Citation: Jiuxiang Dai, Zhongmiao Gong, Shitong Xu, Yi Cui, Meiyi Yao. In Situ Study on the Initial Oxidation Behavior of Zirconium Alloys with Near-Ambient Pressure XPS[J]. Acta Physico-Chimica Sinica, ;2022, 38(3): 200302. doi: 10.3866/PKU.WHXB202003026 shu

In Situ Study on the Initial Oxidation Behavior of Zirconium Alloys with Near-Ambient Pressure XPS

  • Corresponding author: Yi Cui, ycui2015@sinano.ac.cn Meiyi Yao, yaomeiyi@shu.edu.cn
  • Received Date: 11 March 2020
    Revised Date: 9 April 2020
    Accepted Date: 10 April 2020
    Available Online: 21 April 2020

    Fund Project: the National Natural Science Foundation of China 51871141the National 111 Project D17002ZDXKFZ XKFZ201711

  • Zirconium alloys are often used to fabricate nuclear fuel cladding and other structural materials because of their low thermal neutron absorption cross section, satisfactory corrosion resistance, and decent mechanical properties. The oxidation rate and hydrogen-absorption fraction of zirconium alloys can be reduced by adding moderate amount of Nb to them, and the corrosion resistance of zirconium alloys can be improved as well. Although the corrosion resistance of zirconium alloys has been widely recognized, the in situ study of zirconium alloys in conditions that resemble real oxidative-corrosion environments has still been a challenging subject. The initial oxidation behavior of zirconium alloys might affect the subsequent generation of oxides in the form of the element valence and type of surface oxides changes, resulting in the long-term corrosion-behavior changes. In addition, the reaction mechanism of Nb in zirconium alloys is still controversial. To investigate the influence of the alloy composition and environmental conditions on the initial oxidation behavior of zirconium alloys, in situ initial oxidation experiments were performed on two different Zr alloys in a near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) chamber. The samples were cut to the size of 12 mm × 3 mm, and the primary oxide film was removed via pickling, argon etching and annealing. Oxygen or water vapors with the pressure in the range of 1.3 × 10-8-1.3 × 10-1 mbar (1 mbar = 100 Pa) were gradually introduced into the NAP-XPS chamber after sample-surface cleaning. The experiment was repeated at room temperature (300 K) and 623 K. The results showed that both Nb-containing and Nb-free zirconium-alloy surfaces transitioned from a metallic state to various oxidation states during the initial oxidation process. The oxidation rates of both the alloys were lower in water vapors than those in oxygen. In the presence of water vapors or oxygen, both the alloys oxidized more slowly at room temperature than at 623 K. Compared with 1%Nb zirconium alloys, the Nb-free zirconium alloys were more easily oxidized and had a denser oxide layer, in the oxygen atmosphere at 623 K. To some extent, the presence of Nb would reduce the adsorption capacity of oxygen atoms. The oxidation rate of 1%Nb zirconium alloy was quick at room temperature and also at low water vapor pressures at 623 K; Nb promoted the formation of OH- at the surface. Under the high pressure vapor atmosphere at 623 K, the Nb-free zirconium alloys were more prone to be oxidized; Nb diffused to the surface at high temperatures and inhibited the breaking of the OH- bond; however, the surfaces of both the samples could not be completely oxidized in a short time.
  • 加载中
    1. [1]

      Zinkle, S. J.; Was, G. S. Acta Mater. 2013, 61 (3), 735. doi: 10.1016/j.actamat.2012.11.004  doi: 10.1016/j.actamat.2012.11.004

    2. [2]

      Motta, A. T.; Couet, A.; Comstock, R. J. Annu. Rev. Mater. Res. 2015, 45 (1), 311. doi: 10.1146/annurev-matsci-070214-020951  doi: 10.1146/annurev-matsci-070214-020951

    3. [3]

      Chen, L. Y.; Li, J. X.; Zhang, Y.; Zhang, L. C.; Lu, W. J.; Wang, L. Q.; Zhang, L. F.; Zhang, D. Corros. Sci. 2015, 100, 332. doi: 10.1016/j.corsci.2015.08.005  doi: 10.1016/j.corsci.2015.08.005

    4. [4]

      Yang, H. L.; Shen, J. J.; Matsukawa, Y.; Satoh, Y.; Kano, S.; Zhao, Z. S.; Li, Y. F.; Li, F.; Abe, H. J. Nucl. Sci. Technol. 2015, 52 (9), 1162. doi: 10.1080/00223131.2014.996622  doi: 10.1080/00223131.2014.996622

