Citation: Zhu Gaolong, Zhao Chenzi, Yuan Hong, Nan Haoxiong, Zhao Bochen, Hou Lipeng, He Chuangxin, Liu Quanbing, Huang Jiaqi. Liquid Phase Therapy with Localized High-Concentration Electrolytes for Solid-State Li Metal Pouch Cells[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200500. doi: 10.3866/PKU.WHXB202005003 shu

Liquid Phase Therapy with Localized High-Concentration Electrolytes for Solid-State Li Metal Pouch Cells

  • Corresponding author: Huang Jiaqi, jqhuang@bit.edu.cn
  • Received Date: 5 May 2020
    Revised Date: 27 May 2020
    Available Online: 18 June 2020

    Fund Project: the China Postdoctoral Science Foundation 2019T120098the National Natural Science Foundation of China 21808124the National Natural Science Foundation of China 21676160The project was supported by the National Key Research and Development Program of China (2016YFA0202500, 2016YFA0200102), the National Natural Science Foundation of China (21676160, 21808124, U1801257), and the China Postdoctoral Science Foundation (2019T120098)the National Natural Science Foundation of China U1801257the National Key Research and Development Program of China 2016YFA0200102the National Key Research and Development Program of China 2016YFA0202500

  • Solid-state Li metal batteries are considered promising next-generation energy storage systems due to its exceptional advantages in terms of safety and high energy density. The continuous process on the development of solid-state fast ionic electrolytes enables the solid-state battery to operate at room temperature. Among these, sulfide-based solid electrolytes have attracted significant attentions due to their extremely high ionic conductivity, excellent deformability, and mild low-temperature processability. However, the full demonstration of practical batteries remains challenging due to the slow lithium-ion transport kinetics at working solid-solid interfaces. The sluggish interfacial transport kinetics mainly result from the poor solid-solid contacts, resulting in poor battery performance. Especially for solid-state pouch cells, the high local current due to the poor contact is amplified by the high working current, leading to rapid failure. Constructing fast ion transport paths between the Li metal anode and solid electrolyte interface is key for the practical application of solid-state batteries. Here a simple protocol was developed to realize fast ionic transportation by wetting the solid electrolyte/Li metal anode interface with localized high salt concentration liquid electrolyte. First, 3.5 mmol lithium trifluoroalfonylimide (LiTFSI) was added into 1, 1, 2, 2-tetrafluoroethyl-2, 2, 3, 3-tetrafluoropropyl ether (HFE) and dimethoxyethane (DME) mixed solvent, and stirred to obtain uniformly dispersed localized high-concentration liquid electrolyte, denoted as HFE-DME LiTFSI. The fluidity of liquid electrolyte ensures sufficiently conformal contacts between lithium anode and liquid electrolyte, as well as solid-state electrolyte and liquid electrolyte. Thus, fast ion transportation channels were constructed between the solid electrolyte and Li metal anode by wetting HFE-DME LiTFSI at a concentration of 3.0 μL·cm-2. After liquid phase therapy, the interfacial resistance of solid-state Li|Li4Ti5O12 (LTO) pouch cell rapidly reduced from 4366 to 64 Ω·cm-2 and even lower than the cell that was pressed at 3 MPa in the assemble process (340 Ω·cm-2). This suggests that the ion transport kinetics are significantly improved by liquid phase therapy. Therefore, the solid-state Li metal pouch cell with dimensions of 30 mm × 30 mm showed excellent cycling performances with specific capacities of 107 and 96 mAh·g-1 at 0.1C and 0.5C, respectively. Furthermore, the solid-state Li-S pouch cell delivered capacities of 1100 and 932 mAh·g-1 at 0.01C and 0.02C, respectively. This study demonstrates the effectiveness of the novel liquid phase therapy to construct fast ionic transportation channels, which providing an effective strategy for the practical application of solid-state Li metal pouch cells.
  • 加载中
    1. [1]

      Cheng, X. B.; Zhao, C. Z.; Yao, Y. X.; Liu, H.; Zhang, Q. Chem 2019, 5, 74. doi: 10.1016/j.chempr.2018.12.002  doi: 10.1016/j.chempr.2018.12.002

    2. [2]

      Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Adv. Energy Mater. 2017, 7, 1700260. doi: 10.1002/aenm.201700260  doi: 10.1002/aenm.201700260

    3. [3]

      Li, B. Q.; Kong, L.; Zhao, C. X.; Jin, Q.; Chen, X.; Peng, H. J.; Qin, J. L.; Chen, J. X.; Yuan, H.; Zhang, Q.; Huang, J. Q. InfoMat 2019, 1, 533. doi: 10.1002/inf2.12056  doi: 10.1002/inf2.12056

