Citation: Xu Ke, Wang Jinfen. 1D and 2D Nanomaterials-based Electronics for Neural Interfaces[J]. Acta Physico-Chimica Sinica, ;2020, 36(12): 200305. doi: 10.3866/PKU.WHXB202003050 shu

1D and 2D Nanomaterials-based Electronics for Neural Interfaces

  • Corresponding author: Wang Jinfen, wangjinfen@nanoctr.cn
  • Received Date: 21 March 2020
    Revised Date: 22 April 2020
    Accepted Date: 23 April 2020
    Available Online: 29 April 2020

    Fund Project: Strategic Priority Research Program of Chinese Academy of Sciences XDB32030100The project was supported by the National Natural Science Foundation of China (21790393, 61971150) and Strategic Priority Research Program of Chinese Academy of Sciences (XDB32030100)the National Natural Science Foundation of China 61971150the National Natural Science Foundation of China 21790393

  • Neural interfaces have contributed significantly to our understanding of brain functions as well as the development of neural prosthetics. An ideal neural interface should create a seamless and reliable link between the nervous system and external electronics for long periods of time. Implantable electronics that are capable of recording and stimulating neuronal activities have been widely applied for the study of neural circuits or the treatment of neurodegenerative diseases. However, the relatively large cross-sectional footprints of conventional electronics can cause acute tissue damage during implantation. In addition, the mechanical mismatch between conventional rigid electronics and soft brain tissue has been shown to induce chronic tissue inflammatory responses, leading to signal degradation during long-term studies. Thus, it is essential to develop new strategies to overcome these existing challenges and construct more stable neural interfaces. Owing to their unique physical and chemical properties, one-dimensional (1D) and two-dimensional (2D) nanomaterials constitute promising candidates for next-generation neural interfaces. In particular, novel electronics based on 1D and 2D nanomaterials, including carbon nanotubes (CNTs), silicon nanowires (SiNWs), and graphene (GR), have been demonstrated for neural interfaces with improved performance. This review discusses recent developments in neural interfaces enabled by 1D and 2D nanomaterials and their electronics. The ability of CNTs to promote neuronal growth and electrical activity has been proven, demonstrating the feasibility of using CNTs as conducting layers or as modifying layers for electronics. Owing to their good mechanical, electrical and biological properties, CNTs-based electronics have been demonstrated for neural recording and stimulation, neurotransmitter detection, and controlled drug release. Different from CNTs-based electronics, SiNWs-based field effect transistors (FETs) and microelectrode arrays have been successfully demonstrated for intracellular recording of action potentials through penetration into neural cells. Significantly, SiNWs FETs can detect neural activity at the level of individual axons and dendrites with a high signal-to-noise ratio. Their ability to record multiplexed intracellular signals renders SiNWs-based electronics superior to traditional intracellular recording techniques such as patch-clamp recording. Besides, SiNWs have been explored for optically controlled nongenetic neuromodulation due to their tunable electrical and optical properties. As the star of the 2D nanomaterials family, GR has been applied as biomimetic substrates for neural regeneration. Transparent GR-based electronics combining electrophysiological measurements, optogenetics, two-photon microscopy with multicellular calcium imaging have been applied for the construction of multimodal neural interfaces. Finally, we provide an overview of the challenges and future perspectives of nanomaterial-based neural interfaces.
  • 加载中
    1. [1]

      Shanechi, M. M. Nat. Neurosci. 2019, 22 (10), 1554. doi: 10.1038/s41593-019-0488-y  doi: 10.1038/s41593-019-0488-y

    2. [2]

      Hochberg, L. R.; Bacher, D.; Jarosiewicz, B.; Masse, N. Y.; Simeral, J. D.; Vogel, J.; Haddadin, S.; Liu, J.; Cash, S. S.; van der Smagt, P.; et al. Nature 2012, 485 (7398), 372. doi: 10.1038/nature11076  doi: 10.1038/nature11076

    3. [3]

      Dai, X.; Hong, G.; Gao, T.; Lieber, C. M. Acc. Chem. Res. 2018, 51 (2), 309. doi: 10.1021/acs.accounts.7b00547  doi: 10.1021/acs.accounts.7b00547

    4. [4]

      Hong, G.; Viveros, R. D.; Zwang, T. J.; Yang, X.; Lieber, C. M. Biochemistry 2018, 57 (27), 3995. doi: 10.1021/acs.biochem.8b00122  doi: 10.1021/acs.biochem.8b00122

    5. [5]

      Guan, S.; Wang, J.; Gu, X.; Zhao, Y.; Hou, R.; Fan, H.; Zou, L.; Gao, L.; Du, M.; Li, C.; et al. Sci. Adv. 2019, 5 (3), eaav2842. doi: 10.1126/sciadv.aav2842  doi: 10.1126/sciadv.aav2842

    6. [6]

      Kozai, T. D.Y.; Langhals, N. B.; Patel, P. R.; Deng, X.; Zhang, H.; Smith, K. L.; Lahann, J.; Kotov, N. A.; Kipke, D. R. Nat. Mater. 2012, 11 (12), 1065. doi: 10.1038/nmat3468  doi: 10.1038/nmat3468

