Citation: Zhou Yuan, Han Na, Li Yanguang. Recent Progress on Pd-based Nanomaterials for Electrochemical CO2 Reduction[J]. Acta Physico-Chimica Sinica, ;2020, 36(9): 200104. doi: 10.3866/PKU.WHXB202001041 shu

Recent Progress on Pd-based Nanomaterials for Electrochemical CO2 Reduction

  • Corresponding author: Han Na, hanna@suda.edu.cn Li Yanguang, yanguang@suda.edu.cn
  • Received Date: 19 January 2020
    Revised Date: 4 March 2020
    Accepted Date: 9 March 2020
    Available Online: 16 March 2020

    Fund Project: The project was supported by the Ministry of Science and Technology of China (2017YFA0204800) and the National Natural Science Foundation of China (2190020225)the National Natural Science Foundation of China 2190020225The project was supported by the Ministry of Science and Technology of China 2017YFA0204800

  • The process that converts CO2 to value-added chemical fuels or industrial feedstocks is called the electrochemical carbon dioxide reduction reaction (CO2RR). When used in combination with renewable energy resources such as solar or wind, it represents one of the most promising strategies for transforming the intermittent renewable energy to chemical energy. However, because CO2 molecules are thermodynamically stable, their electrochemical reduction is kinetically challenging. CO2RR also has several different reaction pathways with a large spectrum of reduction products, making its selectivity problematic. It often requires the assistance of highly effective electrocatalysts with excellent activity, selectivity, and durability. Recently, palladium (Pd)-based nanomaterials have attracted considerable attention for CO2RR. They can enable the selective production of formic acid or formate (HCOOH or HCOO-) at near the theoretical equilibrium, as well as CO at a more negative potential. Unfortunately, the strong surface affinity of Pd toward CO often results in the deactivation of catalytic activity in the electrocatalytic process, in particular for formate production. Over recent years, extensive research effort has been invested into enhancing the electrochemical performances of Pd-based electrocatalysts. By controlling the size, morphology, and crystal surfaces of Pd nanocrystals, the distribution and structure of the atoms on the catalyst surface can be carefully engineered. For example, reducing the size of Pd nanoparticles has been found to significantly enhance the reaction activity and selectivity for the production of both CO and formate. The high-index crystal surfaces of Pd nanocrystals with low coordination numbers also generally show higher electrocatalytic activities. The design of Pd-based alloy nanostructures with tunable electronic structures represents another effective way to improve the electrochemical performance. Incorporation of non-precious metals can not only reduce the cost, but also effectively weaken the surface binding of CO. In addition, dispersing Pd nanoparticles on high-surface-area supports can increase the surface exposure of active sites and facilitate the formation of the electrochemical active phase. In this perspective, we provide an overview of the recent progress on nanostructured Pd-based catalysts for electrochemical CO2 reduction. First, we briefly introduce the CO2RR fundamentals as well as the reaction mechanism on Pd-based nanostructures. We then review a number of strategies to promote CO2RR performance, including utilizing the size effect, morphology effect, alloy effect, core-shell effect, and support effect. Finally, we conclude with a perspective on the future prospects of Pd-based CO2RR electrocatalysts, providing readers a snapshot of this rapidly evolving field.
  • 加载中
    1. [1]

      Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M. D.; Seneviratne, S. I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D. C. Nature 2013, 500, 287. doi: 10.1038/nature12350  doi: 10.1038/nature12350

    2. [2]

      Creutzig, F.; Agoston, P.; Minx, J. C.; Canadell, J. G.; Andrew, R. M.; Le Quéré, C.; Peters, G. P.; Sharifi, A.; Yamagata, Y.; Dhakal, S. Nat. Clim. Change 2016, 6, 1054. doi: 10.1038/nclimate3169  doi: 10.1038/nclimate3169

    3. [3]

      Davis, S. J.; Caldeira, K. Proc. Natl. Acad. Sci. 2010, 107, 5687. doi: 10.1073/pnas.0906974107  doi: 10.1073/pnas.0906974107

    4. [4]

      Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. Chem. Soc. Rev. 2014, 43, 631. doi: 10.1039/c3cs60323g  doi: 10.1039/c3cs60323g

    5. [5]

      Yang, Y.; Zhang, Y.; Hu, J.; Wan, L. Acta Phys. -Chim. Sin. 2019, 36, 1906085.  doi: 10.3866/PKU.WHXB201906085

    6. [6]