    4. [4]

      Shen, X.; Cheng, X.; Shi, P.; Huang, J.; Zhang, X.; Yan, C.; Li, T.; Zhang, Q. J. Energy Chem. 2019, 37, 29. doi: 10.1016/j.jechem.2018.11.016  doi: 10.1016/j.jechem.2018.11.016

    5. [5]

      Chen, J. X.; Zhang, X. Q.; Li, B. Q.; Wang, X. M.; Shi, P.; Zhu, W.; Chen, A.; Jin, Z.; Xiang, R.; Huang, J. Q. J. Energy Chem. 2020, 47, 128. doi: 10.1016/j.jechem.2019.11.024  doi: 10.1016/j.jechem.2019.11.024

    6. [6]

      Jiang, J. H.; Wang, A. B.; Wang, W. K.; Jin, Z. Q.; Fan, L. Z. J. Energy Chem. 2020, 46, 114. doi: 10.1016/j.jechem.2019.10.009  doi: 10.1016/j.jechem.2019.10.009

    7. [7]

      Yan, C.; Yuan, H.; Park, H. S. Huang, J. Q. J. Energy Chem. 2020, 47, 217. doi: 10.1016/j.jechem.2019.09.034  doi: 10.1016/j.jechem.2019.09.034

    8. [8]

      Guo, F.; Chen, P.; Kang, T.; Wang, Y. L.; Liu, C. H.; Shen, Y. B.; Lu, W.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35, 1365.  doi: 10.3866/PKU.WHXB201903008

    9. [9]

      Chen, K.; Sun, Z. H.; Fang, R. P.; Li, F.; Cheng, H. M. Acta Phys. -Chim. Sin. 2018, 34, 377.  doi: 10.3866/PKU.WHXB201709001

    10. [10]

      Oh, P.; Lee, H.; Park, S.; Cha, H.; Kim, J.; Cho, J. Adv. Energy Matter. 2020, 2000904. doi: 10.1002/aenm.202000904  doi: 10.1002/aenm.202000904

    11. [11]

      Cao, D.; Sun, X.; Li, Q.; Natan, A.; Xiang, P.; Zhu, H. Matter 2020, 2, 1. doi: 10.1016/j.matt.2020.03.015  doi: 10.1016/j.matt.2020.03.015

    12. [12]

      Zhang, X. Q.; Zhao, C. Z.; Huang, J. Q. Zhang, Q. Engineering 2018, 4, 831. doi: 10.1016/j.eng.2018.10.008  doi: 10.1016/j.eng.2018.10.008

    13. [13]

      Zhao, C. Z.; Duan, H.; Huang, J. Q.; Zhang, J.; Zhang, Q.; Guo, Y. G.; Wan, L. J. Sci. China Chem. 2019, 62, 1286. doi: 10.1007/s11426-019-9519-9  doi: 10.1007/s11426-019-9519-9

    14. [14]

      Ates, T.; Keller, M.; Kulisch, J.; Adermann, T. Passerini, S. Energy Storage Mater. 2019, 17, 204. doi: 10.1016/j.ensm.2018.11.011  doi: 10.1016/j.ensm.2018.11.011

    15. [15]

      Busche, M. R.; Drossel, T.; Leichtweiss, T.; Weber, D. A.; Falk, M.; Schneider, M.; Reich, M. L.; Sommer, H.; Adelhelm, P.; Janek, J. Nat. Chem. 2016, 8, 426. doi: 10.1038/nchem.2470  doi: 10.1038/nchem.2470

    16. [16]

      Sakuda, A.; Sato, Y.; Hayashi, A.; Tatsumisago, M. Energy Technol. 2019, 7, 1900077. doi: 10.1002/ente.201900077  doi: 10.1002/ente.201900077

    17. [17]

      Shen, Y. Q.; Zeng, F. L.; Zhou, X. Y.; Wang, A. B.; Wang, W. K.; Yuan, N. Y.; Ding, J. N. J. Energy Chem. 2020, 48, 267.doi: 10.1016/j.jechem.2020.01.016  doi: 10.1016/j.jechem.2020.01.016

    18. [18]

      Wu, J. Y.; Ling, S. G.; Yang, Q.; Li, H.; Xu, X. X.; Chen, L. Q. Chin. Phys. B 2016, 25, 078204. doi: 10.1088/1674-1056/25/7/078204  doi: 10.1088/1674-1056/25/7/078204

    19. [19]

