. 2016, 32, 261.  doi: 10.3866/PKU.WHXB201512101

    118. [118]

      Yoo, J. S.; Christensen, R.; Vegge, T.; Nørskov, J. K.; Studt, F. ChemSusChem 2016, 9, 358. doi: 10.1002/cssc.201501197  doi: 10.1002/cssc.201501197

    119. [119]

      Ma, S.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. J. Am. Chem. Soc. 2017, 139, 47. doi: 10.1021/jacs.6b10740  doi: 10.1021/jacs.6b10740

    120. [120]

      Lee, S.; Park, G.; Lee, J. ACS Catal. 2017, 7, 8594. doi: 10.1021/acscatal.7b02822  doi: 10.1021/acscatal.7b02822

    121. [121]

      Hoang, T. T. H.; Verma, S.; Ma, S.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J. A.; Gewirth, A. A. J. Am. Chem. Soc. 2018, 140, 5791. doi: 10.1021/jacs.8b01868  doi: 10.1021/jacs.8b01868

    122. [122]

      Zhang, S.; Fan, Q.; Xia, R.; Meyer, T. J. Acc. Chem. Res. 2020, 53, 255. doi: 10.1021/acs.accounts.9b00496  doi: 10.1021/acs.accounts.9b00496

    123. [123]

      Kottakkat, T.; Klingan, K.; Jiang, S.; Jovanov, Z. P.; Davies, V. H.; El-Nagar, G. A. M.; Dau, H.; Roth, C. ACS Appl. Mater. Interfaces 2019, 11, 14734. doi: 10.1021/acsami.8b22071  doi: 10.1021/acsami.8b22071

    124. [124]

      Huang, J.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. J. Am. Chem. Soc. 2019, 141, 2490. doi: 10.1021/jacs.8b12381  doi: 10.1021/jacs.8b12381

    125. [125]

      Zheng, X. L.; Ji, Y. F.; Tang, J.; Wang, J. Y.; Liu, B. F.; Steinruck, H. G.; Lim, K.; Li, Y. Z.; Toney, M. F.; Chan, K.; et al. Nat. Catal. 2019, 2, 55. doi: 10.1038/s41929-018-0200-8  doi: 10.1038/s41929-018-0200-8

    126. [126]

      Jiang, X. X.; Wang, X. K.; Liu, Z. J.; Wang, Q. L.; Xiao, X.; Pan, H. P.; Li, M.; Wang, J. W.; Shao, Y.; Peng, Z. Q.; et al. Appl. Catal. B 2019, 259, 8. doi: 10.1016/j.apcatb.2019.118040  doi: 10.1016/j.apcatb.2019.118040

    127. [127]

      Morimoto, M.; Takatsuji, Y.; Iikubo, S.; Kawano, S.; Sakakura, T.; Haruyama, T. J. Phys. Chem. C 2019, 123, 3004. doi: 10.1021/acs.jpcc.8b11431  doi: 10.1021/acs.jpcc.8b11431

    128. [128]

      Xiong, W.; Yang, J.; Shuai, L.; Hou, Y.; Qiu, M.; Li, X. Y.; Leung, M. K. H. ChemElectroChem 2019, 6, 5951. doi: 10.1002/celc.201901381  doi: 10.1002/celc.201901381

    129. [129]

      Wang, J.; Zou, J.; Hu, X.; Ning, S.; Wang, X.; Kang, X.; Chen, S. J. Mater. Chem. A 2019, 7, 27514. doi: 10.1039/c9ta11140a  doi: 10.1039/c9ta11140a

    130. [130]

      Feng, Y.; Li, Z.; Liu, H.; Dong, C. K.; Wang, J. Q.; Kulinich, S. A.; Du, X. W. Langmuir 2018, 34, 13544. doi: 10.1021/acs.langmuir.8b02837  doi: 10.1021/acs.langmuir.8b02837

    131. [131]

      Zhang, Y. F.; Zhao, Y.; Wang, C. Y.; Wei, Z. X.; Yang, J. L.; Ma, J. M. Phys. Chem. Chem. Phys. 2019, 21, 21341. doi: 10.1039/c9cp03692j  doi: 10.1039/c9cp03692j

    132. [132]

      Ren, D.; Ang, B. S. H.; Yeo, B. S. ACS Catal. 2016, 6, 8239. doi: 10.1021/acscatal.6b02162  doi: 10.1021/acscatal.6b02162

    133. [133]

      Malik, K.; Rajbongshi, B. M.; Verma, A. J. CO2 Util. 2019, 33, 311. doi: 10.1016/j.jcou.2019.06.020  doi: 10.1016/j.jcou.2019.06.020

    134. [134]

      Kim, D.; Xie, C. L.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K.; Crumlin, E. J.; Norskov, J. K.; Yang, P. D. J. Am. Chem. Soc. 2017, 139, 8329. doi: 10.1021/jacs.7b03516  doi: 10.1021/jacs.7b03516

    135. [135]

      Fu, J. J.; Zhu, W. L.; Chen, Y.; Yin, Z. Y.; Li, Y. Y.; Liu, J.; Zhang, H. Y.; Zhu, J. J.; Sun, S. H. Angew. Chem. Int. Ed. 2019, 58, 14100. doi: 10.1002/anie.201905318  doi: 10.1002/anie.201905318

    136. [136]

      Jang, Y. J.; Lee, J.; Kim, J. H.; Lee, B. J.; Lee, J. S. J. Power Sources 2018, 378, 412. doi: 10.1016/j.jpowsour.2017.12.070  doi: 10.1016/j.jpowsour.2017.12.070

    137. [137]

      Xiang, H.; Rasul, S.; Hou, B.; Portoles, J.; Cumpson, P.; Yu, E. H. ACS Appl. Mater. Interfaces 2020, 12, 601. doi: 10.1021/acsami.9b16862  doi: 10.1021/acsami.9b16862

    138. [138]

      Barasa, G. O.; Yu, T.; Lu, X.; Zhou, X.; Wang, H.; Qian, L.; Yu, Y.; Liu, L.; Lei, P. Electrochim. Acta 2019, 295, 584. doi: 10.1016/j.electacta.2018.10.175  doi: 10.1016/j.electacta.2018.10.175

    139. [139]

      Chu, S. L.; Hong, S.; Masa, J.; Li, X.; Sun, Z. Y. Chem. Commun. 2019, 55, 12380. doi: 10.1039/c9cc05435a  doi: 10.1039/c9cc05435a

    140. [140]

      Mun, Y.; Lee, S.; Cho, A.; Kim, S.; Han, J. W.; Lee, J. Appl. Catal., B 2019, 246, 82. doi: 10.1016/j.apcatb.2019.01.021  doi: 10.1016/j.apcatb.2019.01.021

    141. [141]

      Zhang, S.; Kang, P.; Bakir, M.; Lapides, A. M.; Dares, C. J.; Meyer, T. J. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 15809. doi: 10.1073/pnas.1522496112  doi: 10.1073/pnas.1522496112

  • 加载中
    1. [1]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    4. [4]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    5. [5]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    6. [6]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    9. [9]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    10. [10]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    11. [11]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    12. [12]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    14. [14]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    15. [15]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    16. [16]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    17. [17]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    18. [18]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    19. [19]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    20. [20]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

Metrics
  • PDF Downloads(37)
  • Abstract views(1350)
  • HTML views(149)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return