      Mac Dowell, N.; Fennell, P. S.; Shah, N.; Maitland, G. C. Nat. Clim. Change 2017, 7, 243. doi: 10.1038/nclimate3231  doi: 10.1038/nclimate3231

    7. [7]

      Keith, D. W. Science 2009, 325, 1654. doi: 10.1126/science.1175680  doi: 10.1126/science.1175680

    8. [8]

      Haas, T.; Krause, R.; Weber, R.; Demler, M.; Schmid, G. Nat. Catal. 2018, 1, 32. doi: 10.1038/s41929-017-0005-1  doi: 10.1038/s41929-017-0005-1

    9. [9]

      Whipple, D. T.; Kenis, P. J. J. Phys. Chem. C 2010, 1, 3451. doi: 10.1021/jz1012627  doi: 10.1021/jz1012627

    10. [10]

      Bai, X.; Chen, W.; Wang, B.; Feng, G.; Wei, W.; Jiao, Z.; Sun, Y. Acta Phys. -Chim. Sin. 2017, 33, 2388.  doi: 10.3866/PKU.WHXB201706131

    11. [11]

      Costentin, C.; Robert, M.; Savéant, J. M. Chem. Soc. Rev. 2013, 42, 2423. doi: 10.1039/c2cs35360a  doi: 10.1039/c2cs35360a

    12. [12]

      Wu, J.; Huang, Y.; Ye, W.; Li, Y. Adv. Sci. 2017, 4, 1700194. doi: 10.1002/advs.201700194  doi: 10.1002/advs.201700194

    13. [13]

      Han, N.; Ding, P.; He, L.; Li, Y.; Li, Y. Adv. Energy Mater. 2019, 1902338. doi: 10.1002/aenm.201902338  doi: 10.1002/aenm.201902338

    14. [14]

      Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. J. Phys. Chem. Lett. 2015, 6, 4073. doi: 10.1021/acs.jpclett.5b01559  doi: 10.1021/acs.jpclett.5b01559

    15. [15]

      Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Chem. Soc. Rev. 2009, 38, 89. doi: 10.1039/B804323J  doi: 10.1039/B804323J

    16. [16]

      Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Adv. Mater. 2016, 28, 3423. doi: 10.1002/adma.201504766  doi: 10.1002/adma.201504766

    17. [17]

      Zhang, Y.; Sethuraman, V.; Michalsky, R.; Peterson, A. A. ACS Catal. 2014, 4, 3742. doi: 10.1021/cs5012298  doi: 10.1021/cs5012298

    18. [18]

      Hori, Y. Electrochemical CO2 Reduction on Metal Electrodes. In Modern Aspects of Electrochemistry; Springer: New York, 2008; p. 89.

    19. [19]

      Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrochim. Acta 1994, 39, 1833. doi: 10.1016/0013-4686(94)85172-7  doi: 10.1016/0013-4686(94)85172-7

    20. [20]

      Yang, H.; Han, N.; Deng, J.; Wu, J.; Wang, Y.; Hu, Y.; Ding, P.; Li, Y.; Li, Y.; Lu, J. Adv. Energy Mater. 2018, 8, 1801536. doi: 10.1002/aenm.201801536  doi: 10.1002/aenm.201801536

    21. [21]

      Jia, L.; Yang, H.; Deng, J.; Chen, J.; Zhou, Y.; Ding, P.; Li, L.; Han, N.; Li, Y. Chinese J. Chem. 2019, 37, 497. doi: 10.1002/cjoc.201900010  doi: 10.1002/cjoc.201900010

    22. [22]

      Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J.; Li, Y.; Li, Y. Nat. Commun. 2018, 9, 1320. doi: 10.1038/s41467-018-03712-z  doi: 10.1038/s41467-018-03712-z

    23. [23]

      Han, N.; Wang, Y.; Deng, J.; Zhou, J.; Wu, Y.; Yang, H.; Ding, P.; Li, Y. J. Mater. Chem. A 2019, 7, 1267. doi: 10.1039/c8ta10959a  doi: 10.1039/c8ta10959a

    24. [24]

      Gong, Q.; Ding, P.; Xu, M.; Zhu, X.; Wang, M.; Deng, J.; Ma, Q.; Han, N.; Zhu, Y.; Lu, J. Nat. Commun. 2019, 10, 2807. doi: 10.1038/s41467-019-10819-4  doi: 10.1038/s41467-019-10819-4

    25. [25]

