Citation: Wei Zhou, Yunchao Li, Louzhen Fan, Xiaohong Li. Thioflavin T Specifically Binding with G-Quadruplex Flanked by DoubleStranded DNA[J]. Acta Physico-Chimica Sinica, ;2022, 38(4): 200401. doi: 10.3866/PKU.WHXB202004017 shu

Thioflavin T Specifically Binding with G-Quadruplex Flanked by DoubleStranded DNA

  • Corresponding author: Xiaohong Li, lxhxiao@bnu.edu.cn
  • Received Date: 4 April 2020
    Revised Date: 20 May 2020
    Accepted Date: 21 May 2020
    Available Online: 27 May 2020

    Fund Project: the National Natural Science Foundation of China 21673022

  • G-rich DNA sequences can transform into G-quadruplexes (G4s) in the presence of metal ions. Based on the structural switches, G4 has been recognized as an attractive signal-transducing element for constructing colorimetric, electrochemical, and fluorescent sensing platforms capable of recognizing ions, small biological molecules, proteins, and even cells. For fluorescent sensing platforms, fluorescent small molecules (FSMs) specifically binding with G4s, such as crystal violet (CV), protoporphyrin IX (PPIX), zinc protoporphyrin IX (ZnPPIX), and Thioflavin T (ThT), are usually applied as fluorescent signal readout probes. It was noticed that the binding affinity of FSM with G4 is highly dependent on G4 morphologies because G-rich DNA sequences can fold into multiple G4 conformations, such as parallel, antiparallel, or hybrid. For example, CV only binds with antiparallel G4, PPIX or ZnPPIX preferentially interacts with parallel G4, and ThT displays high affinity for hybrid G4. Furthermore, the binding affinity of FSMs with G4 is also dependent on co-existing ions and ion concentrations, especially elevated Na+ level (140 mmol·L-1). It is the reason why the performance of G4-based sensors in biological and environmental samples is decreased with different extents. Therefore, how to design G-rich DNA sequences to generally achieve FSMs specifically binding with G4, which is independent of G4 morphologies and co-existing Na+ and Na+ concentrations remains a challenge. In this study, a simple G-rich DNA sequence (thrombin binding aptamer, TBA) flanked by 10-mer single-stranded DNA at the 3' and 5' termini (TBA-10 bp) is designed. In the presence of K+, TBA transforms into antiparallel G4 (K+-TBA) and TBA-10 bp transforms into antiparallel K+-TBA flanked by fully hybridized double-stranded DNA (ds-DNA) (K+-TBA-10 bp). Actually, ThT cannot effectively bind with antiparallel K+-TBA. Compared with K+-TBA, upon K+-TBA-10 bp binding with ThT, ThT emission fluorescence increased by 100-fold. Importantly, the binding affinity improved by 1000-fold, which is independent of co-existing Na+ and Na+ concentrations (5-140 mmol·L-1). Integrated with UV-Vis spectroscopy, fluorescent spectroscopy, and circular dichroism spectroscopy, it is believed that ThT can specifically and efficiently imbed in the junction between K+-TBA and ds-DNA. To corroborate the binding mode, TBA in TBA-10 bp is substituted by other G-rich DNA sequences transforming into parallel and antiparallel G4 in the presence of K+, respectively. The resulting improved ThT emission fluorescence indicated that such a specific binding mode generally improved the binding affinity of FSMs with G4. Our findings provide new insights into the improvement of the binding affinity of FSMs and G4, and reveal potential biochemical and bioanalytical applications of G4.
  • 加载中
    1. [1]

      Davis, J. T. Angew. Chem. Int. Ed. 2004, 43, 668. doi: 10.1002/anie.200300589  doi: 10.1002/anie.200300589

    2. [2]

      Maizels, N. Nat. Struct. Mol. Biol. 2006, 13, 1055. doi: 10.1038/nsmb1171  doi: 10.1038/nsmb1171

    3. [3]

      Sun, H.; Li, X.; Li, Y.; Fan, L.; Kraatz, H. B. Analyst 2013, 138, 856. doi: 10.1039/c2an36564b  doi: 10.1039/c2an36564b

    4. [4]

      Xu, L.; Shen, X.; Hong, S.; Wang, J.; Zhang, Y.; Wang, H.; Zhang, J.; Pei, R. Chem. Commun. 2015, 51, 8165. doi: 10.1039/c5cc01590a  doi: 10.1039/c5cc01590a

    5. [5]

      Liu, J.; Lu, Y. J. Am. Chem. Soc. 2003, 125, 6642. doi: 10.1021/ja034775u  doi: 10.1021/ja034775u

    6. [6]

      Li, C. L.; Liu, K. T.; Lin, Y. W.; Chang, H. T. Anal. Chem. 2011, 83, 225. doi: 10.1021/ac1028787  doi: 10.1021/ac1028787