    7. [7]

      Jun, J. J.; Steinmetz, N. A.; Siegle, J. H.; Denman, D. J.; Bauza, M.; Barbarits, B.; Lee, A. K.; Anastassiou, C. A.; Andrei, A.; Aydin, C.; et al. Nature 2017, 551 (7679), 232. doi: 10.1038/nature24636  doi: 10.1038/nature24636

    8. [8]

      Chen, R.; Canales, A.; Anikeeva, P. Nat. Rev. Mater. 2017, 2 (2), 16093. doi: 10.1038/natrevmats.2016.93  doi: 10.1038/natrevmats.2016.93

    9. [9]

      Buzsáki, G. Nat. Neurosci. 2004, 7 (5), 446. doi: 10.1038/nn1233  doi: 10.1038/nn1233

    10. [10]

      Zhang, A.; Zhao, Y.; You, S. S.; Lieber, C. M. Nano Today 2020, 31, 100821. doi: 10.1016/j.nantod.2019.100821  doi: 10.1016/j.nantod.2019.100821

    11. [11]

      Hong, G.; Fu, T. M.; Qiao, M.; Viveros, R. D.; Yang, X.; Zhou, T.; Lee, J. M.; Park, H. G.; Sanes, J. R.; Lieber, C. M. Science 2018, 360 (6396), 1447. doi: 10.1126/science.aas9160  doi: 10.1126/science.aas9160

    12. [12]

      Gray, C. M.; Maldonado, P. E.; Wilson, M.; McNaughton, B. J. Neurosci. Meth. 1995, 63, 43. doi: 10.1016/0165-0270(95)00085-2  doi: 10.1016/0165-0270(95)00085-2

    13. [13]

      Csicsvari, J.; Henze, D. A.; Jamieson, B.; Harris, K. D.; Siróta, A.; Barthó, P.; Wise, K. D.; Buzsáki, G. J. Neurophysiol. 2003, 90 (2), 1314. doi: 10.1152/jn.00116.2003  doi: 10.1152/jn.00116.2003

    14. [14]

      Cody, P. A.; Eles, J. R.; Lagenaur, C. F.; Kozai, T. D. Y.; Cui, X. T. Biomaterials 2018, 161, 117. doi: 10.1016/j.biomaterials.2018.01.025  doi: 10.1016/j.biomaterials.2018.01.025

    15. [15]

      Polikov, V. S.; Tresco, P. A.; Reichert, W. M. J. Neurosci. Meth. 2005, 148 (1), 1. doi: 10.1016/j.jneumeth.2005.08.015  doi: 10.1016/j.jneumeth.2005.08.015

    16. [16]

      McConnell, G. C.; Rees, H. D.; Levey, A. I.; Gutekunst, C. A.; Gross, R. E.; Bellamkonda, R. V. J. Neural Eng. 2009, 6 (5), 056003. doi: 10.1088/1741-2560/6/5/056003  doi: 10.1088/1741-2560/6/5/056003

    17. [17]

      Gimsa, J.; Habel, B.; Schreiber, U.; van Rienen, U.; Strauss, U.; Gimsa, U. J. Neurosci. Meth. 2005, 142 (2), 251. doi: 10.1016/j.jneumeth.2004.09.001  doi: 10.1016/j.jneumeth.2004.09.001

    18. [18]

      Duan, X.; Fu, T. M.; Liu, J.; Lieber, C. M. Nano Today 2013, 8 (4), 351. doi: 10.1016/j.nantod.2013.05.001  doi: 10.1016/j.nantod.2013.05.001

    19. [19]

      Usmani, S.; Aurand, E. R.; Medelin, M.; Fabbro, A.; Scaini, D.; Laishram, J.; Rosselli, F. B.; Ansuini, A.; Zoccolan, D.; Scarselli, M.; et al. Sci. Adv. 2016, 2 (7), e1600087. doi: 10.1126/sciadv.1600087  doi: 10.1126/sciadv.1600087

    20. [20]

      Aurand, E. R.; Usmani, S.; Medelin, M.; Scaini, D.; Bosi, S.; Rosselli, F. B.; Donato, S.; Tromba, G.; Prato, M.; Ballerini, L. Adv. Funct. Mater. 2018, 28 (12), 1700550. doi: 10.1002/adfm.201700550  doi: 10.1002/adfm.201700550

    21. [21]

      Park, S. Y.; Park, J.; Sim, S. H.; Sung, M. G.; Kim, K. S.; Hong, B. H.; Hong, S. Adv. Mater. 2011, 23 (36), H263. doi: 10.1002/adma.201101503  doi: 10.1002/adma.201101503

    22. [22]

      Li, N.; Zhang, Q.; Gao, S.; Song, Q.; Huang, R.; Wang, L.; Liu, L.; Dai, J.; Tang, M.; Cheng, G. Sci. Rep. 2013, 3, 1604. doi: 10.1038/srep01604  doi: 10.1038/srep01604

    23. [23]