      Ding, P.; Hu, Y.; Deng, J.; Chen, J.; Zha, C.; Yang, H.; Han, N.; Gong, Q.; Li, L.; Wang, T. Mater. Today Chem. 2019, 11, 80. doi: 10.1016/j.mtchem.2018.10.009  doi: 10.1016/j.mtchem.2018.10.009

    26. [26]

      Yang, H.; Huang, Y.; Deng, J.; Wu, Y.; Han, N.; Zha, C.; Li, L.; Li, Y. J. Energy Chem. 2019, 37, 93. doi: 10.1016/j.jechem.2018.12.004  doi: 10.1016/j.jechem.2018.12.004

    27. [27]

      Jouny, M.; Luc, W.; Jiao, F. Ind. Eng. Chem. Res. 2018, 57, 2165. doi: 10.1021/acs.iecr.7b03514  doi: 10.1021/acs.iecr.7b03514

    28. [28]

      Zhang, H.; Jin, M.; Xiong, Y.; Lim, B.; Xia, Y. Acc. Chem. Res. 2012, 46, 1783. doi: 10.1021/ar300209w  doi: 10.1021/ar300209w

    29. [29]

      Chen, A.; Ostrom, C. Chem. Rev. 2015, 115, 11999. doi: 10.1021/acs.chemrev.5b00324  doi: 10.1021/acs.chemrev.5b00324

    30. [30]

      Gao, D.; Zhou, H.; Cai, F.; Wang, D.; Hu, Y.; Jiang, B.; Cai, W. B.; Chen, X.; Si, R.; Yang, F. Nano Res. 2017, 10, 2181. doi: 10.1007/s12274-017-1514-6  doi: 10.1007/s12274-017-1514-6

    31. [31]

      Sheng, W.; Kattel, S.; Yao, S.; Yan, B.; Liang, Z.; Hawxhurst, C. J.; Wu, Q.; Chen, J. G. Energy Environ. Sci. 2017, 10, 1180. doi: 10.1039/c7ee00071e  doi: 10.1039/c7ee00071e

    32. [32]

      Ohkawa, K.; Hashimoto, K.; Fujishima, A.; Noguchi, Y.; Nakayama, S. J. Electroanal. Chem. 1993, 345, 445. doi: 10.1016/0022-0728(93)80495-4  doi: 10.1016/0022-0728(93)80495-4

    33. [33]

      Stalder, C. J.; Chao, S.; Wrighton, M. S. J. Am. Chem. Soc. 1984, 106, 3673. doi: 10.1021/ja00324a046  doi: 10.1021/ja00324a046

    34. [34]

      Han, N.; Wang, Y.; Ma, L.; Wen, J.; Li, J.; Zheng, H.; Nie, K.; Wang, X.; Zhao, F.; Li, Y.; et al. Chem 2017, 3, 652. doi: 10.1016/j.chempr.2017.08.002  doi: 10.1016/j.chempr.2017.08.002

    35. [35]

      Zheng, T.; Jiang, K.; Wang, H. Adv. Mater. 2018, 30, 1802066. doi: 10.1002/adma.201802066  doi: 10.1002/adma.201802066

    36. [36]

      Koper, M. T. Nanoscale 2011, 3, 2054. doi: 10.1039/C0NR00857E  doi: 10.1039/C0NR00857E

    37. [37]

      Gao, D.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G.; Wang, J.; Bao, X. J. Am. Chem. Soc. 2015, 137, 4288. doi: 10.1021/jacs.5b00046  doi: 10.1021/jacs.5b00046

    38. [38]

      Rahaman, M.; Dutta, A.; Broekmann, P. ChemSusChem 2017, 10, 1733. doi: 10.1002/cssc.201601778  doi: 10.1002/cssc.201601778

    39. [39]

      Porter, N. S.; Wu, H.; Quan, Z.; Fang, J. Acc. Chem. Res. 2013, 46, 1867. doi: 10.1021/ar3002238  doi: 10.1021/ar3002238

    40. [40]

      Klinkova, A.; De Luna, P.; Dinh, C. T.; Voznyy, O.; Larin, E. M.; Kumacheva, E.; Sargent, E. H. ACS Catal. 2016, 6, 8115. doi: 10.1021/acscatal.6b01719  doi: 10.1021/acscatal.6b01719

    41. [41]

      Zhu, W.; Kattel, S.; Jiao, F.; Chen, J. G. Adv. Energy Mater. 2019, 9, 1802840. doi: 10.1002/aenm.201802840  doi: 10.1002/aenm.201802840

