Citation: Shiyi Tang, Gaotian Lu, Yi Su, Guang Wang, Xuanzhang Li, Guangqi Zhang, Yang Wei, Yuegang Zhang. Raman Mapping of Lithiation Process on Graphene[J]. Acta Physico-Chimica Sinica, ;2022, 38(3): 200100. doi: 10.3866/PKU.WHXB202001007 shu

Raman Mapping of Lithiation Process on Graphene

  • Corresponding author: Yang Wei, weiyang@tsinghua.edu.cn Yuegang Zhang, yuegang.zhang@tsinghua.edu.cn
  • Received Date: 2 January 2020
    Revised Date: 1 March 2020
    Accepted Date: 6 March 2020
    Available Online: 16 March 2020

    Fund Project: the National Key R & D Program of China 2016YFB0100100the National Key R & D Program of China 2018YFA0208401the National Natural Science Foundation of China 21433013the National Natural Science Foundation of China 61774090the National Natural Science Foundation of China 51472142the CAS-DOE Joint Research Program 121E32KYSB20150004

  • Lithium-ion batteries are the most widely used energy storage device owing to their advantages such as high energy density, high cycle life, and low self-discharge rate. Because two-dimensional (2D) materials are commonly used as anode materials, the study of their lithiation behaviors is significant for improving the energy density and cycle life of batteries. Although some spectroscopic methods have been developed for studying the intercalation/deintercalation process of lithium in graphene, a new characterization technique that can directly investigate ion diffusion pathways at a microscale level would be beneficial to provide more detailed information on the mechanism of electrochemical reactions. It is an efficient solution to utilize the high spatial resolution of microscopic characterization to study the microscale electrochemical process. For this purpose, it becomes necessary to develop special specimens and setups that can undergo electrochemical experiments and are also compatible with microscopic characterization techniques. Herein, we developed a new planar micro-battery architecture on a SiO2-coated silicon substrate that can be used to study the lithiation behaviors of various 2D materials using the micro-Raman mapping technique. In this planar micro-battery, the mechanically exfoliated few-layer graphene was used as the positive electrode, the thermal-evaporated lithium metal was employed as the negative electrode, and the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide with lithium bis(trifluoromethane)sulfonimide was used as the electrolyte. The micro-battery was tested using the galvanostatic discharge method on a probe station in an argon glove box. The selected lab-on-chip solution makes the lithiation of graphene observable under the micro-Raman spectroscope with a high spatial resolution. Raman mapping was successfully performed and graphene G-band signals were observed. Based on the facts that a small amount of lithium intercalation in graphene induces a blueshift of its G-band, and a large amount of lithium intercalation induces the splitting of the G-band into G- and G+, we can correlate the degree of lithiation in graphene with its G-band signals and thus monitor the lithium intercalation process on graphene in the planar micro-battery. The time-dependent lithium distribution in graphene at different discharge stages could be obtained by comparing the G-band Raman mapping images to the corresponding optical micrographs. On the basis of these analyses, it was found that lithium ions diffuse between the layers in graphene and terminate at the graphene fault. These results help us understand the diffusion process of lithium in the graphene electrode during discharge. Moreover, the as-developed micro-battery is compatible with more characterization methodologies, such as optical microscopy, electrical transport, and electron microscopy, providing a broad application platform.
  • 加载中
    1. [1]

      Godshall, N. A.; Raistrick, I. D.; Huggins, R. A. Mater. Res. Bull. 1980, 15 (5), 561. doi: 10.1016/0025-5408(80)90135-X  doi: 10.1016/0025-5408(80)90135-X

    2. [2]

      Besenhard, J. O. Carbon 1976, 14 (2), 111. doi: 10.1016/0008-6223(76)90119-6  doi: 10.1016/0008-6223(76)90119-6

    3. [3]

      Li, M.; Lu, J.; Chen, Z.; Amine, K. Adv. Mater. 2018, 30 (33), 1800561. doi: 10.1002/adma.201800561  doi: 10.1002/adma.201800561

    4. [4]

      Yang, X. Y.; He, Y. S.; Liao, X. Z; Ma, Z. F. Acta Phys. -Chim. Sin. 2011, 27 (11), 2583.  doi: 10.3866/PKU.WHXB20111123

    5. [5]

      Li, F. Q.; Lai, Y. Q.; Zhang, Z. A.; Gao, H. Q.; Yang, J. Acta Phys. -Chim. Sin. 2008, 24 (7), 1302.  doi: 10.3866/PKU.WHXB20080731

    6. [6]

      Funabiki, A.; Inaba, M.; Ogumi, Z.; Yuasa, S.; Otsuji, J.; Tasaka, A. J. Electrochem. Soc. 1998, 145 (1), 172. doi: 10.1149/1.1838231  doi: 10.1149/1.1838231

    7. [7]

      Dresselhaus, M. S.; Dresselhaus, G. Adv. Phys. 1981, 30 (2), 139. doi: 10.1080/00018738100101367  doi: 10.1080/00018738100101367

    8. [8]

      Kaskhedikar, N. A.; Maier, J. Adv. Mater. 2009, 21 (25-26), 2664. doi: 10.1002/adma.200901079  doi: 10.1002/adma.200901079

    9. [9]

      Qi, Y.; Guo, H.; Hector, L. G., Jr.; Timmons, A. J. Electrochem. Soc. 2010, 157 (5), A558. doi: 10.1149/1.3327913  doi: 10.1149/1.3327913