    5. [5]

      Hong, H. S.; Moon, J. S.; Kim, S. J.; Lee, K. S. J. Nucl. Mater. 2001, 297 (2), 113. doi: 10.1016/S0022-3115(01)00601-8  doi: 10.1016/S0022-3115(01)00601-8

    6. [6]

      Sabol, G. P.; Comstock, R. J.; Nayak, U. P. Effect of Dilute Alloy Additions of Molybdenum, Niobium, and Vanadium on Zirconium Corrosion. In Zirconium in the Nuclear Industry: Twelfth International Symposium; Sabol, G. P., Moan, G. D., Eds.; ASTM International: West Conshohocken, PA, USA, 2000; pp. 525-544.

    7. [7]

      Bell, B. D. C.; Murphy, S. T.; Grimes, R. W.; Wenman, M. R. Acta Mater. 2017, 132, 425. doi: 10.1016/j.actamat.2017.04.063  doi: 10.1016/j.actamat.2017.04.063

    8. [8]

      Bell, B. D. C.; Murphy, S. T.; Burr, P. A.; Comstock, R. J.; Partezana, J. M.; Grimes, R. W.; Wenman, M. R. Corros. Sci. 2016, 105, 36. doi: 10.1016/j.corsci.2015.12.022  doi: 10.1016/j.corsci.2015.12.022

    9. [9]

      Shibata, A.; Kato, Y.; Taguchi, T.; Futakawa, M.; Maekawa, K. Nucl. Technol. 2016, 196 (1), 89. doi: 10.13182/NT16-54  doi: 10.13182/NT16-54

    10. [10]

      Steinbrück, M.; Böttcher, M. J. Nucl. Mater. 2011, 414 (2), 276. doi: 10.1016/j.jnucmat.2011.04.012  doi: 10.1016/j.jnucmat.2011.04.012

    11. [11]

      Wang, Z.; Zhou, B. X.; Chen, B.; Zhu, W.; Wen, B.; Wu, L.; Tang, H. K.; Fang, Z. Q.; Li, Q.; Yao, M. Y. Corros. Sci. 2017, 122, 26. doi: 10.1016/j.corsci.2017.03.017  doi: 10.1016/j.corsci.2017.03.017

    12. [12]

      Wang, Z.; Zhou, B. X.; Wang, B. Y.; Yao, M. Y.; Li, Q.; Huang, J. Corros. Sci. 2016, 105, 141. doi: 10.1016/j.corsci.2016.01.011  doi: 10.1016/j.corsci.2016.01.011

    13. [13]

      Azdad, Z.; Marot, L.; Moser, L.; Steiner, R.; Meyer, E. Sci. Rep. -UK 2018, 8 (1), 16251. doi: 10.1038/s41598-018-34570-w  doi: 10.1038/s41598-018-34570-w

    14. [14]

      Harlow, W.; Ghassemi, H.; Taheri, M. L. J. Nucl. Mater. 2016, 474, 126. doi: 10.1016/j.jnucmat.2016.03.009  doi: 10.1016/j.jnucmat.2016.03.009

    15. [15]

      Yoshitaka, N.; Krauss, A. R.; Yuping, L.; Gruen, D. M. J. Nucl. Mater. 1996, 228 (3), 346. doi: 10.1016/0022-3115(95)00194-8  doi: 10.1016/0022-3115(95)00194-8

    16. [16]

      Bakradze, G.; Jeurgens, L. P. H.; Mittemeijer, E. J. J. Phys. Chem. C 2011, 115 (40), 19841. doi: 10.1021/jp206896m  doi: 10.1021/jp206896m

    17. [17]

      Lyapin, A.; Jeurgens, L. P. H.; Mittemeijer, E. J. Acta Mater. 2005, 53 (10), 2925. doi: 10.1016/j.actamat.2005.03.009  doi: 10.1016/j.actamat.2005.03.009

    18. [18]

      Zhang, H. B.; Liu, G. G.; Shi, L.; Ye, J. H. Adv. Energy Mater. 2018, 8 (1), 1701343. doi: 10.1002/aenm.201701343  doi: 10.1002/aenm.201701343

    19. [19]