    42. [42]

      Huang, H.; Jia, H.; Liu, Z.; Gao, P.; Zhao, J.; Luo, Z.; Yang, J.; Zeng, J. Angew. Chem. Int. Ed. 2017, 56, 3594. doi: 10.1002/anie.201612617  doi: 10.1002/anie.201612617

    43. [43]

      Wang, Y.; Cao, L.; Libretto, N. J.; Li, X.; Li, C.; Wan, Y.; He, C.; Lee, J.; Gregg, J.; Zong, H. J. Am. Chem. Soc. 2019, 141, 16635. doi: 10.1021/jacs.9b05766  doi: 10.1021/jacs.9b05766

    44. [44]

      Lu, L.; Sun, X.; Ma, J.; Yang, D.; Wu, H.; Zhang, B.; Zhang, J.; Han, B. Angew. Chem. Int. Ed. 2018, 57, 14149. doi: 10.1002/anie.201808964  doi: 10.1002/anie.201808964

    45. [45]

      Zhu, W.; Zhang, L.; Yang, P.; Chang, X.; Dong, H.; Li, A.; Hu, C.; Huang, Z.; Zhao, Z. J.; Gong, J. Small 2018, 14, 1703314. doi: 10.1002/smll.201703314  doi: 10.1002/smll.201703314

    46. [46]

      Bai, X.; Chen, W.; Zhao, C.; Li, S.; Song, Y.; Ge, R.; Wei, W.; Sun, Y. Angew. Chem. Int. Ed. 2017, 56, 12219. doi: 10.1002/anie.201707098  doi: 10.1002/anie.201707098

    47. [47]

      Yin, Z.; Gao, D.; Yao, S.; Zhao, B.; Cai, F.; Lin, L.; Tang, P.; Zhai, P.; Wang, G.; Ma, D. Nano Energy 2016, 27, 35. doi: 10.1016/j.nanoen.2016.06.035  doi: 10.1016/j.nanoen.2016.06.035

    48. [48]

      Kang, Y.; Snyder, J.; Chi, M.; Li, D.; More, K. L.; Markovic, N. M.; Stamenkovic, V. R. Nano Lett. 2014, 14, 6361. doi: 10.1021/nl5028205  doi: 10.1021/nl5028205

    49. [49]

      Jiang, R.; Tung, S.; Tang, Z.; Li, L.; Ding, L.; Xi, X.; Liu, Y.; Zhang, L.; Zhang, J. Energy Storage Mater. 2018, 12, 260. doi: 10.1016/j.ensm.2017.11.005  doi: 10.1016/j.ensm.2017.11.005

    50. [50]

      Yuan, X.; Zhang, L.; Li, L.; Dong, H.; Chen, S.; Zhu, W.; Hu, C.; Deng, W.; Zhao, Z. J.; Gong, J. J. Am. Chem. Soc. 2019, 141, 4791. doi: 10.1021/jacs.8b11771  doi: 10.1021/jacs.8b11771

    51. [51]

      Zhu, S.; Qin, X.; Wang, Q.; Li, T.; Tao, R.; Gu, M.; Shao, M. J. Mater. Chem. A 2019, doi: 10.1039/c9ta05325e  doi: 10.1039/c9ta05325e

    52. [52]

      Hou, Y.; Erni, R.; Widmer, R.; Rahaman, M.; Guo, H.; Fasel, R.; Moreno-García, P.; Zhang, Y.; Broekmann, P. ChemElectroChem2019, 6, 3189. doi: 10.1002/celc.201900752  doi: 10.1002/celc.201900752

    53. [53]

      Wang, J.; Kattel, S.; Hawxhurst, C. J.; Lee, J. H.; Tackett, B. M.; Chang, K.; Rui, N.; Liu, C. J.; Chen, J. G. Angew. Chem. Int. Ed. 2015, 58, 6271. doi: 10.1002/anie.201900781  doi: 10.1002/anie.201900781

  • 加载中
    1. [1]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    2. [2]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    3. [3]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    4. [4]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    5. [5]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    6. [6]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    7. [7]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    8. [8]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    9. [9]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    10. [10]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    11. [11]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    12. [12]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    13. [13]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    14. [14]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    15. [15]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    16. [16]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    17. [17]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    18. [18]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    19. [19]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    20. [20]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(28)
  • Abstract views(1075)
  • HTML views(227)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return