    10. [10]

      Sethuraman, V. A.; Hardwick, L. J.; Srinivasan, V.; Kostecki, R. J. Power Sources 2010, 195 (11), 3655. doi: 10.1016/j.jpowsour.2009.12.034  doi: 10.1016/j.jpowsour.2009.12.034

    11. [11]

      Dresselhaus, M. S.; Jorio, A.; Saito, R. Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy. In Annual Review of Condensed Matter Physics, Vol 1; Langer, J. S., Ed.; Annual Reviews: Palo Alto, CA, USA, 2010; pp. 89-108. doi: 10.1146/annurev-conmatphys-070909-103919

    12. [12]

      Chacon-Torres, J. C.; Wirtz, L.; Pichler, T. ACS Nano 2013, 7 (10), 9249. doi: 10.1021/nn403885k  doi: 10.1021/nn403885k

    13. [13]

      Ferre-Vilaplana, A. J. Phys. Chem. C 2008, 112 (10), 3998. doi: 10.1021/jp0768874  doi: 10.1021/jp0768874

    14. [14]

      Sole, C.; Drewett, N. E.; Hardwick, L. J. Faraday Discuss 2014, 172, 223. doi: 10.1039/C4FD00079J  doi: 10.1039/C4FD00079J

    15. [15]

      Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N.; et al. Phys. Rev. B 2009, 79 (20), 205433. doi: 10.1103/PhysRevB.79.205433  doi: 10.1103/PhysRevB.79.205433

    16. [16]

      Shi, Q. F.; Dokko, K.; Scherson, D. A. J. Phys. Chem. B 2004, 108 (15), 4789. doi: 10.1021/jp037015e  doi: 10.1021/jp037015e

    17. [17]

      Pollak, E.; Geng, B.; Jeon, K. J.; Lucas, I. T.; Richardson, T. J.; Wang, F.; Kostecki, R. Nano Lett. 2010, 10 (9), 3386. doi: 10.1021/nl101223k  doi: 10.1021/nl101223k

    18. [18]

      Zou, J.; Sole, C.; Drewett, N. E.; Velicky, M.; Hardwick, L. J. J. Phys. Chem. Lett. 2016, 7 (21), 4291. doi: 10.1021/acs.jpclett.6b01886  doi: 10.1021/acs.jpclett.6b01886

    19. [19]

      Xie, H.; Song, H.; Guo, J. -G.; Kang, Y.; Yang, W.; Zhang, Q. Carbon 2019, 144, 34. doi: 10.1016/j.carbon.2018.12.033  doi: 10.1016/j.carbon.2018.12.033

    20. [20]

      Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Mauri, F. Nat. Mater. 2007, 6 (3), 198. doi: 10.1038/nmat1846  doi: 10.1038/nmat1846

    21. [21]

      Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H. S. J.; Steele, G. A. 2D Mater. 2014, 1 (1), 011002. doi: 10.1088/2053-1583/1/1/011002  doi: 10.1088/2053-1583/1/1/011002

    22. [22]

      Xiong, F.; Wang, H.; Liu, X.; Sun, J.; Brongersma, M.; Pop, E.; Cui, Y. Nano Lett. 2015, 15 (10), 6777. doi: 10.1021/acs.nanolett.5b02619  doi: 10.1021/acs.nanolett.5b02619

    23. [23]

      Kuhne, M.; Paolucci, F.; Popovic, J.; Ostrovsky, P. M.; Maier, J.; Smet, J. H. Nat. Nanotechnol. 2017, 12 (9), 895. doi: 10.1038/NNANO.2017.108  doi: 10.1038/NNANO.2017.108

    24. [24]

      Chen, Y. F.; Liu, D.; Wang, Z. G.; Li, P. J.; Hao, X.; Cheng, K.; Fu, Y.; Huang, L. X.; Liu, X. Z.; Zhang, W. L.; et al. J. Phys. Chem. C 2011, 115 (14), 6690. doi: 10.1021/jp1121596  doi: 10.1021/jp1121596

    25. [25]

      Jung, I.; Pelton, M.; Piner, R.; Dikin, D. A.; Stankovich, S.; Watcharotone, S.; Hausner, M.; Ruoff, R. S. Nano Lett. 2007, 7 (12), 3569. doi: 10.1021/nl0714177  doi: 10.1021/nl0714177

    26. [26]

      Perssom, K; Sethuraman, V. A.; Hardwick, L. J.; Hinuma, Y.; Meng, Y. S.; van der Ven, A.; Srinivasan, V.; Kostecki, R.; Ceder, G. J. Phys. Chem. Lett. 2010, 1 (8), 1176. doi: 10.1021/jz100188d  doi: 10.1021/jz100188d

    27. [27]

      Jungblut, B.; Hoinkis, E. Phys. Rev. B 1989, 40 (16), 10810. doi: 10.1103/PhysRevB.40.10810  doi: 10.1103/PhysRevB.40.10810

  • 加载中
    1. [1]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    4. [4]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    5. [5]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    6. [6]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    7. [7]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    8. [8]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    9. [9]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    12. [12]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    13. [13]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    14. [14]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    15. [15]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    16. [16]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    17. [17]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    18. [18]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    19. [19]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    20. [20]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

Metrics
  • PDF Downloads(12)
  • Abstract views(764)
  • HTML views(195)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return