      Zhang, A.; Lieber, C. M. Chem. Rev. 2016, 116 (1), 215. doi: 10.1021/acs.chemrev.5b00608  doi: 10.1021/acs.chemrev.5b00608

    24. [24]

      Aldinucci, A.; Turco, A.; Biagioli, T.; Toma, F. M.; Bani, D.; Guasti, D.; Manuelli, C.; Rizzetto, L.; Cavalieri, D.; Massacesi, L.; et al. Nano Lett. 2013, 13 (12), 6098-6105. doi: 10.1021/nl403396e  doi: 10.1021/nl403396e

    25. [25]

      Guo, Y.; Jiang, S.; Grena, B. J. B.; Kimbrough, I. F.; Thompson, E. G.; Fink, Y.; Sontheimer, H.; Yoshinobu, T.; Jia, X. ACS Nano 2017, 11 (7), 6574. doi: 10.1021/acsnano.6b07550  doi: 10.1021/acsnano.6b07550

    26. [26]

      Bareket-Keren, L.; Hanein, Y. Front. Neural Circuits 2012, 6, 122. doi: 10.3389/fncir.2012.00122  doi: 10.3389/fncir.2012.00122

    27. [27]

      Mattson, M. P.; Haddon, R. C.; Rao, A. M. J. Mol. Neurosci. 2000, 14 (3), 175. doi: 10.1385/jmn:14:3:175  doi: 10.1385/jmn:14:3:175

    28. [28]

      Malarkey, E. B.; Fisher, K. A.; Bekyarova, E.; Liu, W.; Haddon, R. C.; Parpura, V. Nano Lett. 2009, 9 (1), 264. doi: 10.1021/nl802855c  doi: 10.1021/nl802855c

    29. [29]

      Krukiewicz, K.; Janas, D.; Vallejo-Giraldo, C.; Biggs, M. J. P. Electrochim. Acta 2019, 295, 253. doi: 10.1016/j.electacta.2018.10.157  doi: 10.1016/j.electacta.2018.10.157

    30. [30]

      Mazzatenta, A.; Giugliano, M.; Campidelli, S.; Gambazzi, L.; Businaro, L.; Markram, H.; Prato, M.; Ballerini, L. J. Neurosci. 2007, 27 (26), 6931. doi: 10.1523/JNEUROSCI.1051-07.2007  doi: 10.1523/JNEUROSCI.1051-07.2007

    31. [31]

      Matsumoto, K.; Sato, C.; Naka, Y.; Kitazawa, A.; Whitby, R. L.; Shimizu, N. J. Biosci. Bioeng. 2007, 103 (3), 216. doi: 10.1263/jbb.103.216  doi: 10.1263/jbb.103.216

    32. [32]

      Visalli, G.; Curròa, M.; Iannazzo, D.; Pistone, A.; Ciarello, M. P.; Acri, G.; Testagrossa, B.; Bertuccio, M. P.; Squeri, R.; Pietro, A. D. Environ. Toxicol. Pharmacol. 2017, 56, 121. doi: 10.1016/j.etap.2017.09.005  doi: 10.1016/j.etap.2017.09.005

    33. [33]

      Bussy, C.; Al-Jamal, K. T.; Boczkowski, J.; Lanone, S.; Prato, M.; Bianco, A.; Kostarelos, K. ACS Nano 2015, 9 (8), 7815. doi: 10.1021/acsnano.5b02358  doi: 10.1021/acsnano.5b02358

    34. [34]

      Bosi, S.; Rauti, R.; Laishram, J.; Turco, A.; Lonardoni, D.; Nieus, T.; Prato, M.; Scaini, D.; Ballerini, L. Sci. Rep. 2015, 5, 9562. doi: 10.1038/srep09562  doi: 10.1038/srep09562

    35. [35]

      Cellot, G.; Cilia, E.; Cipollone, S.; Rancic, V.; Sucapane, A.; Giordani, S.; Gambazzi, L.; Markram, H.; Grandolfo, M.; Scaini, D.; et al. Nat. Nanotechnol. 2009, 4 (2), 126. doi: 10.1038/nnano.2008.374  doi: 10.1038/nnano.2008.374

    36. [36]

      Yoon, I.; Hamaguchi, K.; Borzenets, I. V.; Finkelstein, G.; Mooney, R.; Donald, B. R. PLoS One 2013, 8 (6), e65715. doi: 10.1371/journal.pone.0065715  doi: 10.1371/journal.pone.0065715

    37. [37]

      Su, H. C.; Lin, C. M.; Yen, S. J.; Chen, Y. C.; Chen, C. H.; Yeh, S. R.; Fang, W.; Chen, H.; Yao, D. J.; Chang, Y. C.; et al. Biosens. Bioelectron. 2010, 26 (1), 220. doi: 10.1016/j.bios.2010.06.015  doi: 10.1016/j.bios.2010.06.015

    38. [38]

      Zhang, H.; Patel, P. R.; Xie, Z.; Swanson, S. D.; Wang, X.; Kotov, N. A. ACS Nano 2013, 7 (9), 7619. doi: 10.1021/nn402074y  doi: 10.1021/nn402074y