      Yao, X. Y.; Huang, N.; Han, F. D.; Zhang, Q.; Wan, H. L.; Mwizerwa, J. P.; Wang, C. S.; Xu, X. X. Adv. Energy Mater. 2017, 7, 1602923. doi: 10.1002/aenm.201602923  doi: 10.1002/aenm.201602923

    20. [20]

      Zhang, H.; Judez, X.; Santiago, A.; Martinez-Ibanez, M.; Munoz-Marquez, M. A.; Carrasco, J.; Li, C. M.; Eshetu, G. G.; Armand, M. Adv. Energy Mater. 2019, 9, 1900763. doi: 10.1002/aenm.201900763  doi: 10.1002/aenm.201900763

    21. [21]

      Xu, R.; Zhang, S.; Wang, X.; Xia, Y.; Xia, X.; Wu, J.; Gu, C.; Tu, J. Chem. -A Eur. J. 2018, 24, 6007. doi: 10.1002/chem.201704568  doi: 10.1002/chem.201704568

    22. [22]

      Zhao, C. Z.; Zhang, X. Q.; Cheng, X. B.; Zhang, R.; Xu, R.; Chen, P. Y.; Peng, H. J.; Huang, J. Q. Zhang, Q. Proc. Natl. Acad. Sci. 2017, 114, 11069. doi: 10.1073/pnas.1708489114  doi: 10.1073/pnas.1708489114

    23. [23]

      Hou, L. P.; Yuan, H.; Zhao, C. Z.; Xu, L.; Zhu, G. L.; Nan, H. X.; Cheng, X. B.; Liu, Q. B.; He, C. X.; Huang, J. Q.; Zhang, Q. Energy Storage Mater. 2019, 25, 436. doi: 10.1016/j.ensm.2019.09.037  doi: 10.1016/j.ensm.2019.09.037

    24. [24]

      Zhang, Q.; Cao, D. X.; Ma, Y.; Natan, A.; Aurora, P. Zhu, H. L. Adv. Mater. 2019, 31, 1901131. doi: 10.1002/adma.201901131  doi: 10.1002/adma.201901131

    25. [25]

      Zhang, Y. B.; Chen, R. J.; Wang, S.; Liu, T.; Xu, B. Q.; Zhang, X.; Wang, X. Z.; Shen, Y.; Lin, Y. H.; Li, M.; et al. Energy Storage Mater. 2020, 25, 145. doi: 10.1016/j.ensm.2019.10.020  doi: 10.1016/j.ensm.2019.10.020

    26. [26]

      Zhang, Y. B.; Liu, T.; Zhang, Q. H.; Zhang, X.; Wang, S.; Wang, X. Z.; Li, L. L.; Fan, L. Z.; Nan, C. W.; Shen, Y. J. Mater. Chem. A 2018, 6, 23345. doi: 10.1039/c8ta08420c  doi: 10.1039/c8ta08420c

    27. [27]

      Jin, C. Q.; Xie, K.; Hong, X. B. Acta Chim. Sin. 2014, 72, 11. doi: 10.6023/A13101097  doi: 10.6023/A13101097

    28. [28]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    29. [29]

      Yan, M.; Liang, J. Y.; Zuo, T. T.; Yin, Y. X.; Xin, S.; Tan, S. J.; Guo, Y. G.; Wan, L. J. Adv. Funct. Mater. 2020, 30, 1908047. doi: 10.1002/adfm.201908047  doi: 10.1002/adfm.201908047

    30. [30]

      Oh, D. Y.; Kim, D. H.; Jung, S. H.; Han, J. G.; Choi, N. S.; Jung, Y. S. J. Mater. Chem. A 2017, 5, 20771. doi: 10.1039/c7ta06873e  doi: 10.1039/c7ta06873e

    31. [31]

      Chen, L.; Fan, L. Z. Energy Storage Mater. 2018, 15, 37. doi: 10.1016/j.ensm.2018.03.015  doi: 10.1016/j.ensm.2018.03.015

    32. [32]

      Fan, Z.; Ding, B.; Zhang, T.; Lin, Q.; Malgras, V.; Wang, J.; Dou, H.; Zhang, X.; Yamauchi, Y. Small 2019, 15, 1903952. doi: 10.1002/smll.201903952  doi: 10.1002/smll.201903952

    33. [33]

      Gao, Z.; Zhang, S.; Huang, Z.; Lu, Y.; Wang, W.; Wang, K.; Li, J.; Zhou, Y.; Huang, L.; Sun, S. Chin. Chem. Lett. 2019, 30, 525. doi: 10.1016/j.cclet.2018.05.016  doi: 10.1016/j.cclet.2018.05.016

    34. [34]