    7. [7]

      Kim, H. N.; Ren, W. X.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2012, 41, 3210. doi: 10.1039/c1cs15245a  doi: 10.1039/c1cs15245a

    8. [8]

      Hwang, K.; Wu, P.; Kim, T.; Lei, L.; Tian, S.; Wang, Y.; Lu, Y. Angew. Chem. Int. Ed. 2014, 53, 13798. doi: 10.1002/anie.201408333  doi: 10.1002/anie.201408333

    9. [9]

      Yang, L.; Qing, Z.; Liu, C.; Tang, Q.; Li, J.; Yang, S.; Zheng, J.; Yang, R.; Tan, W. Anal. Chem. 2016, 88, 9285. doi: 10.1021/acs.analchem.6b02667  doi: 10.1021/acs.analchem.6b02667

    10. [10]

      Yang, J.; Dou, B.; Yuan, R.; Xiang, Y. Anal. Chem. 2016, 88, 8218. doi: 10.1021/acs.analchem.6b02035  doi: 10.1021/acs.analchem.6b02035

    11. [11]

      Liu, Z.; Luo, X.; Li, Z.; Huang, Y.; Nie, Z.; Wang, H. H.; Yao, S. Anal. Chem. 2017, 89, 1892. doi: 10.1021/acs.analchem.6b04360  doi: 10.1021/acs.analchem.6b04360

    12. [12]

      Li, X. M.; Zheng, K. W.; Hao, Y. H.; Tan, Z. Angew. Chem. Int. Ed. 2016, 55, 13759. doi: 10.1002/anie.201607195  doi: 10.1002/anie.201607195

    13. [13]

      Hansel-Hertsch, R.; Antonio, M. D.; Balasubramanian, S. Nat. Rev. Mol. Cell Biol. 2017, 18, 279. doi: 10.1038/nrm.2017.3  doi: 10.1038/nrm.2017.3

    14. [14]

      Ge, L.; Wang, W.; Sun, X.; Hou, T.; Li, F. Anal. Chem. 2016, 88, 9691. doi: 10.1021/acs.analchem.6b02584  doi: 10.1021/acs.analchem.6b02584

    15. [15]

      Li, X. H.; Yu, Z.; Li, Y. C.; Ye, M. F. Acta Phys. -Chim. Sin. 2018, 34, 1293.  doi: 10.3866/PKU.WHXB201804111

    16. [16]

      Ou, Z. Z.; Gao, Y. Y.; Cai, W. J.; Ma, T. T.; Yi, N.; Li, Z. Y. Acta Phys. -Chim. Sin. 2019, 35, 230.  doi: 10.3866/PKU.WHXB201711281

    17. [17]

      Wang, M.; Wang, W.; Kang, T. S.; Leung, C. H.; Ma, D. L. Anal. Chem. 2016, 88, 981. doi: 10.1021/acs.analchem.5b04064  doi: 10.1021/acs.analchem.5b04064

    18. [18]

      Liu, Z.; Luo, X.; Li, Z.; Huang, Y.; Nie, Z.; Wang, H. H.; Yao, S. Anal. Chem. 2017, 89, 1892. doi: 10.1021/acs.analchem.6b04360  doi: 10.1021/acs.analchem.6b04360

    19. [19]

      Ge, B.; Huang, Y. C.; Sen, D.; Yu, H. Z., Angew. Chem. Int. Ed. 2010, 49, 9965. doi: 10.1002/anie.201004946  doi: 10.1002/anie.201004946

    20. [20]

      Leung, K. H.; He, B.; Yang, C.; Leung, C. H.; Wang, H. M.; Ma, D. L. ACS Appl. Mater. Interfaces 2015, 7, 24046. doi: 10.1021/acsami.5b08314  doi: 10.1021/acsami.5b08314

    21. [21]

      Zhang, L.; Zhu, J.; Li, T.; Wang, E. Anal. Chem. 2011, 83, 8871. doi: 10.1021/ac2006763  doi: 10.1021/ac2006763

    22. [22]

      Hud, N. V. Nucleic Acid-Metal Ion Interactions; Royal Society of Chemistry: Cambridge, UK, 2009.

    23. [23]

      Neidle, S.; Balasubramanian, S. Quadruplex Nucleic Acids; Royal Society of Chemistry: Cambridge, UK, 2006; Vol. 7.