    39. [39]

      David-Pur, M.; Bareket-Keren, L.; Beit-Yaakov, G.; Raz-Prag, D.; Hanein, Y. Biomed. Microdevices 2014, 16 (1), 43. doi: 10.1007/s10544-013-9804-6  doi: 10.1007/s10544-013-9804-6

    40. [40]

      Eleftheriou, C. G.; Zimmermann, J. B.; Kjeldsen, H. D.; David-Pur, M.; Hanein, Y.; Sernagor, E. Biomaterials 2017, 112, 108. doi: 10.1016/j.biomaterials.2016.10.018  doi: 10.1016/j.biomaterials.2016.10.018

    41. [41]

      Zhang, J.; Liu, X.; Xu, W.; Luo, W.; Li, M.; Chu, F.; Xu, L.; Cao, A.; Guan, J.; Tang, S.; et al. Nano Lett. 2018, 18 (5), 2903. doi: 10.1021/acs.nanolett.8b00087  doi: 10.1021/acs.nanolett.8b00087

    42. [42]

      Guo, Y.; Duan, W.; Ma, C.; Jiang, C.; Xie, Y.; Hao, H.; Wang, R.; Li, L. Biomed. Eng. Online 2015, 14, 118. doi: 10.1186/s12938-015-0113-6  doi: 10.1186/s12938-015-0113-6

    43. [43]

      Harreither, W.; Trouillon, R.; Poulin, P.; Neri, W.; Ewing, A. G.; Safina, G. Anal. Chem. 2013, 85 (15), 7447. doi: 10.1021/ac401399s  doi: 10.1021/ac401399s

    44. [44]

      Keefer, E. W.; Botterman, B. R.; Romero, M. I.; Rossi, A. F.; Gross, G. W. Nat. Nanotechnol. 2008, 3 (7), 434. doi: 10.1038/nnano.2008.2008.174  doi: 10.1038/nnano.2008.2008.174

    45. [45]

      Suzuki, I.; Fukuda, M.; Shirakawa, K.; Jiko, H.; Gotoh, M. Biosens. Bioelectron. 2013, 49, 270. doi: 10.1016/j.bios.2013.05.023  doi: 10.1016/j.bios.2013.05.023

    46. [46]

      Fuchsberger, K.; Le Goff, A.; Gambazzi, L.; Toma, F. M.; Goldoni, A.; Giugliano, M.; Stelzle, M.; Prato, M. Small 2011, 7 (4), 524. doi: 10.1002/smll.201001640  doi: 10.1002/smll.201001640

    47. [47]

      Lu, Y.; Li, T.; Zhao, X.; Li, M.; Cao, Y.; Yang, H.; Duan, Y. Y. Biomaterials 2010, 31 (19), 5169. doi: 10.1016/j.biomaterials.2010.03.022  doi: 10.1016/j.biomaterials.2010.03.022

    48. [48]

      Chen, S.; Pei, W.; Gui, Q.; Tang, R.; Chen, Y.; Zhao, S.; Wang, H.; Chen, H. Sens. Actuators A 2013, 193, 141. doi: 10.1016/j.sna.2013.01.033  doi: 10.1016/j.sna.2013.01.033

    49. [49]

      Castagnola, E.; Maggiolini, E.; Ceseracciu, L.; Ciarpella, F.; Zucchini, E.; De Faveri, S.; Fadiga, L.; Ricci, D. Front. Neurosci. 2016, 10, 151. doi: 10.3389/fnins.2016.00151  doi: 10.3389/fnins.2016.00151

    50. [50]

      Luo, X.; Matranga, C.; Tan, S.; Alba, N.; Cui, X. T. Biomaterials 2011, 32 (26), 6316. doi: 10.1016/j.biomaterials.2011.05.020  doi: 10.1016/j.biomaterials.2011.05.020

    51. [51]

      Castagnola, E.; Carli, S.; Vomero, M.; Scarpellini, A.; Prato, M.; Goshi, N.; Fadiga, L.; Kassegne, S.; Ricci, D. Biointerphases 2017, 12 (3), 031002. doi: 10.1116/1.4993140  doi: 10.1116/1.4993140

    52. [52]

      Park, Y. S.; Yoon, S. Y.; Park, J. S.; Lee, J. S. NPG Asia Mater. 2016, 8 (3), e249. doi: 10.1038/am.2016.5  doi: 10.1038/am.2016.5

    53. [53]

      Qi, S.; Yi, C.; Ji, S.; Fong, C. C.; Yang, M. ACS Appl. Mater. Interfaces 2009, 1 (1), 30. doi: 10.1021/am800027d  doi: 10.1021/am800027d

    54. [54]

      Kim, W.; Ng, J. K.; Kunitake, M. E.; Conklin, B. R.; Yang, P. J. Am. Chem. Soc. 2007, 129 (23), 7228. doi: 10.1021/ja071456k  doi: 10.1021/ja071456k

    55. [55]