      Jiang, J. H.; Wang, A. B.; Wang, W. K.; Jin, Z. Q.; Fan, L. Z. J. Energy Chem. 2020, 46, 114. doi: 10.1016/j.jechem.2019.10.009  doi: 10.1016/j.jechem.2019.10.009

    35. [35]

      Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. Nat. Energy 2016, 1, 16030. doi: 10.1038/nenergy.2016.30  doi: 10.1038/nenergy.2016.30

    36. [36]

      Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M. Angew. Chem. Int. Ed. 2008, 47, 755. doi: 10.1002/anie.200703900  doi: 10.1002/anie.200703900

    37. [37]

      Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A. Nat. Mater. 2011, 10, 682. doi: 10.1038/nmat3066  doi: 10.1038/nmat3066

    38. [38]

      Manalastas, W.; Rikarte, J.; Chater, R. J.; Brugge, R.; Aguadero, A.; Buannic, L.; Llordés, A.; Aguesse, F.; Kilner, J. J. Power Sources 2019, 412, 287. doi: 10.1016/j.jpowsour.2018.11.041  doi: 10.1016/j.jpowsour.2018.11.041

    39. [39]

      Xu, X. X.; Qiu, Z. J.; Guan, Y. B.; Huang, Z.; Jin, Y. Energy Storage Sci. Technology 2013, 2, 332.  doi: 10.3969/j.issn.2095-4239.2013.04.001

    40. [40]

      He, M.; Cui, Z.; Han, F.; Guo, X. J. Alloy. Compd. 2018, 762, 157. doi: 10.1016/j.jallcom.2018.05.255  doi: 10.1016/j.jallcom.2018.05.255

    41. [41]

      Chen, W.; Lei, T.; Wu, C.; Deng, M.; Gong, C.; Hu, K.; Ma, Y.; Dai, L.; Lv, W.; He, W.; et al. Adv. Energy Mater. 2018, 8, 1702348. doi: 10.1002/aenm.201702348  doi: 10.1002/aenm.201702348

    42. [42]

      Miura, A.; Rosero-Navarro, N. C.; Sakuda, A.; Tadanaga, K.; Phuc, N. H. H.; Matsuda, A.; Machida, N.; Hayashi, A. Tatsumisago, M. Nat. Rev. Chem. 2019, 3, 189. doi: 10.1038/s41570-019-0078-2  doi: 10.1038/s41570-019-0078-2

    43. [43]

      Liang, Y.; Zhang, W.; Wu, D.; Ni, Q. Q.; Zhang, M. Q. Adv. Mater. Interfaces 2018, 5, 1800430. doi: 10.1002/admi.201800430  doi: 10.1002/admi.201800430

    44. [44]

      Zhang, Q.; Ding, Z.; Liu, G.; Wan, H.; Mwizerwa, J. P.; Wu, J.; Yao, X. Energy Storage Mater. 2019, 23, 168. doi: 10.1016/j.ensm.2019.05.015  doi: 10.1016/j.ensm.2019.05.015

    45. [45]

      Chen, R.; Li, Q.; Yu, X.; Chen, L.; Li, H. Chem. Rev. 2019, doi: 10.1021/acs.chemrev.9b00268  doi: 10.1021/acs.chemrev.9b00268

    46. [46]

      Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M.J. Power Sources 2014, 248, 939. doi: 10.1016/j.jpowsour.2013.09.117  doi: 10.1016/j.jpowsour.2013.09.117

    47. [47]

      Tsukasaki, H.; Mori, Y.; Otoyama, M.; Yubuchi, S.; Asano, T.; Tanaka, Y.; Ohno, T.; Mori, S.; Hayashi, A.; Tatsumisago, M. Sci. Rep. 2018, 8, 6214. doi: 10.1038/s41598-018-24524-7  doi: 10.1038/s41598-018-24524-7

    48. [48]

      Hayashi, A.; Noi, K.; Sakuda, A.; Tatsumisago, M. Nat. Commun. 2012, 3, 856. doi: 10.1038/ncomms1843  doi: 10.1038/ncomms1843

    49. [49]

      Jin, F., Li. J.; Hu, C. J.; Dong, H. C.; Chen, P.; Shen, Y. B.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35, 1399.  doi: 10.3866/PKU.WHXB201904085

    50. [50]

      Fei, H. F.; Liu, Y. P.; Wei, C. L.; Zhang, Y. C.; Feng, J. K.; Chen, C. Z.; Yu, H. J. Acta Phys. -Chim. Sin. 2020, 36, 1905015.  doi: 10.3866/PKU.WHXB201905015

    51. [51]