    24. [24]

      Kong, D. M.; Ma, Y. E.; Guo, J. H.; Yang, W.; Shen, H. X. Anal. Chem. 2009, 81, 2678. doi: 10.1021/ac802558f  doi: 10.1021/ac802558f

    25. [25]

      Li, T.; Wang, E.; Dong, S. Anal. Chem. 2010, 82, 7576. doi: 10.1021/ac1019446  doi: 10.1021/ac1019446

    26. [26]

      Liu, L.; Shao, Y.; Peng, J.; Huang, C.; Liu, H.; Zhang, L. Anal. Chem. 2014, 86, 1622. doi: 10.1021/ac403326m  doi: 10.1021/ac403326m

    27. [27]

      Hu, M. H.; Zhou, J.; Luo, W. H.; Chen, S. B.; Huang, Z. S.; Wu, R.; Tan, J. H. Anal. Chem. 2019, 91, 2480. doi: 10.1021/acs.analchem.8b05298  doi: 10.1021/acs.analchem.8b05298

    28. [28]

      Wang, M.; Wang, W.; Kang, T. S.; Leung, C. H.; Ma, D. L. Anal. Chem. 2016, 88, 981. doi: 10.1021/acs.analchem.5b04064  doi: 10.1021/acs.analchem.5b04064

    29. [29]

      Wu, S.; Wang, L.; Zhang, N.; Liu, Y.; Zheng, W.; Chang, A.; Wang, F.; Li, S.; Shangguan, D. Chem. -Eur. J. 2016, 22, 6037. doi: 10.1002/chem.201505170  doi: 10.1002/chem.201505170

    30. [30]

      Zhao, D.; Dong, X.; Jiang, N.; Zhang, D.; Liu, C. Nucleic Acids Res. 2014, 42, 11612. doi: 10.1093/nar/gku833  doi: 10.1093/nar/gku833

    31. [31]

      Renaud de la Faverie, A.; Guedin, A.; Bedrat, A.; Yatsunyk, L. A.; Mergny, J. L. Nucleic Acids Res. 2014, 42, e65. doi: 10.1093/nar/gku111  doi: 10.1093/nar/gku111

    32. [32]

      Mohanty, J.; Barooah, N.; Dhamodharan, V.; Harikrishna, S.; Pradeepkumar, P. I.; Bhasikuttan, A. C. J. Am. Chem. Soc. 2013, 135, 367. doi: 10.1021/ja309588h  doi: 10.1021/ja309588h

    33. [33]

      Zhou, W.; Yu, Z.; Ma, G.; Jin, T.; Li, Y.; Fan, L.; Li, X. Analyst 2019, 144, 2284. doi: 10.1039/C8AN02430H  doi: 10.1039/C8AN02430H

    34. [34]

      De Rache, A.; Kejnovska, I.; Vorlickova, M.; Buess-Herman, C. Chem. -Eur. J. 2012, 18, 4392. doi: 10.1002/chem.201103381  doi: 10.1002/chem.201103381

    35. [35]

      Vorlíčková, M.; Kejnovská, I.; Bednářová, K.; Renčiuk, D.; Kypr, J. Chirality 2012, 24, 691. doi: 10.1002/chir.22064  doi: 10.1002/chir.22064

    36. [36]

      Dutta, K.; Fujimoto, T.; Inoue, M.; Miyoshi, D.; Sugimoto, N. Chem. Commun. 2010, 46, 7772. doi: 10.1039/c0cc00710b  doi: 10.1039/c0cc00710b

    37. [37]

      Zhang, D.; Han, J.; Li, Y.; Fan, L.; Li, X. J. Phys. Chem. B 2016, 120, 6606. doi: 10.1021/acs.jpcb.6b05002  doi: 10.1021/acs.jpcb.6b05002

    38. [38]

      Kong, D. M.; Ma, Y. E.; Guo, J. H.; Yang, W.; Shen, H. X. Anal. Chem. 2009, 81, 2678. doi: 10.1021/ac802558f  doi: 10.1021/ac802558f

    39. [39]

      Waller, Z. A. E.; Sewitz, S. A.; Hsu, S. T. D.; Balasubramanian, S. J. Am. Chem. Soc. 2009, 131, 12628. doi: 10.1021/ja901892u  doi: 10.1021/ja901892u

    40. [40]

      Zhang, R.; Cheng, M.; Zhang, L. M.; Zhu, L. N.; Kong, D. M. ACS Appl. Mater. Interfaces 2018, 10, 13350. doi: 10.1021/acsami.8b01901  doi: 10.1021/acsami.8b01901

    41. [41]

      Liu, L.; Shao, Y.; Peng, J.; Huang, C.; Liu, H.; Zhang, L. Anal. Chem. 2014, 86, 1622. doi: 10.1021/ac403326m  doi: 10.1021/ac403326m

  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    3. [3]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    4. [4]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    5. [5]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    8. [8]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    9. [9]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    10. [10]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    11. [11]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    12. [12]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    13. [13]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    14. [14]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    15. [15]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    16. [16]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    17. [17]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    18. [18]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    19. [19]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    20. [20]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

Metrics
  • PDF Downloads(18)
  • Abstract views(669)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return