      Patolsky, F.; Timko, B. P.; Yu, G.; Fang, Y.; Greytak, A. B.; Zheng, G.; Lieber, C. M. Science 2006, 313 (5790), 1100. doi: 10.1126/science.1128640  doi: 10.1126/science.1128640

    56. [56]

      Tian, B.; Cohen-Karni, T.; Qing, Q.; Duan, X.; Xie, P.; Lieber, C. M. Science 2010, 329 (5993), 830. doi: 10.1126/science.1192033  doi: 10.1126/science.1192033

    57. [57]

      Qing, Q.; Jiang, Z.; Xu, L.; Gao, R.; Mai, L.; Lieber, C. M. Nat. Nanotechnol. 2014, 9 (2), 142. doi: 10.1038/nnano.2013.273  doi: 10.1038/nnano.2013.273

    58. [58]

      Zhao, Y.; You, S. S.; Zhang, A.; Lee, J. H.; Huang, J.; Lieber, C. M. Nat. Nanotechnol. 2019, 14 (8), 783. doi: 10.1038/s41565-019-0478-y  doi: 10.1038/s41565-019-0478-y

    59. [59]

      Duan, X.; Gao, R.; Xie, P.; Cohen-Karni, T.; Qing, Q.; Choe, H. S.; Tian, B.; Jiang, X.; Lieber, C. M. Nat. Nanotechnol. 2011, 7 (3), 174. doi: 10.1038/nnano.2011.223  doi: 10.1038/nnano.2011.223

    60. [60]

      Tian, B.; Liu, J.; Dvir, T.; Jin, L.; Tsui, J. H.; Qing, Q.; Suo, Z.; Langer, R.; Kohane, D. S.; Lieber, C. M. Nat. Mater. 2012, 11 (11), 986. doi: 10.1038/nmat3404  doi: 10.1038/nmat3404

    61. [61]

      Dai, X.; Zhou, W.; Gao, T.; Liu, J.; Lieber, C. M. Nat. Nanotechnol. 2016, 11 (9), 776. doi: 10.1038/nnano.2016.96  doi: 10.1038/nnano.2016.96

    62. [62]

      Qing, Q.; Pal, S. K.; Tian, B.; Duan, X.; Timko, B. P.; Cohen-Karni, T.; Murthy, V. N.; Lieber, C. M. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (5), 1882. doi: 10.1073/pnas.0914737107  doi: 10.1073/pnas.0914737107

    63. [63]

      Liu, J.; Fu, T. M.; Cheng, Z.; Hong, G.; Zhou, T.; Jin, L.; Duvvuri, M.; Jiang, Z.; Kruskal, P.; Xie, C.; et al. Nat. Nanotechnol. 2015, 10 (7), 629. doi: 10.1038/nnano.2015.115  doi: 10.1038/nnano.2015.115

    64. [64]

      Xie, C.; Liu, J.; Fu, T. M.; Dai, X.; Zhou, W.; Lieber, C. M. Nat. Mater. 2015, 14 (12), 1286. doi: 10.1038/nmat4427  doi: 10.1038/nmat4427

    65. [65]

      Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. H.; Gertner, R. S.; Park, H. Nat. Nanotechnol. 2012, 7 (3), 180. doi: 10.1038/nnano.2011.249  doi: 10.1038/nnano.2011.249

    66. [66]

      Liu, R.; Chen, R.; Youssef, A. T. E.; Lee, S. H.; Hinckley, S.; Khraiche, M. L.; Scott, J.; Pre, D.; Hwang, Y.; Tanaka, A.; et al. Nano Lett. 2017, 17 (5), 2757. doi: 10.1021/acs.nanolett.6b04752  doi: 10.1021/acs.nanolett.6b04752

    67. [67]

      Boyden, E. S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Nat. Neurosci. 2005, 8 (9), 1263. doi: 10.1038/nn1525  doi: 10.1038/nn1525

    68. [68]

      Deisseroth, K. Nat. Methods 2011, 8 (1), 26. doi: 10.1038/nmeth.f.324  doi: 10.1038/nmeth.f.324

    69. [69]

      Hausser, M. Nat. Methods 2014, 11 (10), 1012. doi: 10.1038/nmeth.3111  doi: 10.1038/nmeth.3111

    70. [70]

      Jiang, Y.; Carvalho-de-Souza, J. L.; Wong, R. C. S.; Luo, Z.; Isheim, D.; Zuo, X.; Nicholls, A. W.; Jung, I. W.; Yue, J.; Liu, D. J.; et al. Nat. Mater. 2016, 15 (9), 1023. doi: 10.1038/nmat4673  doi: 10.1038/nmat4673

    71. [71]

      Parameswaran, R.; Carvalho-de-Souza, J. L.; Jiang, Y.; Burke, M. J.; Zimmerman, J. F.; Koehler, K.; Phillips, A. W.; Yi, J.; Adams, E. J.; Bezanilla, F.; et al. Nat. Nanotechnol. 2018, 13 (3), 260. doi: 10.1038/s41565-017-0041-7  doi: 10.1038/s41565-017-0041-7

    72. [72]