      Yuan, H.; Nan, H. X.; Zhao, C. Z.; Zhu, G. L.; Lu, Y.; Cheng, X. B.; Liu, Q. B.; He, C. X.; Huang, J. Q.; Zhang, Q. Batteries & Supercaps 2020. doi: 10.1002/batt.202000051

    52. [52]

      Zhu, G. L.; Zhao, C. Z.; Huang, J. Q.; He, C.; Zhang, J.; Chen, S.; Xu, L.; Yuan, H.; Zhang, Q. Small 2019, 15, 1805389. doi: 10.1002/smll.201805389  doi: 10.1002/smll.201805389

    53. [53]

      Xu, L.; Tang, S.; Cheng, Y.; Wang, K.; Liang, J.; Liu, C.; Cao, Y. C.; Wei, F.; Mai, L. Joule 2018, 2, 1991. doi: 10.1016/j.joule.2018.07.009  doi: 10.1016/j.joule.2018.07.009

    54. [54]

      Wenzel, S.; Weber, D. A.; Leichtweiss, T.; Busche, M. R.; Sann, J.; Janek, J. Solid State Ionics 2016, 286, 24. doi: 10.1016/j.ssi.2015.11.034  doi: 10.1016/j.ssi.2015.11.034

    55. [55]

      Wenzel, S.; Leichtweiss, T.; Krüger, D.; Sann, J.; Janek, J. Solid State Ionics 2015, 278, 98. doi: 10.1016/j.ssi.2015.06.001  doi: 10.1016/j.ssi.2015.06.001

    56. [56]

      Swamy, T.; Chen, X.; Chiang, Y. M. Chem. Mater. 2019, 31, 707. doi: 10.1021/acs.chemmater.8b03420  doi: 10.1021/acs.chemmater.8b03420

    57. [57]

      Zhang, Q.; Huang, N.; Huang, Z.; Cai, L.; Wu, J.; Yao, X. J. Energy Chem. 2020, 40, 151. doi: 10.1016/j.jechem.2019.03.006  doi: 10.1016/j.jechem.2019.03.006

    58. [58]

      Tan, D. H. S.; Wu, E. A.; Nguyen, H.; Chen, Z.; Marple, M. A. T.; Doux, J. M.; Wang, X.; Yang, H.; Banerjee, A. Meng, Y. S. ACS Energy Lett. 2019, 4, 2418. doi: 10.1021/acsenergylett.9b01693  doi: 10.1021/acsenergylett.9b01693

    59. [59]

      Sang, L.; Haasch, R. T.; Gewirth, A. A.; Nuzzo, R. G. Chem. Mater. 2017, 29, 3029. doi: 10.1021/acs.chemmater.7b00034  doi: 10.1021/acs.chemmater.7b00034

    60. [60]

      Zhang, W.; Leichtweiß, T.; Culver, S. P.; Koerver, R.; Das, D.; Weber, D. A.; Zeier, W. G.; Janek, J. ACS Appl. Mater. Interfaces 2017, 9, 35888. doi: 10.1021/acsami.7b11530  doi: 10.1021/acsami.7b11530

    61. [61]

      Doux, J. M.; Nguyen, H.; Tan, D. H. S.; Banerjee, A.; Wang, X.; Wu, E. A.; Jo, C.; Yang, H.; Meng, Y. S. Adv. Energy Mater. 2019, 10, 1903253. doi: 10.1002/aenm.201903253  doi: 10.1002/aenm.201903253

    62. [62]

      Zhao, C. Z.; Zhao, B. C.; Yan, C.; Zhang, X.Q.; Huang, J. Q.; Mo, Y.; Xu, X.; Li, H.; Zhang, Q. Energy Storage Mater. 2019, 24, 75. doi: 10.1016/j.ensm.2019.07.026  doi: 10.1016/j.ensm.2019.07.026

    63. [63]

      Liu, H.; Cheng, X. B.; Huang, J. Q.; Yuan, H.; Lu, Y.; Yan, C.; Zhu, G. L.; Xu, R.; Zhao, C. Z.; Hou, L.P.; et al. ACS Energy Lett. 2020, 5, 833. doi: 10.1021/acsenergylett.9b02660  doi: 10.1021/acsenergylett.9b02660

  • 加载中
    1. [1]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    2. [2]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    3. [3]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    4. [4]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    5. [5]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    6. [6]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    7. [7]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    8. [8]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    9. [9]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    10. [10]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    11. [11]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    12. [12]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    13. [13]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    14. [14]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    15. [15]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    18. [18]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    19. [19]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    20. [20]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

Metrics
  • PDF Downloads(13)
  • Abstract views(787)
  • HTML views(148)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return