      Toyoshima, R.; Yoshida, M.; Monya, Y.; Suzuki, K.; Amemiya, K.; Mase, K.; Mun, B. S.; Kondoh, H. Phys. Chem. Chem. Phys. 2014, 16 (43), 23564. doi: 10.1039/C4CP04318A  doi: 10.1039/C4CP04318A

    20. [20]

      Duan, Y.; Chen, M. S.; Wan, H. L. Acta Phys. -Chim. Sin. 2018, 34 (12), 1358.  doi: 10.3866/PKU.WHXB201803071

    21. [21]

      Bespalov, I.; Datler, M.; Buhr, S.; Drachsel, W.; Rupprechter, G.; Suchorski, Y. Ultramicroscopy 2015, 159, 147. doi: 10.1016/j.ultramic.2015.02.016  doi: 10.1016/j.ultramic.2015.02.016

    22. [22]

      Lyapin, A.; Jeurgens, L. P. H.; Graat, P. C. J.; Mittemeijer, E. J. J. Appl. Phys. 2004, 96 (12), 7126. doi: 10.1063/1.1809773  doi: 10.1063/1.1809773

    23. [23]

      Roustila, A.; Chêne, J.; Séverac, C. J. Alloy. Compd. 2003, 356-357, 330. doi: 10.1016/S0925-8388(03)00356-6  doi: 10.1016/S0925-8388(03)00356-6

    24. [24]

      Zhang, H. H.; Li, X. D.; Xie, Y. P.; Hu, L. J.; Yao, M. Y. Acta Phys. Sin. 2016, 65 (9), 96802.  doi: 10.7498/aps.65.096802

    25. [25]

      Kim, H.; Park, J.; Jeong, Y. J. Nucl. Mater. 2005, 345 (1), 1. doi: 10.1016/j.jnucmat.2005.04.061  doi: 10.1016/j.jnucmat.2005.04.061

    26. [26]

      Jeong, Y. H.; Kim, H. G.; Kim, D. J.; Choi, B. K.; Kim, J. H. J. Nucl. Mater. 2003, 323 (1), 72. doi: 10.1016/j.jnucmat.2003.08.031  doi: 10.1016/j.jnucmat.2003.08.031

    27. [27]

      Sun, G. C.; Zhou, B. X.; Yao, M. Y.; Xie, S. J.; Li, Q. B. Acta Metall Sin. 2012, 48 (7), 1103.  doi: 10.3724/SP.J.1037.2012.00329

    28. [28]

      Luo, L. L.; Su, M.; Yan, P. F.; Zou, L. F.; Schreiber, D. K.; Baer, D. R.; Zhu, Z. H.; Zhou, G. W.; Wang, Y. T.; Bruemmer, S. M.; et al. Nat. Mater. 2018, 17 (6), 514. doi: 10.1038/s41563-018-0078-5  doi: 10.1038/s41563-018-0078-5

    29. [29]

      Yang, Z. B.; Zhao, W. J.; Cheng, Z. Q.; Qiu, J.; Zhang, H.; Zhuo, H. Acta Metall Sin. 2017, 53 (1), 47.  doi: 10.11900/0412.1961.2016.00136

    30. [30]

      Wang, B. Y.; Zhou, B. X.; Wang, Z.; Huang, J.; Yao, M. Y.; Zhou, J. Acta Metall Sin. 2015, 51 (12), 1545.  doi: 10.11900/0412.1961.2015.00254

  • 加载中
    1. [1]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    2. [2]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    3. [3]

      Mingzhu JiangPanqing WangQiheng ChenYue ZhangQi WuLei TanTianxiang NingLingjun LiKangyu Zou . Enabling the Nb/Ti co-doping strategy for improving structure stability and rate capability of Ni-rich cathode. Chinese Chemical Letters, 2025, 36(6): 110040-. doi: 10.1016/j.cclet.2024.110040

    4. [4]

      Runzi CaoHeng ShaoXinjie WangJian WangEnxiang ShangYang Li . Photocatalytic production of high-value-added fuels from biodegradable PBAT by Nb2O5/GCN heterojunction catalyst: Performance and mechanism. Chinese Chemical Letters, 2025, 36(7): 111029-. doi: 10.1016/j.cclet.2025.111029

    5. [5]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    6. [6]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    11. [11]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    12. [12]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    13. [13]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    14. [14]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    15. [15]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    16. [16]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    18. [18]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    19. [19]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    20. [20]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

Metrics
  • PDF Downloads(9)
  • Abstract views(1114)
  • HTML views(220)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return