      Jiang, Y.; Li, X.; Liu, B.; Yi, J.; Fang, Y.; Shi, F.; Gao, X.; Sudzilovsky, E.; Parameswaran, R.; Koehler, K.; et al. Nat. Biomed. Eng. 2018, 2 (7), 508. doi: 10.1038/s41551-018-0230-1  doi: 10.1038/s41551-018-0230-1

    73. [73]

      Jiang, Y.; Parameswaran, R.; Li, X.; Carvalho-de-Souza, J. L.; Gao, X.; Meng, L.; Bezanilla, F.; Shepherd, G. M. G.; Tian, B. Nat. Protoc. 2019, 14 (5), 1339. doi: 10.1038/s41596-019-0135-9  doi: 10.1038/s41596-019-0135-9

    74. [74]

      Reddy, S.; He, L.; Ramakrishana, S.; Luo, H. Curr. Opin. Biomed. Eng. 2019, 10, 69. doi: 10.1016/j.cobme.2019.04.002  doi: 10.1016/j.cobme.2019.04.002

    75. [75]

      Guo, W.; Qiu, J.; Liu, J.; Liu, H. Sci. Rep. 2017, 7 (1), 5678. doi: 10.1038/s41598-017-06051-z  doi: 10.1038/s41598-017-06051-z

    76. [76]

      Qian, Y.; Zhao, X.; Han, Q.; Chen, W.; Li, H.; Yuan, W. Nat. Commun. 2018, 9 (1), 323. doi: 10.1038/s41467-017-02598-7  doi: 10.1038/s41467-017-02598-7

    77. [77]

      Wang, K.; Frewin, C. L.; Esrafilzadeh, D.; Yu, C.; Wang, C.; Pancrazio, J. J.; Romero-Ortega, M.; Jalili, R.; Wallace, G. Adv. Mater. 2019, 31 (15), e1805867. doi: 10.1002/adma.201805867  doi: 10.1002/adma.201805867

    78. [78]

      Bourrier, A.; Shkorbatova, P.; Bonizzato, M.; Rey, E.; Barraud, Q.; Courtine, G.; Othmen, R.; Reita, V.; Bouchiat, V.; Delacour, C. Adv. Healthc. Mater. 2019, 8 (18), e1801331. doi: 10.1002/adhm.201801331  doi: 10.1002/adhm.201801331

    79. [79]

      Lu, Y.; Lyu, H.; Richardson, A. G.; Lucas, T. H.; Kuzum, D. Sci. Rep. 2016, 6, 33526. doi: 10.1038/srep33526  doi: 10.1038/srep33526

    80. [80]

      Hébert, C.; Masvidal-Codina, E.; Suarez-Perez, A.; Calia, A. B.; Piret, G.; Garcia-Cortadella, R.; Illa, X.; Del Corro Garcia, E.; De la Cruz Sanchez, J. M.; Casals, D. V.; et al. Adv. Funct. Mater. 2018, 28 (12), 1703976. doi: 10.1002/adfm.201703976  doi: 10.1002/adfm.201703976

    81. [81]

      Masvidal-Codina, E.; Illa, X.; Dasilva, M.; Calia, A. B.; Dragojević, T.; Vidal-Rosas, E. E.; Prats-Alfonso, E.; Martínez-Aguilar, J.; De la Cruz, J. M.; Garcia-Cortadella, R.; et al. Nat. Mater. 2019, 18 (3), 280. doi: 10.1038/s41563-018-0249-4  doi: 10.1038/s41563-018-0249-4

    82. [82]

      Du, M.; Xu, X.; Yang, L.; Guo, Y.; Guan, S.; Shi, J.; Wang, J.; Fang, Y. Biosens. Bioelectron. 2018, 105, 109. doi: 10.1016/j.bios.2018.01.027  doi: 10.1016/j.bios.2018.01.027

    83. [83]

      Shi, E.; Li, H.; Yang, L.; Hou, J.; Li, Y.; Li, L.; Cao, A.; Fang, Y. Adv. Mater. 2015, 27 (4), 682. doi: 10.1002/adma.201403722  doi: 10.1002/adma.201403722

    84. [84]

      Yang, L.; Zhao, Y.; Xu, W.; Shi, E.; Wei, W.; Li, X.; Cao, A.; Cao, Y.; Fang, Y. Nano Lett. 2017, 17 (1), 71. doi: 10.1021/acs.nanolett.6b03356  doi: 10.1021/acs.nanolett.6b03356

    85. [85]

      Guan, S.; Wang, J.; Fang, Y. Nano Today 2019, 26, 13. doi: 10.1016/j.nantod.2019.01.003  doi: 10.1016/j.nantod.2019.01.003

    86. [86]

      Park, D. W.; Brodnick, S. K.; Ness, J. P.; Atry, F.; Krugner-Higby, L.; Sandberg, A.; Mikael, S.; Richner, T. J.; Novello, J.; Kim, H.; et al. Nat. Protoc. 2016, 11 (11), 2201. doi: 10.1038/nprot.2016.127  doi: 10.1038/nprot.2016.127

    87. [87]

      Park, D. W.; Schendel, A. A.; Mikael, S.; Brodnick, S. K.; Richner, T. J.; Ness, J. P.; Hayat, M. R.; Atry, F.; Frye, S. T.; Pashaie, R.; et al. Nat. Commun. 2014, 5, 5258. doi: 10.1038/ncomms6258  doi: 10.1038/ncomms6258

    88. [88]

      Park, D. W.; Ness, J. P.; Brodnick, S. K.; Esquibel, C.; Novello, J.; Atry, F.; Baek, D. H.; Kim, H.; Bong, J.; Swanson, K. I.; et al. ACS Nano 2018, 12 (1), 148. doi: 10.1021/acsnano.7b04321  doi: 10.1021/acsnano.7b04321

    89. [89]

      Kuzum, D.; Takano, H.; Shim, E.; Reed, J. C.; Juul, H.; Richardson, A. G.; de Vries, J.; Bink, H.; Dichter, M. A.; Lucas, T. H.; et al. Nat. Commun. 2014, 5, 5259. doi: 10.1038/ncomms6259  doi: 10.1038/ncomms6259

    90. [90]

      Thunemann, M.; Lu, Y.; Liu, X.; Kilic, K.; Desjardins, M.; Vandenberghe, M.; Sadegh, S.; Saisan, P. A.; Cheng, Q.; Weldy, K. L.; et al. Nat. Commun. 2018, 9 (1), 2035. doi: 10.1038/s41467-018-04457-5  doi: 10.1038/s41467-018-04457-5

    91. [91]

      Jeong, D. W.; Kim, G. H.; Kim, N. Y.; Lee, Z.; Jung, S. D.; Lee, J. O. RSC Adv. 2017, 7 (6), 3273. doi: 10.1039/c6ra26836f  doi: 10.1039/c6ra26836f

    92. [92]

      Zhao, S.; Liu, X.; Xu, Z.; Ren, H.; Deng, B.; Tang, M.; Lu, L.; Fu, X.; Peng, H.; Liu, Z.; et al. Nano Lett. 2016, 16 (12), 7731. doi: 10.1021/acs.nanolett.6b03829  doi: 10.1021/acs.nanolett.6b03829

    93. [93]

      Kang, M.; Jung, S.; Zhang, H.; Kang, T.; Kang, H.; Yoo, Y.; Hong, J. P.; Ahn, J. P.; Kwak, J.; Jeon, D.; et al. ACS Nano 2014, 8 (8), 8182. doi: 10.1021/nn5024522  doi: 10.1021/nn5024522

    94. [94]

      Lu, C.; Park, S.; Richner, T. J.; Derry, A.; Brown, I.; Hou, C.; Rao, S.; Kang, J.; Moritz, C. T.; Fink, Y.; et al. Sci. Adv. 2017, 3, e1600955. doi: 10.1126/sciadv.1600955  doi: 10.1126/sciadv.1600955

    95. [95]

      Li, Y.; Yang, X. Y.; Feng, Y.; Yuan, Z. Y.; Su, B. L. Crit. Rev. Solid State Mater. Sci. 2012, 37 (1), 1. doi: 10.1080/10408436.2011.606512  doi: 10.1080/10408436.2011.606512

    96. [96]

      Tybrandt, K.; Khodagholy, D.; Dielacher, B.; Stauffer, F.; Renz, A. F.; Buzsáki, G.; Vörös, J. Adv. Mater. 2018, 30 (15), e1706520. doi: 10.1002/adma.201706520  doi: 10.1002/adma.201706520

    97. [97]

      Tang, J.; Qin, N.; Chong, Y.; Diao, Y.; Yiliguma; Wang, Z.; Xue, T.; Jiang, M.; Zhang, J.; Zheng, G. Nat. Commun. 2018, 9 (1), 786. doi: 10.1038/s41467-018-03212-0  doi: 10.1038/s41467-018-03212-0

    98. [98]

      Ciofani, G.; Danti, S.; D'Alessandro, D.; Ricotti, L.; Moscato, S.; Bertoni, G.; Falqui, A.; Berrettini, S.; Petrini, M.; Mattoli, V.; et al. ACS Nano 2010, 4 (10), 6267. doi:10.1021/nn101985a  doi: 10.1021/nn101985a

    99. [99]

      Wang, G.; Hou, C.; Long, H.; Yang, L.; Wang, Y. Acta Phys. -Chim. Sin. 2019, 35 (12), 1319.  doi: 10.3866/PKU.WHXB201903010

    100. [100]

      Chen, W.; Ouyang, J.; Yi, X.; Xu, Y.; Niu, C.; Zhang, W.; Wang, L.; Sheng, J.; Deng, L.; Liu, Y. N.; et al. Adv. Mater. 2018, 30 (3), e1703458. doi: 10.1002/adma.201703458  doi: 10.1002/adma.201703458

    101. [101]

      Kim, Y. P.; Lee, G. S.; Kim, J. W.; Kim, M. S.; Ahn, H. S.; Lim, J. Y.; Kim, H. W.; Son, Y. J.; Knowles, J. C.; Hyun, J. K. J. Tissue Eng. Regener. Med. 2015, 9 (3), 236. doi: 10.1002/term.1626  doi: 10.1002/term.1626

    102. [102]

      Qian, Y.; Yuan, W. E.; Cheng, Y.; Yang, Y.; Qu, X.; Fan, C. Nano Lett. 2019, 19 (12), 8990. doi: 10.1021/acs.nanolett.9b03980  doi: 10.1021/acs.nanolett.9b03980

    103. [103]

      Liu, X.; Miller, A. L., Ⅱ; Park, S.; George, M. N.; Waletzki, B. E.; Xu, H.; Terzic, A.; Lu, L. ACS Appl. Mater. Interfaces 2019, 11 (26), 23558. doi: 10.1021/acsami.9b04121  doi: 10.1021/acsami.9b04121

    104. [104]

      Xu, B.; Zhu, M.; Zhang, W.; Zhen, X.; Pei, Z.; Xue, Q.; Zhi, C.; Shi, P. Adv. Mater. 2016, 28, 3333. doi: 10.1002/adma.201504657  doi: 10.1002/adma.201504657

    105. [105]

      Driscoll, N.; Richardson, A. G.; Maleski, K.; Anasori, B.; Adewole, O.; Lelyukh, P.; Escobedo, L.; Cullen, D. K.; Lucas, T. H.; Gogotsi, Y.; et al. ACS Nano 2018, 12 (10), 10419. doi: 10.1021/acsnano.8b06014  doi: 10.1021/acsnano.8b06014

    106. [106]

      Fattahi, P.; Yang, G.; Kim, G.; Abidian, M. R. Adv. Mater. 2014, 26 (12), 1846. doi: 10.1002/adma.201304496  doi: 10.1002/adma.201304496

    107. [107]

      Pampaloni, N. P.; Lottner, M.; Giugliano, M.; Matruglio, A.; D'Amico, F.; Prato, M.; Garrido, J. A.; Ballerini, L.; Scaini, D. Nat. Nanotechnol. 2018, 13 (8), 755. doi: 10.1038/s41565-018-0163-6  doi: 10.1038/s41565-018-0163-6

    108. [108]

      Li, N.; Zhang, X.; Song, Q.; Su, R.; Zhang, Q.; Kong, T.; Liu, L.; Jin, G.; Tang, M.; Cheng, G. Biomaterials 2011, 32 (35), 9374. doi: 10.1016/j.biomaterials.2011.08.065  doi: 10.1016/j.biomaterials.2011.08.065

    109. [109]

      Liu, H.; Haider, B.; Fried, H. R.; Ju, J.; Bolonduro, O.; Raghuram, V.; Timko, B. P. Nano Res. 2018, 11 (10), 5372. doi: 10.1007/s12274-018-2189-3  doi: 10.1007/s12274-018-2189-3

    110. [110]

      Yang, H.; Liu, C.; Yang, D.; Zhang, H.; Xi, Z. J. Appl. Toxicol. 2009, 29 (1), 69. doi: 10.1002/jat.1385  doi: 10.1002/jat.1385

    111. [111]

      Pulskamp, K.; Diabaté, S.; Krug, H. F. Toxicol. Lett. 2007, 168 (1), 58. doi: 10.1016/j.toxlet.2006.11.001  doi: 10.1016/j.toxlet.2006.11.001

    112. [112]

      Rauti, R.; Musto, M.; Bosi, S.; Prato, M.; Ballerini, L. Carbon 2019, 143, 430. doi: 10.1016/j.carbon.2018.11.026  doi: 10.1016/j.carbon.2018.11.026

    113. [113]

      Hu, X.; Wei, Z.; Mu, L. Carbon 2017, 117, 182. doi: 10.1016/j.carbon.2017.02.092  doi: 10.1016/j.carbon.2017.02.092

    114. [114]

      Tian, T.; Lü, M.; Tian, Y.; Sun, Y.; Li, X.; Fan, C.; Huang, Q. Chin. Sci. Bull. 2014, 59, 1927.  doi: 10.1360/N972014-00091

    115. [115]

      Jiang, Z. Y. The Biosensing Applications of Silicon-based Nanomaterials and Cytotoxicity Assessment of Silicon Nanowires. M. S. Dissertation, Soochow University, Soochow, 2012.

    116. [116]

      Bolotsky, A.; Butler, D.; Dong, C.; Gerace, K.; Glavin, N. R.; Muratore, C.; Robinson, J. A.; Ebrahimi, A. ACS Nano 2019, 13 (9), 9781. doi: 10.1021/acsnano.9b03632  doi: 10.1021/acsnano.9b03632

  • 加载中
    1. [1]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    4. [4]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    7. [7]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    8. [8]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    9. [9]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    10. [10]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    11. [11]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    12. [12]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    13. [13]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    14. [14]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    15. [15]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    16. [16]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    17. [17]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    18. [18]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    19. [19]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    20. [20]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

Metrics
  • PDF Downloads(26)
  • Abstract views(1819)
  • HTML views(504)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return